Morphologic and Functional Evolution of the Aging Spine

  • Chapter
  • First Online:
Spinal Anatomy

Abstract

The process of senescence of the spine begins in the first decade of life and then accelerates from the third. It is essentially fundamentally linked to a phenomenon of entropy that inexorably alters the machinery of all the cells of the body, to which are added random pathologies. Senescence is thus responsible for the so-called degenerative multisystem alterations so that the term “degenerative disc disease” (DDD) is too restrictive and inappropriate. All the connective structures of the column are involved (intervertebral discs, articular joints, and vertebral bone) and also muscle, vascular, and neural components. In addition, there are neurological abnormalities in the cerebral cortex and cerebellum which regulate the functioning of the vertebral column.

The sum of the functional and tissue alterations modifies mechanical behavior both in the vertebrae (osteoporosis often complicated by fractures and deformities) than that of the intervertebral mobile segments, responsible for disc rupture, spondylolisthesis, or degenerative deformities sometimes complicated by radicular or myelopathic abnormalities depending on the levels concerned. The impact of degenerative lesions in the spine is, however, highly variable from one subject to another depending on genetics, lifestyle, and for low back pain, the psychosocial context. The treatment of severe pathologies of the spine in elderly subjects ideally requires the intervention of a case manager who is responsible for proposing to the patient and the family a course of care promoting a comprehensive approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Stephens C. Senescence: even bacteria get old. Curr Biol. 2005;15(8):R308–1.

    Article  CAS  PubMed  Google Scholar 

  2. Roughley PJ. Biology of intervertebral disc aging and degeneration involvement of the extracellular matrix. Spine. 2004;29:2691–9.

    Article  PubMed  Google Scholar 

  3. Iatridis JC, Setton LA, Weidenbaum M, Mow VC. Alterations in the mechanical behavior of the human lumbar nucleus pulposus with degeneration and aging. J Orthop Res. 1997;15(2):318–22.

    Article  CAS  PubMed  Google Scholar 

  4. Roberts S, Evans H, Trivedi J, Menage J. Histology and pathology of the human intervertebral disc. J Bone Joint Surg. 2006;88A(Suppl 2):10–4.

    Google Scholar 

  5. Urban JPG, Smith S, Fairbank JCT. Nutrition of the intervertebral disc. Spine. 2004;29:2700–9.

    Article  PubMed  Google Scholar 

  6. Battie MC, Videman T. Lumbar disc degeneration: epidemiology and genetics. J Bone Joint Surg. 2006;88A(Suppl 2):3–9.

    Google Scholar 

  7. Sambrook PN, Macgregor AJ, Spector TD. Genetic influences on cervical and lumbar disc degeneration: a magnetic resonance imaging study in twins. Arthritis Rheum. 1999;42(2):366–72.

    Article  CAS  PubMed  Google Scholar 

  8. Matsumoto M, Okada E, Ichihara D, Watanabe K, Chiba K, Toyama Y, Fujiwara H, Momoshima S, Nishiwaki Y, Hashimoto T, Takahata T, et al. Spine. 2010;35(14):1359–64.

    Article  PubMed  Google Scholar 

  9. Vernon-Roberts B, Moore RJ, Fraser RD. The natural history of age-related disc degeneration: the influence of age and pathology on cell populations in the L4-L5 disc. Spine. 2008;33(25):2767–73.

    Article  PubMed  Google Scholar 

  10. Gruber HE, Hanley EN Jr. Analysis of aging and degeneration of the human intervertebral disc. Comparison of surgical specimens with normal controls. Spine. 1998;23(7):751–7.

    Article  CAS  PubMed  Google Scholar 

  11. Weiler C, Schietzsch M, Kirchner T, Nerlich AG, Boos N, Wuertz K. Age-related changes in human cervical, thoracal and lumbar intervertebral disc exhibit a strong intra-individual correlation. Eur Spine J. 2012;21(Suppl 6):810–8.

    Article  Google Scholar 

  12. Haeffeli M, Kalberer F, Saegesser D, Nerlich AG, Boos N, Paesold G. The course of macroscopic degeneration in the human lumbar intervertebral. Spine. 2006;14:1522–31.

    Article  Google Scholar 

  13. Pfirmann CWA, Metzdorf A, Zanetti M, et al. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine. 2001;26:1873–8.

    Article  Google Scholar 

  14. Modic M, Masaryk TJ, Ross JS, Carter JR. Imaging of the degenerative disc disease. Radiology. 1988;168:177–86.

    Article  CAS  PubMed  Google Scholar 

  15. Stokes IAF, Iatridis JC. Mechanical conditions that accelerate intervertebral disc degeneration: over-load versus immobilization. Spine. 2004;29:2224–32.

    Google Scholar 

  16. Hutton WC, Elmer WA, Hyon S, Toribatake Y, Tomita K, et al. The effect of hydrostatic pressure on intervertebral disc metabolism. Spine. 1999;24:1507–15.

    Article  CAS  PubMed  Google Scholar 

  17. Handa T, Ishihara H, Ohshima H, Osada R, Tsuji H, Obata K. Effects of hydrostatic pressure on matrix synthesis and matrix metalloproteinase production in the human lumbar intervertebral disc. Spine. 1997;22:1085–91.

    Article  CAS  PubMed  Google Scholar 

  18. Rannou F, Mayoux-Benhamou MA, Poiraudeau S, Revel M. Disque intervertebral et structures voisins de la colonne lombaire : anatomie, biologie, physiologie et biomécanique. Enc Med Chirg App Locom. 2004;480:A.10.

    Google Scholar 

  19. Kauppila LI, Pentilla A, Karnunen PJ, Lalu K, Hannikainen P. Lumbar disc degeneration and atherosclerosis of abdominal aorta. Spine. 1994;8:923–9.

    Article  Google Scholar 

  20. Zhang Z, Chan Q, Anthony MP, Samartzis D, Cheung KM, Khong PL, Kim M. Age-related diffusion patterns in human lumbar intervertebral discs: a pilot study in asymptomatic subjects. Magn Reson Imaging. 2012;30(2):181–8.

    Article  PubMed  Google Scholar 

  21. Brinjikji W, Diehn FE, Jarvik JG, Carr CM, Kallmes DF, Murad MH, Luetmer PH. MRI findings of disc degeneration are more prevalent in adults with low back pain than in asymptomatic controls: a systematic review and meta-analysis. AJNR Am J Neuroradiol. 2015;36(12):2394–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pollintine P, Van Tunen MS, Luo J, Brown MD, Dolan P, Adams MA. Time-dependent compressive deformation of the ageing spine: relevance to spinal stenosis. Spine. 2010;35(4):386–94.

    Article  PubMed  Google Scholar 

  23. Videman T, Battie MC, Gibbons LE, Gill K. Aging changes in lumbar discs and vertebrae and their interaction: a 15-year follow-up study. Spine J. 2014;14(3):469–78.

    Article  PubMed  Google Scholar 

  24. Okada E, Matsumoto M, Ichihara D, Chiba K, Toyama Y, Fujiwara H, Momoshima S, Nishiwaki Y, Hashimoto T, Ogawa J, Watanabe M, Takahata T. Does the sagittal alignment of the cervical spine have an impact on disc degeneration? Minimum 10-year follow-up of asymptomatic volunteers. Eur Spine J. 2009;18(11):1644–51.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Okada E, Matsumoto M, Ichihara D, Chiba K, Toyama Y, Fujiwara H, Momoshima S, Nishiwaki Y, Hashimoto T, Ogawa J, Watanabe M, Takahata T. Aging of the cervical spine in healthy volunteers: a 10-year longitudinal magnetic resonance imaging study. Spine. 2009;34(7):706–12.

    Article  PubMed  Google Scholar 

  26. Weishaupt D, Zanetti M, Boos N, Hodler J. MR imaging and CT in osteoarthritis of the lumbar facet joints. Skeletal Radiol. 1999;28:215–9.

    Article  CAS  PubMed  Google Scholar 

  27. Wang J, Yang X. Age-related changes in the orientation of lumbar facet joints. Spine. 2009;34:E596–8.

    Article  PubMed  Google Scholar 

  28. Grogan J, Nowicki BH, Schmidt TA, et al. Lumbar fact joint tropism does not accelerate degeneration of the facet joints. Am J Neuroradiol. 1997;18:1325–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Aylott CEW, Puna R, Robertson PA, Walker C. Spinous process morphology: the effect of ageing through adulthood on spinous process size and relationship to sagittal balance. Eur Spine J. 2012;21:1007–12.

    Article  PubMed  Google Scholar 

  30. Hadar H, Gadoth N, Heifetz M. Fatty replacement of lower paraspinal muscles: normal and neuromuscular disorders. Am J Neuro Radiol. 1989;141:895–8.

    Google Scholar 

  31. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al. Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in older people. Age Aging. 2010;39:412–23.

    Article  Google Scholar 

  32. Fortin M, Videman T, Gibbons LE, Battie M. Paraspinal muscle morphology and composition: a 15-yr longitudinal magnetic resonance imaging study. Med Sci Sport Exerc. 2014:893–901.

    Article  CAS  Google Scholar 

  33. Vital JM, Gille O, Coquet M. Déformations rachidiennes: anatomopathologie et histoenzymologie. Rev du Rhumatisme. 2004;71:263–4.

    Article  Google Scholar 

  34. Singh DKA, Bailey M, Lee RYW. Ageing modifies the fibre angle and biomechanical function of the lumbar extensor muscles. Clin Biomech. 2011;26:543–7.

    Article  Google Scholar 

  35. Mazaki M, Ikezoe T, Fukumoto Y, et al. Association of sagittal spinal alignment with thickness and echo intensity of lumbar back muscles in middle-aged and elderly women. Arch Gerontol Geriatr. 2015;61:197–201.

    Article  Google Scholar 

  36. Tsuboi H, Nishimura Y, Sakata T, et al. Age-related sex differences in erector spinae muscle endurance using surface electromyographic power spectral analysis in healthy humans. Spine J. 2013;13:1928–33.

    Article  PubMed  Google Scholar 

  37. Hwang JH, Lee YT, Park DS, Kwon TK. Age affects the latency of the erector spinae response to sudden loading. Clin Biomech. 2008;23:23–9.

    Article  Google Scholar 

  38. Itoi E. Roentenographic analysis of posture in spinal osteoporotics. Spine. 1991;16:750–6.

    Article  CAS  PubMed  Google Scholar 

  39. Sturnieks DL, St-George R, Lord SR. Balance disorders in the elderly. Neurophysiol Clin. 2008;38:467–78.

    Article  CAS  PubMed  Google Scholar 

  40. Perry SD. Evaluation of age-related plantar-surface insensitivity and onset age of advanced insensitivity in older adults using vibratory and touch sensation tests. Neurosci Lett. 2006;392:62–7.

    Article  CAS  PubMed  Google Scholar 

  41. Machado AS, Bombach GD, Duysens J, Carpes FP. Differences in foot sensitivity and plantar pressure between young adults and elderly. Arch Gerontol Geriatr. 2016;63:67–71.

    Article  PubMed  Google Scholar 

  42. Zhang S, Li L. The differential effects of foot sole sensory on plantar pressure distribution between balance and gait. Gait Posture. 2013;37(4):532–5.

    Article  PubMed  Google Scholar 

  43. Yoshida G, Yasuda T, Togawa D, et al. Craniopelvic alignment in elderly asymptomatic individuals: analysis of 671 cranial centers of gravity. Spine. 2014;39:1121–7.

    Article  PubMed  Google Scholar 

  44. Kavounoudias A, Roll R, Roll JP. Foot sole and ankle muscle inputs contribute jointly to human erect posture regulation. J Physiol. 2001;532:869–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gosselin G, Rassoulian H, Brown I. Effects of neck extensor muscles fatigue on balance. Clin Biomech. 2004;19:473–9.

    Article  Google Scholar 

  46. Beinert K, Keller M, Taube W. Neck muscle vibration can improve sensorimotor function in patients with neck pain. Spine J. 2015;15:514–21.

    Article  PubMed  Google Scholar 

  47. Suetterlin KJ, Sayer AA. Proprioception: where are we now? A commentary on clinical assessment, changes across the life course, functional implications and future interventions. Age Ageing. 2014;43(3):313–8.

    Article  PubMed  Google Scholar 

  48. Owsley C. Aging and vision. Vis Res. 2011;51:1610–22.

    Article  PubMed  Google Scholar 

  49. Iwasaki S, Yamasoba T. Dizziness and imbalance in the elderly: age-related decline in the vestibular system. Aging Dis. 2015;6(1):38–47.

    Article  PubMed  Google Scholar 

  50. Bove M, Fenoggio C, Tacchino A, Pelosin E, Schieppati M. Interaction between vision and neck proprioception in the control of stance. Neuroscience. 2009;164:1601–8.

    Article  CAS  PubMed  Google Scholar 

  51. Wiszomirska I, Kaczmarczyk K, Blazkiewicz M, Wit A. The impact of a vestibular-stimulating exercise regimen on postural stability in women over 60. J Exerc Sci Fitness. 2015;13:72–8.

    Article  Google Scholar 

  52. Manckoudia P, Mourey F, Tavernier-Vidal B, Pfitzenmeyer P. Syndrome de désadaptation psychomotrice. Rev Méd Int. 2007;28:79–85.

    Article  Google Scholar 

  53. Goble DJ, Coxon JP, Van Impe A, Geurts M, Doumas M, Wenderoth N, Swinnen SP. Brain activity during ankle proprioceptive stimulation predicts balance performance in young and older adults. J Neurosci. 2011;31(45):16344–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Papegaaij S, Taube W, Baudry ST, Otten E, Hortobagyi T. Aging causes a reorganization of cortical and spinal control of posture. Front Aging Neurosci. 2014;6(28):1–15.

    Google Scholar 

  55. Shumway-Cook A, Woollacott M. Attentional demands and postural control: the effect of sensory context. J Gerontol. 2000;55A(1):M10–6.

    Google Scholar 

  56. Boisgontier MP, Olivier I, Chenu O, Nougier V. Presbypropria: the effects of physiological ageing on proprioceptive control. Age. 2012;34:1179–94.

    Article  PubMed  Google Scholar 

  57. Huxhold O, Li SC, Schmiedek F, Lindenberger U. Dual-tasking postural control: aging and the effects of cognitive demand in conjunction with focus of attention. Brain Res Bull. 2006;69:294–305.

    Article  PubMed  Google Scholar 

  58. Redfern MS, Jennings KR, Martin C, Furman JM. Attention influences sensory integration for postural control in older adults. Gait Posture. 2001;14:211–6.

    Article  CAS  PubMed  Google Scholar 

  59. Benatru I, Vaugoyeau M, Azulay JP. Postural disorders in Parkinson’s disease. Clin Neurophysiol. 2008;38:459–65.

    Article  CAS  Google Scholar 

  60. Falaki A, Huang X, Lewis MM, Latash ML. Impaired synergic control of posture in Parkinson’s patients without postural instability. Gait Posture. 2016;44:209–15.

    Article  PubMed  Google Scholar 

  61. Horak FB, Wrisley DM, Frank J. The balance evaluation systems test (BESTest) to differentiate balance deficits. Phys Ther. 2009;89(5):484–98.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wilkie RM, Wann JP. Judgments of path, not heading, guide locomotion. J Exp Psychol Hum Percept Perform. 2006;32(1):88–96.

    Article  PubMed  Google Scholar 

  63. Le Goic M. Étude du contrôle postural chez l’homme : Analyse des facteurs neurophysiologiques, biomécaniques et cognitifs impliqués dans les 500 premières secondes d’une chute. Thèse Université Paris Descartes; 2013.

    Google Scholar 

  64. Berthoz A, Graf W. The head-neck sensory motor system. Oxford: Oxford University Press; 1992.

    Book  Google Scholar 

  65. Vital JM, Senegas J. Anatomical basis of the study of the constraints to which the cervical spine is subject in the sagittal a plane. A study of the center of gravity of the head. Surg Radiol Anat. 1986;8(3):169–73.

    Article  CAS  PubMed  Google Scholar 

  66. Ordway NR, et al. Cervical flexion, extension, protrusion and retraction: a radiographic segmental analysis. Spine. 1999;24:240–7.

    Article  CAS  PubMed  Google Scholar 

  67. De Leva P. Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters. J Biomech. 1996;29:1223–33.

    Article  PubMed  Google Scholar 

  68. Santschi WR, Dubois J. Moments inertia and center of gravity of the living human body. Los Angeles: Northampton America Aviation, Inc. p. 1–62.

    Google Scholar 

  69. Ylinen JJ, Malkia EA, Hakkinen AH. Isometric strength of the cervical flexor, extensor, rotator muscles in 220 healthy females aged 20 to 59 years. J Orthop Sports Phys Ther. 2006;36:7.

    Google Scholar 

  70. Ylinen JJ, Esko A, Kautianen H, Hakkinen AH. Isometric strength of the cervical flexor, extensor, and rotator muscles in 220 healthy females aged 20 to 59 years. J Orthop Sports Phys Ther. 2006;36:495–502.

    Article  PubMed  Google Scholar 

  71. Portero R. Evaluation des propriétés mécaniques des muscles cervicaux. Analyse du comportement dynamique du segment tête/cou lors de l’application rapide. Thèse de Biomécanique-Université Pierre et Marie Curie, Paris VI; 2010.

    Google Scholar 

  72. Vasada A, Si** L, Delp SL. Three-dimensional isometric strength of neck muscles in humans. Spine. 2001;26:1904–9.

    Article  Google Scholar 

  73. Abitbol MM. Evolution of the lumbosacral angle. Am J Phys Anthropol. 1987;72:361–72.

    Article  CAS  PubMed  Google Scholar 

  74. Lafage V, Renaud MS, Schwab F, et al. Defining spino-pelvic alignment thresholds: should operative goals in adult spinal deformity surgery account for age. Spine. 2016;41:62–8.

    Article  PubMed  Google Scholar 

  75. Smidt G, Wei SH, McQuade B, Sun TG. Sacroiliac motion for extreme hip extension. Spine. 1997;41:2073–82.

    Article  Google Scholar 

  76. Ha K-Y, Lee J-S, Kim K-W. Degeneration of sacroiliac joint after instrumented lumbar fusion. Spine. 2008;33:1192–8.

    Article  PubMed  Google Scholar 

  77. Lieberman DE, Vendekasan M, Werbel WA, et al. Foot strike patterns and collision forces in habitually barefoot versus shod runners. Nature. 2010;463:531–6.

    Article  CAS  PubMed  Google Scholar 

  78. Pozzo T, Levik Y, Berthoz A. Head and trunk movements in the frontal plane during complex dynamic equilibrium tasks in humans. Exp Brain Res. 1995;106:327–38.

    Article  CAS  PubMed  Google Scholar 

  79. Heglund N. Energetics and mechanics of terrestrial locomotion III. Energy changes of the center of mass as a function of speed and body size in birds and mammals. J Exp Biol. 1982;97:41–56.

    CAS  PubMed  Google Scholar 

  80. Tsuang YH, Shipplein OD, Trafi JH, Anderson GBJ. Influence of body segment dynamics on loads at the lumbar spine during lifting. Ergonomics. 1992;35:437–44.

    Article  CAS  PubMed  Google Scholar 

  81. Asmussen E, Klausen K. Form and function of erect human spine. Clin Orthop. 1962;25:55–63.

    CAS  PubMed  Google Scholar 

  82. Jandy B, Schmitt H, Schmitt D, Gregersen G, Lucas D. An in vivo study of the axial rotation of the human thoracolumbar spine. J Bone Joint Surg Am. 1967;49(A):24–8.

    Google Scholar 

  83. Obeid I, Boniella A, Boissiere L, Bourghli A, Pointillard V, Gille O, Lafage V, Vital JM. Cervical spine alignment following lumbar pedicle subtraction osteotomy for sagittal imbalance. Eur Spine J. 2015;24:1191–8.

    Article  PubMed  Google Scholar 

  84. Keshner EA, Cromwell R, Peterson B. Head stabilization during vertical seated rotations and gait. In: Woollacott M, Horak F, editors. Posture and gait: control mechanisms. Portland: University of Oregon; 1992. p. 105–8.

    Google Scholar 

  85. Gregersen GG, Lucas DB. An in vivo study of the axial rotation of the human thoracolumbar spine. J Bone Joint Surg. 1967;49(A):247–62.

    Article  CAS  PubMed  Google Scholar 

  86. Gracovesysky S, Farfan HF, Lamy C. The mechanism of the lumbar spine. Spine. 1981;6:249–62.

    Article  Google Scholar 

  87. Dubousset J. Three-dimensional analysis of the scoliotic deformity. In: Weinstein SL, editor. The pediatric spine: principles and practice. New York: Raven Press; 1994. p. 479–96.

    Google Scholar 

  88. Hof AL, Gazendam MG, Sinke WE. The condition for dynamic stability. J Biomech. 2005;38(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  89. Pai YC, Patton J. Center of mass velocity-position predictions for balance control. J Biomech. 1997;30(4):347–54.

    Article  CAS  PubMed  Google Scholar 

  90. Yukawa Y, Kato F, Suda K, et al. Age-related changes in osseous anatomy, alignment, and range of motion of the cervical spine. Part I: radiographic data from over 1,200 asymptomatic subjects. Eur Spine J. 2012;21(8):1492–8.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Paterson D, Jones GR, Rice C. Le vieillissement et l’activité physique : données sur lesquelles fonder des recommendations relatives à l’exercice à l’intention des adultes âgés. Appl Physiol Nutr Metab. 2008;34:32(S2F).

    Google Scholar 

  92. Roussouly P, Perrin G, et al. Sagittal balance disorders in severe degenerative spine. Can we identify the compensatory mechanisms? Eur Spine J. 2011;20:626–33.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Gelb DE, Lenke LG, Bridwell KH, et al. An analysis of sagittal spinal alignment in 100 asymptomatic middle and older aged volunteers. Spine. 1995;20:1351–8.

    Article  CAS  PubMed  Google Scholar 

  94. Kobayashi T, Atsuta Y, Matsuno T, et al. A longitudinal study of congruent sagittal spinal alignment in an adult cohort. Spine. 2004;29:671–6.

    Article  PubMed  Google Scholar 

  95. Obeid I, Hauger O, Bourghli A, Pellet N, Vital JM. Global analysis of sagittal spinal alignment in major deformities: correlation between lack of lumbar lordosis and flexion of the knee. Eur Spine J. 2011;20(Suppl 5):S681–5.

    Article  Google Scholar 

  96. Ames CP, Blondel B, Scheer JK, et al. Cervical radiographical alignment: comprehensive assessment techniques and potential importance in cervical myelopathy. Spine. 2013;38:S149–60.

    Article  PubMed  Google Scholar 

  97. Stoffegren TA. Flow structure versus retinal location in the optical control of stance. J Exp Psychol. 1985;11:554–65.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sénégas, J., Bouloussa, H., Liguoro, D., Yoshida, G., Vital, J.M. (2020). Morphologic and Functional Evolution of the Aging Spine. In: Vital, J., Cawley, D. (eds) Spinal Anatomy . Springer, Cham. https://doi.org/10.1007/978-3-030-20925-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20925-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20924-7

  • Online ISBN: 978-3-030-20925-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation