Manufacturing of Slow- and Controlled-Release Pesticides

  • Chapter
  • First Online:
Controlled Release of Pesticides for Sustainable Agriculture

Abstract

To ensuring the food safety, pesticides are used as the fundamental material against the major biological disasters. In recent years, pesticides have obtained enormous attention in the field of agriculture and food industry. Therefore to overcome the limitations of using traditional pesticide formulation, a new facile and innovative method of pesticide formulation has been addressed. This approach designs an intelligent smart process like ‘slow and controlled release of pesticides’. This concept may be greatly improving the use of pesticides by reducing waste and pollution. In this chapter, a brief description about pesticides, raw materials, manufacturing methods of slow and controlled release of pesticides and preparation methods of pesticide microcapsule like nanopesticides is discussed. This novel and intelligent slow- and controlled-release technology could enhance the target ability and improve the dispersibility and stability of active ingredients, pesticide loading and environmental viability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sun C, Cui H, Wang Y, Zeng Z, Zhao X, Cui B (2016) Studies on applications of nanomaterial and nanotechnology in agriculture. J Agric Sci Technol (Bei**g) 18(1):18–25

    Google Scholar 

  2. Carolyn R, Winand H, Edward C, Colleen H (2013) National pesticide applicator certification core manual. National Association of State Departments of Agriculture Research Foundation, Washington, DC

    Google Scholar 

  3. ** P, Yao R, Qin D, Chen Q, Du Q (2019) Enhancement in antibacterial activities of eugenol-entrapped ethosome nanoparticles via strengthening its permeability and sustained release. J Agric Food Chem 67(5):1371–1380

    Article  CAS  Google Scholar 

  4. Reichenberger S, Bach M, Skitschak A, Frede HG (2007) Mitigation strategies to reduce pesticide inputs into ground-and surface water and their effectiveness; a review. Sci Total Environ 384(1–3):1–35

    Article  CAS  Google Scholar 

  5. Gibbons A (1990) Overkilling the insect enemy; an OTA report says massive spraying of pesticides was misguided-and faults aid agencies for operating in a crisis mode. Science 249(4969):621–622

    Article  CAS  Google Scholar 

  6. Holmes B (1992) U.S. News and World Report, 73–74

    Google Scholar 

  7. Jacobsen RM, Youngs GA Jr, Goreham GA, Watt DL, Dahl BL, Sell RS, Stearns LD (1991) Selected characteristics of North Dakota farm families engaged in sustainable agricultural practices (no 1189-2016-94239)

    Google Scholar 

  8. Richmond S (1990) Changing Times, 102

    Google Scholar 

  9. Satchell M (1990) News and World Report, 31–32

    Google Scholar 

  10. Carson R (2009) Silent spring, 1962

    Google Scholar 

  11. Kumar S, Nehra M, Dilbaghi N, Marrazza G, Hassan AA, Kim KH (2018) Nano-based smart pesticide formulations: emerging opportunities for agriculture. J Control Release

    Google Scholar 

  12. GARBAGE DO (2010) Glausiusz, Josie. Buzz: the intimate bond between humans and insects. San Francisco, Calif.: Chronicle Books, 2004. Lee, Sally. Pesticides. New York: Franklin Watts, 1991. Macfarlane, Katherine. Pesticides. Chicago, Ill.: KidHaven Press, 2007. The Truth about Environmental Hazards, 92

    Google Scholar 

  13. Ware GW (1982) Pesticides: theory and application. Ed. Freeman, WH, 308

    Google Scholar 

  14. Ruan G, Feng SS, Li QT (2002) Effects of material hydrophobicity on physical properties of polymeric microspheres formed by double emulsion process. J Control Release 84(3):151–160

    Article  CAS  Google Scholar 

  15. Sun N, Wei X, Wu B, Chen J, Lu Y, Wu W (2008) Enhanced dissolution of silymarin/polyvinylpyrrolidone solid dispersion pellets prepared by a one-step fluid-bed coating technique. Powder Technol 182(1):72–80

    Article  CAS  Google Scholar 

  16. Kim DJ, Jung JY (2007) Granule performance of zirconia/alumina composite powders spray-dried using polyvinyl pyrrolidone binder. J Eur Ceram Soc 27(10):3177–3182

    Article  CAS  Google Scholar 

  17. Kulkarni AR, Soppimath KS, Aminabhavi TM (1999) Controlled release of diclofenac sodium from sodium alginate beads crosslinked with glutaraldehyde. Pharm Acta Helv 74(1):29–36

    Article  CAS  Google Scholar 

  18. Devassine M, Henry F, Guerin P, Briand X (2002) Coating of fertilizers by degradable polymers. Int J Pharm 242(1–2):399–404

    Article  CAS  Google Scholar 

  19. Rosenkranz K, Kasper MM, Werther J, Brunner G (2008) Encapsulation of irregularly shaped solid forms of proteins in a high-pressure fluidized bed. J Supercrit Fluids 46(3):351–357

    Article  CAS  Google Scholar 

  20. Dhumal SS, Wagh SJ, Suresh AK (2008) Interfacial polycondensation—modeling of kinetics and film properties. J Membr Sci 325(2):758–771

    Article  CAS  Google Scholar 

  21. Konradsen F (2007) Acute pesticide poisoning–a global public health problem. Dan Med Bull 54(1):58–59

    Google Scholar 

  22. Kang M, Myung SJ, ** HJ (2006) Nylon 610 and carbon nanotube composite by in situ interfacial polymerization. Polymer 47(11):3961–3966

    Article  CAS  Google Scholar 

  23. Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179(3):154–163

    Article  CAS  Google Scholar 

  24. Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop prot 35:64–70

    Article  CAS  Google Scholar 

  25. Mahjub R, Dorkoosh FA, Amini M, Khoshayand MR, Rafiee-Tehrani M (2011) Preparation, statistical optimization, and in vitro characterization of insulin nanoparticles composed of quaternized aromatic derivatives of chitosan. AAPS Pharmsci Tech 12(4):1407–1419

    Article  CAS  Google Scholar 

  26. Tebaldi ML, Belardi RM, Montoro SR (2016) Polymers with nano-encapsulated functional polymers. In: Design and applications of nanostructured polymer blends and nanocomposite systems. Elsevier, Amsterdam, The Netherlands

    Chapter  Google Scholar 

  27. Han LL, Bi LW, Zhao ZD, **ng YL (2012) Microencapsulation exploration of squalene by ultrasonic spraying and freeze-drying. In Advanced materials research, vol 554. Trans Tech Publications, pp 1835–1840

    Google Scholar 

  28. Wang N, Qi L, Wang Y, Li XG (2017) Preparation and performance of thermo-sensitive pyraclostrobin microcapsules. Chin J Pestic Sci 19:381–387

    Google Scholar 

  29. Huang B, Chen F, Shen Y, Qian K, Wang Y, Sun C, Zhao X, Cui B, Gao F, Zeng Z, Cui H (2018) Advances in targeted pesticides with environmentally responsive controlled release by nanotechnology. Nanomaterials 8(2):102

    Article  Google Scholar 

  30. Guan W, Tang L, Wang Y, Cui H (2018) Fabrication of an effective avermectin nanoemulsion using a cleavable succinic ester emulsifier. J Agric Food Chem 66(29):7568–7576

    Article  CAS  Google Scholar 

  31. Zhou YF, Wu J, Chen J, Nie WY (2007) Applied research of APEP-type polymerizable emulsifier in the preparation of pesticide nanocapsule [J]. J Anhui Univ (Nat Sci) 3

    Google Scholar 

  32. Pan G, Bao YJ, Xu J, Liu T, Liu C, Qiu YY, Shi XJ, Yu H, Jia TT, Yuan X, Yuan ZT (2016) Esterase-responsive polymeric prodrug-based tumor targeting nanoparticles for improved anti-tumor performance against colon cancer. RSC Adv 6(48):42109–42119

    Article  CAS  Google Scholar 

  33. Roy A, Singh SK, Bajpai J, Bajpai AK (2014) Controlled pesticide release from biodegradable polymers. Cent Eur J Chem 12(4):453–469

    Article  CAS  Google Scholar 

  34. Song Q, Mei XD, Huang QL, Wang ZY, Ning J (2009) Preparation of abamectin microcapsules by means of emulsion polymerization and it bioactivity. Chin J Pestic Sci 11:392–394

    CAS  Google Scholar 

  35. Shang Q, Shang ZH, Ci SY (2007) HPLC analysis of abamectin-nanocapsules suspensionconcentrate. Pestic-Shenyang 46(3):185

    CAS  Google Scholar 

  36. Wu J, et al (2008) Preparation of natural pyrethrum nanocapsule by means of microemulsion polymerization. Polym Mater Sci Eng 24(2):38

    Google Scholar 

  37. Liu B, Zhou X, Yang F, Shen H, Wang S, Zhang B, Zhi G, Wu D (2014) Fabrication of uniform sized polylactone microcapsules by premix membrane emulsification for ultrasound imaging. Polym Chem 5(5):1693–1701

    Article  CAS  Google Scholar 

  38. Feng JG, Xu Y, Luo XR, Yan H, Wu XM (2011) Discussion on the solvent evaporation method for preparation of microcapsules and the development of the pesticides microcapsules. Chin J Pestic Sci 13:568–575

    CAS  Google Scholar 

  39. Cao M, Guan P, Hu L, Chen XP (2009) The research progress and influential factors on preparation of microcapsules by W/O/W multiple emulsion-solvent evaporation method. Chem Bioeng 9(002)

    Google Scholar 

  40. Zhou XQ, Cao LD, Liu YJ, Li FM (2014) Preparation and performance characteristics of azoxystrobin microcapsules. Chin J Pestic Sci 16:213–219

    CAS  Google Scholar 

  41. Thickett SC, Gilbert RG (2007) Emulsion polymerization: state of the art in kinetics and mechanisms. Polymer 48(24):6965–6991

    Article  CAS  Google Scholar 

  42. Göpferich A, Luschmann C (2017) Solutions of lipophilic substances, especially medicinal solutions, Universitaet Regensburg. US patent 9,700,509

    Google Scholar 

  43. Piacentini E, Drioli E, Giorno L (2014) Membrane emulsification technology: twenty-five years of inventions and research through patent survey. J Membr Sci 468:410–422

    Article  CAS  Google Scholar 

  44. Li M, Rouaud O, Poncelet D (2008) Microencapsulation by solvent evaporation: state of the art for process engineering approaches. Int J Pharm 363(1–2):26–39

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabu Thomas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Remya, V.R., George, J.S., Thomas, S. (2020). Manufacturing of Slow- and Controlled-Release Pesticides. In: K. R., R., Thomas, S., Volova, T., K., J. (eds) Controlled Release of Pesticides for Sustainable Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-030-23396-9_5

Download citation

Publish with us

Policies and ethics

Navigation