Minimally-Invasive Estimation of Patient-Specific End-Systolic Elastance Using a Biomechanical Heart Model

  • Conference paper
  • First Online:
Functional Imaging and Modeling of the Heart (FIMH 2019)

Abstract

The end-systolic elastance (\(E_{\text {es}}\)) – the slope of the end-systolic pressure-volume relationship (ESPVR) at the end of ejection phase – has become a reliable indicator of myocardial functional state. The estimation of \(E_{\text {es}}\) by the original multiple-beat method is invasive, which limits its routine usage. By contrast, non-invasive single-beat estimation methods, based on the assumption of the linearity of ESPVR and the uniqueness of the normalised time-varying elastance curve \(E^N(t)\) across subjects and physiology states, have been applied in a number of clinical studies. It is however known that these two assumptions have a limited validity, as ESPVR can be approximated by a linear function only locally, and \(E^N(t)\) obtained from a multi-subject experiment includes a confidence interval around the mean function. Using datasets of 3 patients undergoing general anaesthesia (each containing aortic flow and pressure measurements at baseline and after introducing a vasopressor noradrenaline), we first study the sensitivity of two single-beat methods—by Sensaki et al. and by Chen et al.—to the uncertainty of \(E^N(t)\). Then, we propose a minimally-invasive method based on a patient-specific biophysical modelling to estimate the whole time-varying elastance curve \(E^{\text {model}}(t)\). We compare \(E^{\text {model}}_{\text {es}}\) with the two single-beat estimation methods, and the normalised varying elastance curve \(E^{N,\text {model}}(t)\) with \(E^{N}(t)\) from published physiological experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Burkhoff, D.: Assessment of systolic and diastolic ventricular properties via pressure-volume analysis: a guide for clinical, translational, and basic researchers. AJP: Heart Circulatory Physiol. 289(2), H501–H512 (2005)

    Google Scholar 

  2. Caruel, M., Chabiniok, R., Moireau, P., Lecarpentier, Y., Chapelle, D.: Dimensional reductions of a cardiac model for effective validation and calibration. Biomech. Model. Mechanobiol. 13(4), 897–914 (2014)

    Article  Google Scholar 

  3. Chabiniok, R., Moireau, P., Kiesewetter, C., Hussain, T., Razavi, R., Chapelle, D.: Assessment of atrioventricular valve regurgitation using biomechanical cardiac modeling. In: Pop, M., Wright, G.A. (eds.) FIMH 2017. LNCS, vol. 10263, pp. 401–411. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59448-4_38

    Chapter  Google Scholar 

  4. Chapelle, D., Le Tallec, P., Moireau, P., Sorine, M.: Energy-preserving muscle tissue model: formulation and compatible discretizations. Int. J. Multiscale Comput. Eng. 10(2), 189–211 (2012)

    Article  Google Scholar 

  5. Chen, C.H., et al.: Noninvasive single-beat determination of LV end-systolic elastance in humans. JACC 38(7), 2028–2034 (2001)

    Article  Google Scholar 

  6. Gaddum, N., Alastruey, J., Chowienczyk, P., Rutten, M.C., Segers, P., Schaeffter, T.: Relative contributions from the ventricle and arterial tree to arterial pressure and its amplification: an experimental study. Am. J. Physiol. Heart Circulatory Physiol. 313(3), H558–H567 (2017)

    Article  Google Scholar 

  7. Gayat, E., Mor-Avi, V., Weinert, L., Yodwut, C., Lang, R.M.: Noninvasive quantification of LV elastance and ventricular-arterial coupling using 3D echo and arterial tonometry. AJP: Heart Circulatory Physiol. 301(5), H1916–H1923 (2011)

    Google Scholar 

  8. Holzapfel, G.A., Ogden, R.W.: Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Phil. Trans. R. Soc. A: Math. Phys. Eng. Sci. 367(1902), 3445–3475 (2009)

    Article  MathSciNet  Google Scholar 

  9. Huxley, A.F.: Muscular contraction. J. Physiol. 243(1), 1–43 (1974)

    Article  MathSciNet  Google Scholar 

  10. Joachim, J., et al.: Velocity-pressure loops for continuous assessment of ventricular afterload: influence of pressure measurement site. J. Clin. Monit. Comput. 32(5), 833–840 (2017)

    Article  Google Scholar 

  11. Klotz, S., et al.: Single-beat estimation of end-diastolic pressure-volume relationship: a novel method with potential for noninvasive application. AJP: Heart Circulatory Physiol. 291(1), H403–H412 (2006)

    Google Scholar 

  12. Ruijsink, B., Zugaj, K., Pushparajah, K., Chabiniok, R.: Model-based indices of early-stage cardiovascular failure and its therapeutic management in Fontan patients. In: Coudière, Y., et al. (eds.) FIMH 2019. LNCS, vol. 11504, pp. 379–387. Springer, Cham (2019)

    Google Scholar 

  13. Sagawa, K., Maughan, L., Suga, H., Sunagawa, K.: Cardiac Contraction and the Pressure Volume Relationship. Oxford University Press, New York (1988)

    Google Scholar 

  14. Senzaki, H., Chen, C.H., Kass, D.A.: Single-beat estimation of end-systolic pressure-volume relation in humans: a new method with the potential for noninvasive application. Circulation 94(10), 2497–2506 (1996)

    Article  Google Scholar 

  15. Shishido, T., Hayashi, K., Shigemi, K., Sato, T., Sugimachi, M., Sunagawa, K.: Single-beat estimation of end-systolic elastance using bilinearly approximated time-varying elastance curve. Circulation 102(16), 1983–1989 (2000)

    Article  Google Scholar 

  16. Suga, H., Sagawa, K., Shoukas, A.A.: Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circulation Res. 32(3), 314–322 (1973)

    Article  Google Scholar 

Download references

Acknowledgment

We acknowledge Prof. Alexandre Mebazaa, and Prof. Etienne Gayat (Anaesthesiology and Intensive Care department, Lariboisière hospital, Paris, France) for their support in conducting the study. In addition, we would like to acknowledge Dr. Philippe Moireau, Inria research team M\(\mathsf {\** }\)DISIM, for the development of the cardiac simulation software CardiacLab used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Le Gall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Le Gall, A., Vallée, F., Chapelle, D., Chabiniok, R. (2019). Minimally-Invasive Estimation of Patient-Specific End-Systolic Elastance Using a Biomechanical Heart Model. In: Coudière, Y., Ozenne, V., Vigmond, E., Zemzemi, N. (eds) Functional Imaging and Modeling of the Heart. FIMH 2019. Lecture Notes in Computer Science(), vol 11504. Springer, Cham. https://doi.org/10.1007/978-3-030-21949-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21949-9_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21948-2

  • Online ISBN: 978-3-030-21949-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation