Abstract

In this work, we characterize the viability kernel of a two-dimensional dynamical system describing the interaction between tumor cells and effector cells, controlled by chemotherapy and immunotherapy, subjected to biological constraints. We use viability theory to calculate analytically the viability kernel that measures the relevance of combination therapy based on the condition of the cells during the first diagnosis and evaluate the chances of remission of a patient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 95.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 119.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. J.-P. Aubin, Viability Theory (Birkhauser Boston, New York, 2009). 1991 Edition

    Google Scholar 

  2. G. Deffuant, S. Martin, L. Chapel, Utiliser des “support vector machines” pour apprendre un noyau de viabilité. MajecSTIC 2005: Manifestation des Jeunes Chercheurs francophones dans les domaines des STIC, IRSA - IETR - lSTI, Nov 2005, Rennes, pp. 195–202

    Google Scholar 

  3. L.G. de Pillis, W. Gu, K.R. Fister, T. Head, K. Maples, T. Neal, A. Murugan, K. Yoshida, Chemotherapy for tumors: an analysis of the dynamics and a study of quadratic and linear optimal controls. Math. Biosci. 209, 292–315(2006)

    Article  MathSciNet  Google Scholar 

  4. R. Jaroudi, G. Baravdish, F. Åström, B.T. Johansson, Source Localization of Reaction-Diffusion Models for Brain Tumors (Springer, Cham, 2016), pp. 414–425

    Google Scholar 

  5. Kaviar homepage (2012). http://http://www.kaviar.prd.fr/

  6. V.A. Kuznetsov, I.A. Makalkin, M.A. Taylor, A.S. Perelson, Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis. Bull. Math. Biol. 56, 295–321 (1994)

    Article  Google Scholar 

  7. A. Lorz, T. Lorenzi, J. Clairambault, A. Escargueil, B. Perthame, Effects of space structure and combination therapies on phenotypic heterogeneity and drug resistance in solid tumors. Bull. Math. Biol. 77(1), 1–22 (2015)

    Article  MathSciNet  Google Scholar 

  8. C. Taramasco, K. Figueroa, J. Demongeot, Estimation of life expectancy of patients diagnosed with the most common cancers in the Valparaiso Region. Ecancermedicalscience 11, 713 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sabir, S., Raissi, N. (2019). Analysis of Tumor/Effector Cell Dynamics and Decision Support in Therapy. In: Mondaini, R. (eds) Trends in Biomathematics: Mathematical Modeling for Health, Harvesting, and Population Dynamics. Springer, Cham. https://doi.org/10.1007/978-3-030-23433-1_11

Download citation

Publish with us

Policies and ethics

Navigation