Abstract

This article presents the design and implementation of a new visualization system for mobile platforms for the PhyFire-HDWind fire simulation model, called AppPhyFire. It proposes a mobile computing infrastructure, based on ArcGIS Server and REST architecture, which improves the user experience in actions associated with the fire simulation process. The PhyFire-HDWind model, of which the system presented here forms part, is a forest fire propagation simulation tool developed by the SINUMCC research group of the University of Salamanca, based on two own simplified physical models, the PhyFire physical fire propagation model, and the HDWind high definition wind field model, resolved using efficient numerical and computational tools and parallel computing, allowing simulation times shorter than the real time fire propagation, integrated into a Geographical Information System, and accessible through a server by the AppPhyFire. The system presented in this article allows a quick visualization of simulations results in mobile devices. This work presents the detailed operation of the system and its phases of operation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Finney, M.A.: FARSITE: fire area simulator-model development and evaluation. United States Department of Agriculture Forest Service, Rocky Mountain Research Station, Research Paper RMRS-RP-4, March 1998. Revised February 2004

    Google Scholar 

  2. Tymstra, C., Bryce, R.W., Wotton, B.M., Taylor, S.W., Armitage, O.B.: Development and structure of prometheus: the Canadian wildland fire growth simulation. Information Report NOR-X-417 Northern Forestry Centre Canadian Forest Service (2010)

    Google Scholar 

  3. Mandel, J., Beezley, J.D., Kochanski, A.K.: Coupled atmosphere-wildland fire modeling with WRF 3.3 and SFIRE 2011. Geosci. Model Dev. 4(3), 591–610 (2011)

    Article  Google Scholar 

  4. CalFire. http://www.readyforwildfire.org/Ready-for-Wildfire-App/. Accessed 11 Mar 2019

  5. Firemap. https://play.google.com/store/apps/details?id=com.mapadebolsillo.firemap&rdid=com.mapadebolsillo.firemap. Accessed 11 Mar 2019

  6. Monedero, S., Ramirez, J., Cardil, A.: Predicting fire spread and behaviour on the fireline. Wildfire analyst pocket: a mobile app for wildland fire prediction. Ecol. Model. 392, 103–107 (2019)

    Article  Google Scholar 

  7. Sullivan, A.L.: Wildland surface fire spread modelling, 19902007. 1: physical and quasi-physical models. Int. J. Wildl. Fire 18(4), 349–368 (2009)

    Article  Google Scholar 

  8. Sullivan, A.L.: Wildland surface fire spread modelling, 19902007. 2: empirical and quasi-empirical models. Int. J. Wildl. Fire 18(4), 369–386 (2009)

    Article  Google Scholar 

  9. Rothermel, R.C.: A mathematical model for predicting fire spread in wildland fuels. USDA Forest Service Research Paper INT USA, no. INT-115, p. 40 (1972)

    Google Scholar 

  10. Asensio, M.I., Ferragut, L.: On a wildland fire model with radiation. Int. J. Numer. Methods Eng. 54(1), 137–157 (2002)

    Article  MathSciNet  Google Scholar 

  11. Ferragut, L., Asensio, M.I., Monedero, S.: A numerical method for solving convection-reaction-diffusion multivalued equations in fire spread modelling. Adv. Eng. Softw. 38(6), 366–371 (2007)

    Article  Google Scholar 

  12. Ferragut, L., Asensio, M.I., Monedero, S.: Modelling radiation and moisture content in fire spread. Commun. Numer. Methods Eng. 23(9), 819–833 (2006)

    Article  MathSciNet  Google Scholar 

  13. Ferragut, L., Asensio, M.I.: A simplified wildland fire model applied to a real case. In: Casas, F., Martínez, V. (eds.) Advances in Differential Equations and Applications. SEMA SIMAI Springer Series, vol. 4, pp. 155–167 (2014

    Google Scholar 

  14. Prieto, D., Asensio, M.I., Ferragut, L., Cascón, J.M.: Sensitivity analysis and parameter adjustment in a simplified physical wildland fire model. Adv. Eng. Softw. 90, 98–106 (2015)

    Article  Google Scholar 

  15. Álvarez, D., Prieto, D., Asensio, M.I., Cascón, J.M., Ferragut, L.: Parallel implementation of a simplified semi-physical wildland fire spread model using OpenMP. In: de Pisón, F.M., Urraca, R., Quintián, H., Corchado, E. (eds.) Hybrid Artificial Intelligent Systems: HAIS 2017. LNCS, vol. 10334, pp. 256–267. Springer, Cham (2017)

    Chapter  Google Scholar 

  16. Asensio, M.I., Ferragut, L., Simon, J.: A convection model for fire spread simulation. Appl. Math. Lett. 18(6) Spec. Iss. 673–677 (2005)

    Article  MathSciNet  Google Scholar 

  17. Ferragut, L., Asensio, M.I., Simon, J.: High definition local adjustment model of 3D wind fields performing only 2D computations. Int. J. Numer. Method. Biomed. Eng. 27(4), 510–523 (2011)

    Article  MathSciNet  Google Scholar 

  18. Herráez, D.P., Sevilla, M.I.A., Canals, L.F., Barbero, J.M.C., Rodríguez, A.M.: A GIS-based fire spread simulator integrating a simplified physical wildland fire model and a wind field model. Int. J. Geogr. Inf. Sci. 31(11), 2142–2163 (2017)

    Article  Google Scholar 

  19. Chamoso, P., González-Briones, A., Rodríguez, S., Corchado, J.M.: Tendencies of technologies and platforms in smart cities: a state-of-the-art review. Wirel. Commun. Mob. Comput. (2018)

    Google Scholar 

  20. Casado-Vara, R., Chamoso, P., De la Prieta, F., Prieto, J., Corchado, J.M.: Non-linear adaptive closed-loop control system for improved efficiency in IoT-blockchain management. Inf. Fusion 49, 227–239 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been partially supported by the Conserjería de Educación of the regional government, Junta de Castilla y León (SA020U16) and by the University of Salamanca General Foundation (PROTOTIPOS TCUE 2017-18), both with the participation of FEDER funds.

This work was also developed as part of “Virtual-Ledgers-Tecnologías DLT/Blockchain y Cripto-IOT sobre organizaciones virtuales de agentes ligeros y su aplicación en la eficiencia en el transporte de última milla”, ID SA267P18, project cofinanced by Junta Castilla y León, Consejería de Educación, and FEDER funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Rodríguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hérnández, A., Álvarez, D., Asensio, M.I., Rodríguez, S. (2020). Mobile Architecture for Forest Fire Simulation Using PhyFire-HDWind Model. In: Martínez Álvarez, F., Troncoso Lora, A., Sáez Muñoz, J., Quintián, H., Corchado, E. (eds) 14th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2019). SOCO 2019. Advances in Intelligent Systems and Computing, vol 950. Springer, Cham. https://doi.org/10.1007/978-3-030-20055-8_29

Download citation

Publish with us

Policies and ethics

Navigation