First Applications of the PN-Formalism

  • Chapter
  • First Online:
Applied General Relativity

Part of the book series: Astronomy and Astrophysics Library ((AAL))

  • 1513 Accesses

Abstract

We will now study some first simple applications of the formalism as it has been developed so far. Note that we have not yet treated the gravitational N-body problem and precisely for that reason the discussions in this chapter are incomplete and will be continued later. Nevertheless, considerable insight into some basic problems can be obtained in this way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 50.28
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 63.29
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 89.66
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This section is based upon Straumann (2012) and Soffel (1989).

References

  • Abramowitz, M., Stegun, I., 1970: Handbook of Mathematical Functions, Dover Publications, New York.

    MATH  Google Scholar 

  • Ashby, N., 1986: Planetary perturbation equations based on relativistic Keplerian motion, in: J. Kovalevsky and V.A. Brumberg (eds.), Relativity in Celestial Mechanics and Astrometry, Springer, Netherlands. Note, the misprint in equation (25).

    Google Scholar 

  • Audoin, C., Guinot, B., 2001: The measurement of time, Cambridge University Press, Cambridge.

    Google Scholar 

  • Azoubib, J., Graveaud, M., Guinot, B., 1977: Estimation of the scale unit duration of time scales, Metrologia 13, pp. 87–93.

    Article  ADS  Google Scholar 

  • Bauch, A., Pieter, D., Fujieda, M., Lewandowski, W., 2011, Bureau International des Poids et Mesures, Rapport BIPM-2011/01, Directive for operational use and data handling in two-way satellite and frequency transfer (TWSTFT).

    Google Scholar 

  • Bauch, A., 2013: in Proc. of the Intern. School of physics ‘Enrico Fermi’, Course 185, Metrology and Physical Constants, Bava, E., Kühne, M., Rossi, A. (eds.), IOS press.

    Google Scholar 

  • Bjerhammar, A., 1985: On a relativistic geodesy, Bulletin Géodésique 59, pp. 207–220.

    Article  ADS  Google Scholar 

  • Bjerhammar, A., 1986: Relativistic geodesy, NOAA Technical Report NOS 118 NGS 36.

    Google Scholar 

  • Bloom, B., Nichelson, T., Williams, J., Campbell, S., Bishof, M., Zhang, X., Zang, W., Bromley, S., Ye, J., 2014: An optical lattice clock with accuracy and stability at the 10−18 level, Nature 506, pp. 71–75.

    Article  ADS  Google Scholar 

  • Bondarescu, R., Bondarescu, M., Hetényi, G., Boschi, L., Jetzer, Ph., Balakrishna, J., 2012, Geophysical applicability of atomic clocks: direct continental geoid map**, Geophys. J. Int., 191, pp. 78–82.

    Article  ADS  Google Scholar 

  • Bretagnon, P., 1982, Theory for the motion of all the planets - the VSOP82 solution, Astron. Astrophys., 114, pp. 278–288.

    ADS  MATH  Google Scholar 

  • Chapront-Touzé, M., Chapront, J., 1983: The lunar ephemeris ELP 2000, Astron. Astrophys., 124, pp. 50–62.

    ADS  MATH  Google Scholar 

  • Cugusi, L., Proverbio, E., 1978: Relativistic Effects on the Motion of Earth’s Artificial Satellites, Astron. Astrophys., 69, pp. 321–325.

    ADS  Google Scholar 

  • Damour, T., 1987b: The problem of motion in Newtonian and Einsteinian gravity, in Hawking, S., and Israel, W., eds., Three Hundred Years of Gravitation, Cambridge University Press, Cambridge, pp. 128–198.

    MATH  Google Scholar 

  • Everitt, F., et al., 2011: Gravity Probe B: Final Results of a Space Experiment to Test General Relativity, Phys. Rev. Lett., 106, 221101.

    Article  ADS  Google Scholar 

  • Fairhead, L., Bretagnon, P., 1990: An analytical formula for the time transformation TB - TT. Astron. Astrophys., 229, pp. 240–247.

    ADS  Google Scholar 

  • Farrell, W.E., 1972: Deformation of the Earth by surface loads, Rev. of Geophysics and Space Physics 10, pp. 761–797.

    Article  ADS  Google Scholar 

  • Fienga, A., Laskar, J., Morley, T., Manche, H., Kuchynka, P., Le Poncin-Lafitte, C., Budnik, F., Gastineau, M., Somenzi, L., 2009: INPOP08, a 4-D planetary ephemeris: From asteroid and time-scale computations to ESA Mars Express and Venus Express contributions. Astron. Astrophys., 507, pp. 1675–1686.

    Article  ADS  Google Scholar 

  • Grotti, J., Koller, S., Vogt, S., et al., 2018: Geodesy and metrology with a transportable optical clock, Nature Physics 14, May 2018, pp. 437–441.

    Google Scholar 

  • Gurevich, E.L., Kaidanovskii, M.N., Klioner, S.A., 1994: Time and frequency measurements, Comparisons of remote time scales by satellite communications channels. Method, apparatus, and error, Measurement Techniques 37, pp. 29–34.

    Article  Google Scholar 

  • Hanson, D.W., 1989: Fundamentals of Two-Way Time Transfer by Satellite, in 43rd Annual Symposium on Frequency Control - 1989, Cat. No.89CH2690-6, pp. 174–178.

    Google Scholar 

  • Huntemann, N., Sanner, C., Lipphardt, B., Tamm, Chr., Peik, E., 2016: Single-Ion Atomic Clock with 3 × 10−18 Systematic Uncertainty, Phys. Rev. Lett., 116, 063001.

    Article  ADS  Google Scholar 

  • Klioner, S.A., 1992: The Problem of Clock Synchronization: A Relativistic Approach, Celest. Mech. Dyn. Astro., 53, pp. 81–109.

    Article  ADS  Google Scholar 

  • Kopeikin, S.M., 1991: Relativistic manifestations of gravitational fields in gravimetry and geodesy. Manuscripta Geodaetica 16, pp. 301–312.

    ADS  Google Scholar 

  • Lense, J., Thirring, H., 1918: Ãœber den Einfluss der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie, Phys. Zeitschrift 19, pp. 156–163.

    MATH  Google Scholar 

  • Merriam, J.B., 1992: Atmospheric pressure and gravity, Geophys. J. Int., 109, pp. 488–500.

    Article  ADS  Google Scholar 

  • Nicholson, T.L., Campbell, S.L., Hutson, R.B., Marti, G.E., Bloom, B.J., McNally, R.L., Zhang, W., Barrett, M.D., Safronova, M.S., Strouse, G.F., Tew, W.L., Ye, J., 2015: Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty, Nat. Commun., 6, Article number: 6896.

    Google Scholar 

  • Petit, G., Wolf, P., 2005: Relativistic theory for time comparisons: a review, Metrologia 42, pp. 138–144.

    Article  ADS  Google Scholar 

  • Philipp, D., Perlick, V., Puetzfeld, D., Hackmann, E., Lämmerzahl, C., 2017: Definition of the relativistic geoid in terms of isochronometric surfaces, Phys. Rev., D, 95, 104037.

    Google Scholar 

  • Poveda, J., Marin, C., 2018: Perihelion precesion in binary systems: higher order corrections, ar**v: 1802.03333v1.

    Google Scholar 

  • Schwiderski, E., 1983: Atlas of ocean tidal charts and maps: I. The semidiurnal principle lunar tide M2, Mar. Geod., 6, pp. 219–265.

    Article  Google Scholar 

  • Shapiro, I.I., 1964: Fourth Test Of General Relativity, Phys. Rev. Lett., 13, pp. 789–791.

    Article  ADS  MathSciNet  Google Scholar 

  • SI Brochure: The International System of Units (SI) [8th edition, 2006; updated in 2014], BIPM, Paris.

    Google Scholar 

  • Soffel, M.H., 1989: Relativity in Astrometry, Celestial Mechanics and Geodesy, Springer, Berlin.

    Google Scholar 

  • Soffel, M.H., Herold, H., Ruder, H., Schneider, M., 1988: Relativistic geodesy: the concept of asymptotically fixed reference frames, Manuscr. Goed., 13, pp. 139–142.

    ADS  Google Scholar 

  • Soffel, M., Langhans, R., 2013: Space-Time Reference Systems, Springer, Berlin.

    Book  Google Scholar 

  • Soffel, M., Frutos, F., 2016: On the usefulness of relativistic space-times for the description of the Earth’s gravitational field, J. Geod., 90, pp. 1345–1357.

    Article  ADS  Google Scholar 

  • Straumann, N., 2012: General Relativity and Relativistic Astrophysics, Springer, Berlin.

    Google Scholar 

  • Thirring, H., 1918: Ãœber die Wirkung rotierender ferner Massen in der Einsteinschen Gravitationstheorie, Z. Phys., 19, pp. 33–39.

    MATH  Google Scholar 

  • Wolf, P., Petit, G., 1995: Relativictic theory for clock syntonization and the realization of geocentric coordinate times, Astron. Astrophys., 304, pp. 653–661.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Soffel, M.H., Han, WB. (2019). First Applications of the PN-Formalism. In: Applied General Relativity. Astronomy and Astrophysics Library. Springer, Cham. https://doi.org/10.1007/978-3-030-19673-8_8

Download citation

Publish with us

Policies and ethics

Navigation