Applicability of Deep Learned vs Traditional Features for Depth Based Classification

  • Conference paper
  • First Online:
Computational Modeling of Objects Presented in Images. Fundamentals, Methods, and Applications (CompIMAGE 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10986))

  • 249 Accesses

Abstract

In robotic applications, highly specific objects such as industrial parts, for example, often need to be recognized. In these cases methods can’t rely on the online availability of large labeled training data sets or pre-trained models. This is especially true for depth data, thus making it challenging for deep learning (DL) approaches. Therefore, this work analyzes the performance of various traditional (global or part-based) and DL features on a restricted depth data set, depending on the tasks complexity. While the sample size is small, we can conclude that pre-trained DL descriptors are the most descriptive, but not by a statistically significant margin and therefore part-based descriptors are still a viable option for small, but difficult 3D data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aldoma, A., Tombari, F., Rusu, R.B., Vincze, M.: OUR-CVFH – oriented, unique and repeatable clustered viewpoint feature histogram for object recognition and 6DOF pose estimation. In: Pinz, A., Pock, T., Bischof, H., Leberl, F. (eds.) DAGM/OAGM 2012. LNCS, vol. 7476, pp. 113–122. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32717-9_12

    Chapter  Google Scholar 

  2. Aldoma, A., et al.: CAD-model recognition and 6DOF pose estimation using 3D cues. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 585–592. IEEE, November 2011. http://dx.doi.org/10.1109/iccvw.2011.6130296

  3. Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992). http://dx.doi.org/10.1109/34.121791

    Article  Google Scholar 

  4. Bracci, F., Hillenbrand, U., Marton, Z.-C., Wilkinson, M.H.F.: On the use of the tree structure of depth levels for comparing 3D object views. In: Felsberg, M., Heyden, A., Krüger, N. (eds.) CAIP 2017. LNCS, vol. 10424, pp. 251–263. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64689-3_21

    Chapter  Google Scholar 

  5. Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM International Conference on Multimedia, MM 2014, pp. 675–678. ACM, New York (2014). http://doi.acm.org/10.1145/2647868.2654889

  6. Kingma, D.P.: Variational inference & deep learning: A new synthesis. Intelligent Sensory Information Systems (IVI, FNWI) (2017). http://dare.uva.nl/personal/pure/en/publications/variational-inference-deep-learning(8e55e07f-e4be-458f-a929-2f9bc2d169e8).html

  7. Kossyk, I., Marton, Z.S.: Discriminative regularization of the latent manifold of variational auto-encoders for semi-supervised recognition. Online (2017). https://tinyurl.com/y8p3tjle

  8. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, vol. 25 (2012). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.299.205

  9. Masci, J., Rodolà, E., Boscaini, D., Bronstein, M.M., Li, H.: Geometric deep learning. In: SIGGRAPH ASIA 2016 Courses, SA 2016. ACM, New York (2016). http://dx.doi.org/10.1145/2988458.2988485

  10. Pratikakis, I., et al.: SHREC 2010 - Shape Retrieval Contest of Range Scans. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.361.8068

  11. Razavian, A.S., Azizpour, H., Sullivan, J., Carlsson, S.: CNN Features off-the-shelf: an astounding baseline for recognition, May 2014. http://arxiv.org/abs/1403.6382

  12. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115, 211–252 (2015). Springer, US. http://dx.doi.org/10.1007/s11263-015-0816-y

  13. Rusu, R.B., Blodow, N., Beetz, M.: Fast point feature histograms (FPFH) for 3D registration. In: The IEEE International Conference on Robotics and Automation (ICRA), Kobe, Japan (2009). http://files.rbrusu.com/publications/Rusu09ICRA.pdf

  14. Rusu, R.B., Bradski, G., Thibaux, R., Hsu, J.: Fast 3D recognition and pose using the viewpoint feature histogram. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2155–2162. IEEE, October 2010. http://dx.doi.org/10.1109/iros.2010.5651280

  15. Rusu, R.B., Cousins, S.: 3D is here: point cloud library (PCL). In: 2011 IEEE International Conference on Robotics and Automation, pp. 1–4. IEEE, May 2011. http://dx.doi.org/10.1109/icra.2011.5980567

  16. Simonyan, K., Zisserman, A.: Very Deep Convolutional Networks for Large-Scale Image Recognition, April 2015. http://arxiv.org/abs/1409.1556v5.pdf

  17. Song, X., Herranz, L., Jiang, S.: Depth CNNs for RGB-D scene recognition: learning from scratch better than transferring from RGB-CNNs. Ar**v e-prints, January 2018. http://arxiv.org/abs/1801.06797

  18. Ullrich, M., Ali, H., Durner, M., Marton, Z.C., Triebel, R.: Selecting CNN features for online learning of 3D objects. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5086–5091. IEEE, September 2017. http://dx.doi.org/10.1109/iros.2017.8206393

  19. Zaki, H.F.M., Shafait, F., Mian, A.: Convolutional hypercube pyramid for accurate RGB-D object category and instance recognition. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 1685–1692. IEEE, May 2016. http://dx.doi.org/10.1109/icra.2016.7487310

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Bracci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bracci, F., Li, M., Kossyk, I., Marton, ZC. (2019). Applicability of Deep Learned vs Traditional Features for Depth Based Classification. In: Barneva, R., Brimkov, V., Kulczycki, P., Tavares, J. (eds) Computational Modeling of Objects Presented in Images. Fundamentals, Methods, and Applications. CompIMAGE 2018. Lecture Notes in Computer Science(), vol 10986. Springer, Cham. https://doi.org/10.1007/978-3-030-20805-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20805-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20804-2

  • Online ISBN: 978-3-030-20805-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation