Radiative Properties of Atmospheric Black Carbon (Soot) Particles with Complex Structures

  • Chapter
  • First Online:
Springer Series in Light Scattering

Part of the book series: Springer Series in Light Scattering ((SSLS))

Abstract

Black carbon (BC, also known as soot), the most important light-absorbing aerosol, has been recently identified as the second most significant anthropogenic contributor to global warming in the present-day atmosphere after carbon dioxide. However, the current estimate of BC radiative effects is still subject to large uncertainties. One important uncertainty source is the substantial variation of BC radiative properties caused by complex structures during its evolution in the atmosphere. This chapter reviews recent scientific advances in understanding and quantifying the impact of BC particle structure/morphology on its radiative properties. We first present observational evidences of various irregular BC particle structures under different environmental conditions. We then briefly summarize several widely-used methods that compute radiative properties of particles with complex structures. Furthermore, we quantitatively describe the morphological/structural effects on BC radiative properties based on observations and theoretical calculations. Finally, we provide associated climatic implications and give future research directions for further advancing the understanding in this topic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 149.79
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 149.79
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adachi K, Buseck PR (2013) Changes of ns-soot mixing states and shapes in an urban area during CalNex. J Geophys Res Atmos 118:3723–3730

    Article  ADS  Google Scholar 

  • Adachi K, Chung SH, Friedrich H, Buseck PR (2007) Fractal parameters of individual soot particles determined using electron tomography: implications for optical properties. J Geophys Res 112:D14202

    Article  ADS  Google Scholar 

  • Adachi K, Chung SH, Buseck PR (2010) Shapes of soot aerosol particles and implications for their effects on climate. J Geophys Res Atmos 115:D15206

    Article  ADS  Google Scholar 

  • Adler G, Riziq AA, Erlick C, Rudich Y (2010) Effect of intrinsic organic carbon on the optical properties of fresh diesel soot. Proc Natl Acad Sci 107(15):6699–6704

    Article  ADS  Google Scholar 

  • Andersson E, Kahnert M (2016) Coupling aerosol optics to the MATCH (v5.5.0) chemical transport model and the SALSA (v1) aerosol microphysics module. Geosci Model Dev 9:1803–1826

    Article  ADS  Google Scholar 

  • Bambha RP, Michelsen HA (2015) Effects of aggregate morphology and size on laser-induced incandescence and scattering from black carbon (mature soot). J Aerosol Sci 88:159–181

    Article  ADS  Google Scholar 

  • Bambha RP, Dansson MA, Schrader PE, Michelsen HA (2013) Effects of volatile coatings and coating removal mechanisms on the morphology of graphitic soot. Carbon 61:80–96

    Article  Google Scholar 

  • Bescond A, Yon J, Ouf FX, Rozé C, Coppalle A, Parent P, Ferry D, Laffon C (2016) Soot optical properties determined by analyzing extinction spectra in the visible near-UV: toward an optical speciation according to constituents and structure. J Aerosol Sci 101:118–132

    Article  ADS  Google Scholar 

  • Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New York, NY, USA

    Google Scholar 

  • Bond TC, Bergstrom RW (2006) Light absorption by carbonaceous particles: an investigative review. Aerosol Sci Techol 40:27–67

    Article  ADS  Google Scholar 

  • Bond TC, Habib G, Bergstrom RW (2006) Limitations in the enhancement of visible light absorption due to mixing state. J Geophys Res 111:D20211

    Article  ADS  Google Scholar 

  • Bond TC, Doherty SJ, Fahey DW et al (2013) Bounding the role of black carbon in the climate system: a scientific assessment. J Geophys Res Atmos 118:5380–5552

    Article  ADS  Google Scholar 

  • Brunamonti S, Krieger UK, Marcolli C, Peter T (2015) Redistribution of black carbon in aerosol particles undergoing liquid-liquid phase separation. Geophys Res Lett 42:2532–2539

    Article  ADS  Google Scholar 

  • Cappa CD, Onasch TB, Massoli P et al (2012) Radiative absorption enhancements due to the mixing state of atmospheric black carbon. Science 337:1078–1081

    Article  ADS  Google Scholar 

  • Carabali G, Castro T, De la Cruz W et al (2016) Morphological and chemical characterization of soot emitted during flaming combustion stage of native-wood species used for cooking process in western Mexico. J Aerosol Sci 95:1–14

    Article  ADS  Google Scholar 

  • Chakrabarty RK, Moosmüller H, Garro MA, Arnott WP, Walker J, Susott RA, Babbitt RE, Wold CE, Lincoln EN, Hao WM (2006) Emissions from the laboratory combustion of wildland fuels: Particle morphology and size. J Geophys Res 111:D07204

    ADS  Google Scholar 

  • Cheng YF, Berghof M, Garland RM, Wiedensohler A, Wehner B, Müller T, Su H, Zhang YH, Achtert P, Nowak A, Pöschl U (2009) Influence of soot mixing state on aerosol light absorption and single scattering albedo during air mass aging at a polluted regional site in northeastern China. J Geophys Res 114:D00G10

    Google Scholar 

  • Cheng T, Gu X, Wu Y, Chen H, Yu T (2013) The optical properties of absorbing aerosols with fractal soot aggregates: implications for aerosol remote sensing. J Quant Spectrosc Radiat Transf 125:93–104

    Article  ADS  Google Scholar 

  • China S, Mazzoleni C, Gorkowski K, Aiken AC, Dubey MK (2013) Morphology and mixing state of individual freshly emitted wildfire carbonaceous particles. Nat Commun 4:2122

    Article  ADS  Google Scholar 

  • China S, Scarnato B, Owen RC et al (2015) Morphology and mixing state of aged soot particles at a remote marine free troposphere site: implications for optical properties. Geophys Res Lett 42:1243–1250

    Article  ADS  Google Scholar 

  • Ching J, Riemer N, West M (2016) Black carbon mixing state impacts on cloud microphysical properties: effects of aerosol plume and environmental conditions. J Geophys Res Atmos 121:5990–6013

    Article  Google Scholar 

  • Chumpitaz L, Coutinho L, Meirelles A (1999) Surface tension of fatty acids and triglycerides. J Am Oil Chem Soc 76(3):379–382

    Article  Google Scholar 

  • Chung C, Lee K, Mueller D (2012) Effect of internal mixture on black carbon radiative forcing. Tellus B Chem Phys Meteorol 64(1):10925

    Article  ADS  Google Scholar 

  • Colbeck I, Appleby L, Hardman EJ, Harrison RM (1990) The optical properties and morphology of cloud-processed carbonaceous smoke. J Aerosol Sci 21(4):527–538

    Article  ADS  Google Scholar 

  • Dastanpour R, Momenimovahed A, Thomson K, Olfert J, Rogak S (2017) Variation of the optical properties of soot as a function of particle mass. Carbon 124:201–211

    Article  Google Scholar 

  • DeVoe H (1964) Optical properties of molecular aggregates. I. Classical model of electronic absorption and refraction. J Chem Phys 41:393–400

    Article  ADS  Google Scholar 

  • Dobbins RA, Megaridis CM (1991) Absorption and scattering of light by polydisperse aggregates. Appl Opt 30(33):4747–4754

    Article  ADS  Google Scholar 

  • Doner N, Liu F (2017) Impact of morphology on the radiative properties of fractal soot aggregates. J Quant Spectrosc Radiat Transf 187:10–19

    Article  ADS  Google Scholar 

  • Doner N, Liu F, Yon J (2017) Impact of necking and overlap** on radiative properties of coated soot aggregates. Aerosol Sci Techol 51(4):532–542

    Article  ADS  Google Scholar 

  • Dong J, Zhao JM, Liu LH (2015) Morphological effects on the radiative properties of soot aerosols in different internally mixing states with sulfate. J Quant Spectrosc Radiat Transf 165:43–55

    Article  ADS  Google Scholar 

  • Draine BT, Flatau PJ (1994) Discrete dipole approximation for scattering calculations. J Opt Soc Am A 11:1491–1499

    Article  ADS  Google Scholar 

  • Dubovik O, Sinyuk A, Lapyonok T et al (2006) Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust. J Geophys Res 111:D11208. https://doi.org/10.1029/2005JD006619

    Article  ADS  Google Scholar 

  • Fierce L, Bond TC, Bauer SE, Mena F, Riemer N (2016) Black carbon absorption at the global scale is affected by particle-scale diversity in composition. Nat Commun 7:12361

    Article  ADS  Google Scholar 

  • Forestieri SD, Helgestad TM, Lambe AT et al (2018) Measurement and modeling of the multiwavelength optical properties of uncoated flame-generated soot. Atmos Chem Phys 18:12141–12159

    Article  ADS  Google Scholar 

  • Fuller KA (1995) Scattering and absorption cross sections of compounded spheres. II. Calculations for external aggregation. J Opt Soc Am 11(12):881–892

    Article  ADS  Google Scholar 

  • Fuller KA, Malm WC, Kreidenweis SM (1999) Effects of mixing on extinction by carbonaceous particles. J Geophys Res 104(D13):15941–15954

    Article  ADS  Google Scholar 

  • Gustafsson Ö, Ramanathan V (2016) Convergence on climate warming by black carbon aerosols. Proc Natl Acad Sci 113(16):4243–4245

    Article  ADS  Google Scholar 

  • Hasegawa S, Ohta S (2002) Some measurements of the mixing state of soot-containing particles at urban and non-urban sites. Atmos Environ 36(24):3899–3908

    Article  ADS  Google Scholar 

  • He C, Li Q, Liou KN et al (2014) Black carbon radiative forcing over the Tibetan Plateau. Geophys Res Lett 41(22):7806–7813

    Article  ADS  Google Scholar 

  • He C, Liou KN, Takano Y, Zhang R, Levy Zamora M, Yang P, Li Q, Leung LR (2015) Variation of the radiative properties during black carbon aging: theoretical and experimental intercomparison. Atmos Chem Phys 15:11967–11980

    Article  ADS  Google Scholar 

  • He C, Li Q, Liou KN, Qi L, Tao S, Schwarz JP (2016a) Microphysics-based black carbon aging in a global CTM: constraints from HIPPO observations and implications for global black carbon budget. Atmos Chem Phys 16(5):3077–3098

    Article  ADS  Google Scholar 

  • He C, Takano Y, Liou KN, Yang P, Li Q, Mackowski DW (2016b) Intercomparison of the GOS approach, superposition T-matrix method, and laboratory measurements for black carbon optical properties during aging. J Quant Spectrosc Radiat Transf 184:287–296

    Article  ADS  Google Scholar 

  • He C, Takano Y, Liou KN, Yang P, Li Q, Chen F (2017) Impact of snow grain shape and black carbon-snow internal mixing on snow optical properties: parameterizations for climate models. J Clim 30(24):10019–10036

    Article  ADS  Google Scholar 

  • He C, Liou KN, Takano Y (2018) Resolving size distribution of black carbon internally mixed with snow: impact on snow optical properties and albedo. Geophys Res Lett 45:2697–2705

    Article  ADS  Google Scholar 

  • Heinson WR, Liu P, Chakrabarty RK (2017) Fractal scaling of coated soot aggregates. Aerosol Sci Techol 51(1):12–19

    Article  ADS  Google Scholar 

  • Iskander MF, Chen HY, Penner JE (1991) Resonance optical absorption by fractal agglomerates of smoke aerosols. Atmos Environ 25A(11):2563–2569

    Article  ADS  Google Scholar 

  • Jacobson MZ (2001) Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature 409(6821):695–697

    Article  ADS  Google Scholar 

  • Jacobson MZ (2006) Effects of externally-through-internally-mixed soot inclusions within clouds and precipitation on global climate. J Phys Chem A 110(21):6860–6873

    Article  Google Scholar 

  • Kahnert M (2010) On the discrepancy between modeled and measured mass absorption cross sections of light absorbing carbon aerosols. Aerosol Sci Techol 44(6):453–460

    Article  ADS  Google Scholar 

  • Kahnert M, Devasthale A (2011) Black carbon fractal morphology and short-wave radiative impact: a modelling study. Atmos Chem Phys 11:11745–11759

    Article  ADS  Google Scholar 

  • Kahnert M, Nousiainen T, Lindqvist H, Ebert M (2012) Optical properties of light absorbing carbon aggregates mixed with sulfate: assessment of different model geometries for climate forcing calculations. Opt Express 20:10042–10058

    Article  ADS  Google Scholar 

  • Kahnert M, Nousiainen T, Lindqvist H (2013) Models for integrated and differential scattering optical properties of encapsulated light absorbing carbon aggregates. Opt Express 21:7974–7992

    Article  ADS  Google Scholar 

  • Khalizov AF, Xue H, Wang L, Zheng J, Zhang R (2009) Enhanced light absorption and scattering by carbon soot aerosol internally mixed with sulfuric acid. J Phys Chem A 113(6):1066–1074

    Article  Google Scholar 

  • Khalizov AF, Cruz-Quinones M, Zhang RY (2010) Heterogeneous reaction of NO2 on fresh and coated soot surfaces. J Phys Chem A 114:7516–7524

    Article  Google Scholar 

  • Khalizov AF, Lin Y, Qiu C, Guo S, Collins D, Zhang R (2013) Role of OH-initiated oxidation of isoprene in aging of combustion soot. Environ Sci Technol 47(5):2254–2263

    Article  ADS  Google Scholar 

  • Knox A, Evans GJ, Brook JR, Yao X, Jeong CH, Godri KJ, Sabaliauskas K, Slowik JG (2009) Mass absorption cross-section of ambient black carbon aerosol in relation to chemical age. Aerosol Sci Technol 43:522–532

    Article  ADS  Google Scholar 

  • Koch D, del Genio AD (2010) Black carbon semi-direct effects on cloud cover: review and synthesis. Atmos Chem Phys 10:7685–7696

    Article  ADS  Google Scholar 

  • Lack DA, Cappa CD (2010) Impact of brown and clear carbon on light absorption enhancement, single scatter albedo and absorption wavelength dependence of black carbon. Atmos Chem Phys 10:4207–4220

    Article  ADS  Google Scholar 

  • Lack DA, Richardson MS, Law D, Langridge JM, Cappa CD, McLaughlin RJ, Murphy DM (2012) Aircraft instrument for comprehensive characterization of aerosol optical properties, Part 2: Black and brown carbon absorption and absorption enhancement measured with photo acoustic spectroscopy. Aerosol Sci Technol 46(5):555–568

    Article  ADS  Google Scholar 

  • Lapuerta M, Barba J, Sediako AD, Kholghy MR, Thomson MJ (2017) Morphological analysis of soot agglomerates from biodiesel surrogates in a coflow burner. J Aerosol Sci 111:65–74

    Article  ADS  Google Scholar 

  • Lee WL, Liou KN, He C et al (2017) Impact of absorbing aerosol deposition on snow albedo reduction over the southern Tibetan plateau based on satellite observations. Theoret Appl Climatol 129(3–4):1373–1382

    Article  ADS  Google Scholar 

  • Leung KK, Schnitzler EG, Dastanpour R, Rogak SN, Jäger W, Olfert JS (2017) Relationship between coating-induced soot aggregate restructuring and primary particle number. Environ Sci Technol 51(15):8376–8383

    Article  ADS  Google Scholar 

  • Li H, Liu C, Bi L, Yang P, Kattawar GW (2010). Numerical accuracy of “equivalent” spherical approximations for computing ensemble-averaged scattering properties of fractal soot aggregates. J Quant Spectrosc Radiat Transf 111(14):2127–2132

    Article  ADS  Google Scholar 

  • Li J, Liu C, Yin Y, Kumar KR (2016) Numerical investigation on the Ångström exponent of black carbon aerosol. J Geophys Res Atmos 121:3506–3518

    Article  ADS  Google Scholar 

  • Li Z, Liu J, Mauzerall DL et al (2017) A potential large and persistent black carbon forcing over Northern Pacific inferred from satellite observations. Sci Rep 7:43429

    Article  ADS  Google Scholar 

  • Liou KN (2002) An introduction to atmospheric radiation. Academic Press, 583 pp

    Google Scholar 

  • Liou KN, Yang P (2016) Light scattering by ice crystals: fundamentals and applications, 168–173. Cambridge Univ. Press, Cambridge, UK

    Book  Google Scholar 

  • Liou KN, Takano Y, Yang P (2010) On geometric optics and surface waves for light scattering by spheres. J Quant Spectrosc Radiat Transf 111:1980–1989

    Article  ADS  Google Scholar 

  • Liou KN, Takano Y, Yang P (2011) Light absorption and scattering by aggregates: application to black carbon and snow grains. J Quant Spectrosc Radiat Transf 112:1581–1594

    Article  ADS  Google Scholar 

  • Liou KN, Takano Y, He C, Yang P, Leung LR, Gu Y, Lee WL (2014) Stochastic parameterization for light absorption by internally mixed BC/dust in snow grains for application to climate models. J Geophys Res Atmos 119:7616–7632

    Article  ADS  Google Scholar 

  • Liu QH (1997) The PSTD algorithm: a time-domain method requiring only two cells per wavelength. Microw Opt Technol Lett 15:158–165

    Article  Google Scholar 

  • Liu L, Mishchenko MI (2007) Scattering and radiative properties of complex soot and soot-containing aggregate particles. J Quant Spectrosc Radiat Transf 106(1–3):262–273

    Article  ADS  Google Scholar 

  • Liu L, Mishchenko M (2018) Scattering and radiative properties of morphologically complex carbonaceous aerosols: a systematic modeling study. Remote Sens 10(10):1634

    Article  ADS  Google Scholar 

  • Liu L, Mishchenko MI, Arnott WP (2008) A study of radiative properties of fractal soot aggregates using the superposition T-matrix method. J Quant Spectrosc Radiat Transf 109(15):2656–2663

    Article  ADS  Google Scholar 

  • Liu C, Panetta RL, Yang P (2012) Application of the pseudo-spectral time domain method to compute particle single-scattering properties for size parameters up to 200. J Quant Spectrosc Radiat Transf 113:1728–1740

    Article  ADS  Google Scholar 

  • Liu C, Yin Y, Hu F, ** H, Sorensen CM (2015a) The effects of monomer size distribution on the radiative properties of black carbon aggregates. Aerosol Sci Technol 49(10):928–940

    Article  ADS  Google Scholar 

  • Liu S, Aiken AC, Gorkowski K et al (2015b) Enhanced light absorption by mixed source black and brown carbon particles in UK winter. Nat Commun 6:8435

    Article  ADS  Google Scholar 

  • Liu F, Yon J, Bescond A (2016) On the radiative properties of soot aggregates—Part 2: Effects of coating. J Quant Spectrosc Radiat Transf 172:134–145

    Article  ADS  Google Scholar 

  • Liu C, Li J, Yin Y, Zhu B, Feng Q (2017a) Optical properties of black carbon aggregates with non-absorptive coating. J Quant Spectrosc Radiat Transf 187:443–452

    Article  ADS  Google Scholar 

  • Liu D, Whitehead J, Alfarra MR et al (2017b) Black-carbon absorption enhancement in the atmosphere determined by particle mixing state. Nat Geosci 10(3):184

    Article  ADS  Google Scholar 

  • Liu C, Chung CE, Yin Y, Schnaiter M (2018) The absorption Ångström exponent of black carbon: from numerical aspects. Atmos Chem Phys 18(9):6259–6273

    Article  ADS  Google Scholar 

  • Luo J, Zhang Y, Zhang Q (2018) A model study of aggregates composed of spherical soot monomers with an acentric carbon shell. J Quant Spectrosc Radiat Transf 205:184–195

    Article  ADS  Google Scholar 

  • Ma X, Zangmeister CD, Gigault J, Mulholland GW, Zachariah MR (2013) Soot aggregate restructuring during water processing. J Aerosol Sci 66:209–219

    Article  ADS  Google Scholar 

  • Mackowski DW (2014) A general superposition solution for electromagnetic scattering by multiple spherical domains of optically active media. J Quant Spectrosc Radiat Transf 133:264–270

    Article  ADS  Google Scholar 

  • Mackowski DW, Mishchenko MI (1996) Calculation of the T matrix and the scattering matrix for ensembles of spheres. J Opt Soc Am A. 13:2266–2278

    Article  ADS  Google Scholar 

  • Mackowski DW, Altenkirch RA, Menguc MP (1990) Internal absorption cross sections in a stratified sphere. Appl Opt 29(10):1551–1559

    Article  ADS  Google Scholar 

  • Mandelbrot BB (1982) The fractal geometry of nature. W. H. Freeman, New York, p 460

    Google Scholar 

  • Miljevic B, Surawski NC, Bostrom T, Ristovski ZD (2012) Restructuring of carbonaceous particles upon exposure to organic and water vapours. J Aerosol Sci 47:48–57

    Article  ADS  Google Scholar 

  • Mishchenko MI, Travis LD, Mackowski DW (1996) T-matrix computations of light scattering by nonspherical particles: a review. J Quant Spectrosc Radiat Transf 55:535–575

    Article  ADS  Google Scholar 

  • Mishchenko MI, Travis LD, Lacis AA (2002) Scattering, absorption and emission of light by small particles. Cambridge University Press, Cambridge, p 445

    Google Scholar 

  • Mishchenko MI, Liu L, Mackowski DW (2013) T-matrix modeling of linear depolarization by morphologically complex soot and soot-containing aerosols. J Quant Spectrosc Radiat Transf 123:135–144

    Article  ADS  Google Scholar 

  • Moffet RC, O’Brien RE, Alpert PA, Kelly ST, Pham DQ, Gilles MK, Knopf DA, Laskin A (2016) Morphology and mixing of black carbon particles collected in central California during the CARES field study. Atmos Chem Phys 16(22):14515–14525

    Article  ADS  Google Scholar 

  • Moteki N (2016) Discrete dipole approximation for black carbon-containing aerosols in arbitrary mixing state: a hybrid discretization scheme. J Quant Spectrosc Radiat Transf 178:306–314

    Article  ADS  Google Scholar 

  • Moteki N, Kondo Y, Adachi K (2014) Identification by single-particle soot photometer of black carbon particles attached to other particles: laboratory experiments and ground observations in Tokyo. J Geophys Res Atmos 119:1031–1043

    Article  ADS  Google Scholar 

  • Naoe H, Hasegawa S, Heintzenberg J, Okada K, Uchiyama A, Zaizen Y, Kobayashi E, Yamazaki A (2009) State of mixture of atmospheric submicrometer black carbon particles and its effect on particulate light absorption. Atmos Environ 43(6):1296–1301

    Article  ADS  Google Scholar 

  • Nussenzveig HM, Wiscombe WJ (1980) Efficiency factor in Mie scattering. Phys Rev Lett 45:1490–1494

    Article  ADS  Google Scholar 

  • Nyeki S, Colbeck I (1995) Fractal dimension analysis of in-situ, restructured carbonaceous aggregates. Aerosol Sci Technol 23:109–120

    Article  ADS  Google Scholar 

  • Pagels J, Khalizov AF, McMurry PH, Zhang RY (2009) Processing of soot by controlled sulphuric acid and water condensation-Mass and mobility relationship. Aerosol Sci Technol 43(7):629–640

    Article  ADS  Google Scholar 

  • Pandey A, Chakrabarty RK, Liu L, Mishchenko MI (2015) Empirical relationships between optical properties and equivalent diameters of fractal soot aggregates at 550 nm wavelength. Opt Express 23(24):A1354–A1362

    Article  ADS  Google Scholar 

  • Peng J, Hu M, Guo S et al (2016) Markedly enhanced absorption and direct radiative forcing of black carbon under polluted urban environments. Proc Natl Acad Sci 113(16):4266–4271

    Article  ADS  Google Scholar 

  • Pósfai M, Anderson JR, Buseck PR, Sievering H (1999) Soot and sulfate aerosol particles in the remote marine troposphere. J Geophys Res Atmos 104(D17):21685–21693

    Article  ADS  Google Scholar 

  • Purcell EM, Pennypacker CR (1973) Scattering and absorption of light by nonspherical dielectric grains. Astrophys J 186:705–714

    Article  ADS  Google Scholar 

  • Qi L, Li Q, He C, Wang X, Huang J (2017) Effects of the Wegener–Bergeron–Findeisen process on global black carbon distribution. Atmos Chem Phys 17(12):7459–7479

    Article  ADS  Google Scholar 

  • Qiu C, Khalizov AF, Zhang R (2012) Soot aging from OH-initiated oxidation of toluene. Environ Sci Technol 46(17):9464–9472

    Article  ADS  Google Scholar 

  • Ramanathan V, Carmichael G (2008) Global and regional climate changes due to black carbon. Nat Geosci 1(4):221–227

    Article  ADS  Google Scholar 

  • Saliba G, Subramanian R, Saleh R et al (2016) Optical properties of black carbon in cook stove emissions coated with secondary organic aerosols: measurements and modeling. Aerosol Sci Technol 50(11):1264–1276

    Article  ADS  Google Scholar 

  • Scarnato BV, Vahidinia S, Richard DT, Kirchstetter TW (2013) Effects of internal mixing and aggregate morphology on optical properties of black carbon using a discrete dipole approximation model. Atmos Chem Phys 13:5089–5101

    Article  ADS  Google Scholar 

  • Schnaiter M, Horvath H, Mohler O, Naumann K-H, Saathoff H, Schock O (2003) UV-VIS-NIR spectral optical properties of soot and soot-containing aerosols. J Aerosol Sci 34(10):1421–1444

    Article  ADS  Google Scholar 

  • Schnaiter M, Linke C, Mohler O, Naumann K-H, Saathoff H, Wagner R, Schurath U, Wehner B (2005) Absorption amplification of black carbon internally mixed with secondary organic aerosol. J Geophys Res 110:D19204

    Article  ADS  Google Scholar 

  • Schnitzler EG, Gac JM, Jäger W (2017) Coating surface tension dependence of soot aggregate restructuring. J Aerosol Sci 106:43–55

    Article  ADS  Google Scholar 

  • Schwarz JP, Spackman JR, Fahey DW et al (2008) Coatings and their enhancement of black carbon light absorption in the tropical atmosphere. J Geophys Res Atmos 113:D03203

    Article  ADS  Google Scholar 

  • Sedlacek AJ III, Lewis ER, Kleinman L, Xu J, Zhang Q (2012) Determination of and evidence for non-core-shell structure of particles containing black carbon using the single-particle soot photometer (SP2). Geophys Res Lett 39(6):L06802

    Article  ADS  Google Scholar 

  • Shiraiwa M, Kondo Y, Moteki N, Takegawa N, Sahu LK, Takami A, Hatakeyama S, Yonemura S, Blake DR (2008) Radiative impact of mixing state of black carbon aerosol in Asian outflow. J Geophys Res 113:D24210

    Article  ADS  Google Scholar 

  • Shiraiwa M, Kondo Y, Iwamoto T, Kita K (2010) Amplification of light absorption of black carbon by organic coating. Aerosol Sci Technol 44(1):46–54

    Article  ADS  Google Scholar 

  • Slowik JG, Cross ES, Han JH et al (2007) Measurements of morphology changes of fractal soot particles using coating and denuding experiments: implications for optical absorption and atmospheric lifetime. Aerosol Sci Technol 41(8):734–750

    Article  ADS  Google Scholar 

  • Sorensen CM (2001) Light scattering by fractal aggregates: a review. Aerosol Sci Technol 35:648–687

    Article  ADS  Google Scholar 

  • Sorensen CM, Yon J, Liu F, Maughan J, Heinson WR, Berg MJ (2018) Light scattering and absorption by fractal aggregates including soot. J Quant Spectrosc Radiat Transf 217:459–473

    Article  ADS  Google Scholar 

  • Takano Y, Liou KN, Kahnert M, Yang P (2013) The single-scattering properties of black carbon aggregates determined from the geometric-optics surface-wave approach and the T-matrix method. J Quant Spectrosc Radiat Transf 125:51–56

    Article  ADS  Google Scholar 

  • Ueda S, Nakayama T, Taketani F, Adachi K, Matsuki A, Iwamoto Y, Sadanaga Y, Matsumi Y (2016) Light absorption and morphological properties of soot-containing aerosols observed at an East Asian outflow site, Noto Peninsula, Japan. Atmos Chem Phys 16:2525–2541

    Article  ADS  Google Scholar 

  • van de Hulst HC (1957) Light scattering by small particles. Wiley, 470 pp

    Google Scholar 

  • van Poppel LH, Friedrich H, Spinsby J, Chung SH, Seinfeld JH, Buseck PR (2005) Electron tomography of nanoparticle clusters: implications for atmospheric lifetimes and radiative forcing of soot. Geophys Res Lett 32:L24811

    Article  ADS  Google Scholar 

  • Videen G, Ngo D, Chýlek P (1994) Effective-medium predictions of absorption by graphitic carbon in water droplets. Opt Lett 19(21):1675–1677

    Article  ADS  Google Scholar 

  • Wang Y, Liu F, He C et al (2017) Fractal dimensions and mixing structures of soot particles during atmospheric processing. Environ Sci Technol Lett 4(11):487–493

    Article  Google Scholar 

  • Waterman PC (1965) Matrix formulation of electromagnetic scattering. Proc IEEE 53:805–812

    Article  MATH  Google Scholar 

  • Weingartner E, Burtscher H, Baltensperger U (1997) Hygroscopic properties of carbon and diesel soot particles. Atmos Environ 31:2311–2327

    Article  ADS  Google Scholar 

  • Wentzel M, Gorzawski H, Naumann K-H, Saathoff H, Weinbruch S (2003) Transmission electron microscopical and aerosol dynamical characterization of soot aerosols. J Aerosol Sci 34:1347–1370

    Article  ADS  Google Scholar 

  • Wu ZS, Wang YP (1991) Electromagnetic scattering for multilayered sphere: recursive algorithms. Radio Sci 26:1393–1401

    Article  ADS  Google Scholar 

  • Wu Y, Cheng T, Gu X, Zheng L, Chen H, Xu H (2014) The single scattering properties of soot aggregates with concentric core–shell spherical monomers. J Quant Spectrosc Radiat Transf 135:9–19

    Article  ADS  Google Scholar 

  • Wu Y, Cheng T, Zheng L, Chen H, Xu H (2015) Single scattering properties of semi-embedded soot morphologies with intersecting and non-intersecting surfaces of absorbing spheres and non-absorbing host. J Quant Spectrosc Radiat Transf 157:1–13

    Article  ADS  Google Scholar 

  • Wu Y, Cheng T, Zheng L, Chen H (2016a) Optical properties of the semi-external mixture composed of sulfate particle and different quantities of soot aggregates. J Quant Spectrosc Radiat Transf 179:139–148

    Article  ADS  Google Scholar 

  • Wu Y, Cheng T, Zheng L, Chen H (2016b) Effect of morphology on the optical properties of soot aggregated with spheroidal monomers. J Quant Spectrosc Radiat Transf 168:158–169

    Article  ADS  Google Scholar 

  • Wu Y, Cheng T, Zheng L, Chen H (2016c) Models for the optical simulations of fractal aggregated soot particles thinly coated with non-absorbing aerosols. J Quant Spectrosc Radiat Transf 182:1–11

    Article  ADS  Google Scholar 

  • Xue H, Khalizov AF, Wang L, Zheng J, Zhang R (2009) Effects of dicarboxylic acid coating on the optical properties of soot. Phys Chem Chem Phys 11(36):7869–7875

    Article  Google Scholar 

  • Yang P, Liou KN (1995) Light scattering by hexagonal ice crystals: comparison of finite-difference time domain and geometric optics methods. J Opt Soc Am A 12:162–176

    Article  ADS  Google Scholar 

  • Yang P, Liou KN (1996) Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space. J Opt Soc Am A 13:2072–2085

    Article  ADS  Google Scholar 

  • Yang P, Liou KN (1997) Light scattering by hexagonal ice crystals: solution by a ray-by-ray integration algorithm. J Opt Soc Am A 14:2278–2288

    Article  ADS  Google Scholar 

  • Yang P, Liou KN, Bi L, Liu C, Yi BQ, Baum BA (2015) On the radiative properties of ice clouds: light scattering, remote sensing, and radiation parameterization. Adv Atmos Sci 32(1):32–63

    Article  Google Scholar 

  • Yee SK (1966) Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans Antennas Propag 14:302–307

    Article  ADS  MATH  Google Scholar 

  • Yin JY, Liu LH (2010) Influence of complex component and particle polydispersity on radiative properties of soot aggregate in atmosphere. J Quant Spectrosc Radiat Transf 111(14):2115–2126

    Article  ADS  Google Scholar 

  • Yon J, Bescond A, Liu F (2015) On the radiative properties of soot aggregates. Part 1: Necking and overlap**. J Quant Spectrosc Radiat Transf 162:197–206

    Article  ADS  Google Scholar 

  • You R, Radney JG, Zachariah MR, Zangmeister CD (2016) Measured wavelength-dependent absorption enhancement of internally mixed black carbon with absorbing and nonabsorbing materials. Environ Sci Technol 50(15):7982–7990

    Article  ADS  Google Scholar 

  • Zangmeister CD, Radney JG, Dockery LT, Young JT, Ma X, You R, Zachariah MR (2014) Packing density of rigid aggregates is independent of scale. Proc Natl Acad Sci 111:9037–9041

    Article  ADS  Google Scholar 

  • Zhang RY, Khalizov AF, Pagels J, Zhang D, Xue HX, McMurry PH (2008) Variability in morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric processing. Proc Natl Acad Sci 105:10291–10296

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author was supported by the NCAR Advanced Study Program (ASP) Fellowship. The National Center for Atmospheric Research (NCAR) is sponsored by the National Science Foundation (USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cenlin He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

He, C. (2019). Radiative Properties of Atmospheric Black Carbon (Soot) Particles with Complex Structures. In: Kokhanovsky, A. (eds) Springer Series in Light Scattering. Springer Series in Light Scattering. Springer, Cham. https://doi.org/10.1007/978-3-030-20587-4_5

Download citation

Publish with us

Policies and ethics

Navigation