Metrology

  • Chapter
  • First Online:
Applied General Relativity

Part of the book series: Astronomy and Astrophysics Library ((AAL))

  • 1528 Accesses

Abstract

Pulsars might be used for the realization of time scales and thus are of direct interest for the field of AGR. Radio pulsars are rapidly rotating strongly magnetized neutron stars where the rotation axis is disaligned from the magnetic axis that determines the direction into which the radio signals is dominantly emitted. If the emitted radio beam comes close to the line of sight a radio pulse is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Blandford, R., Teukolsky, S., 1976: Arrival-time analysis for a pulsar in a binary system, Astrophs. J., 205, pp. 580–591.

    Article  ADS  Google Scholar 

  • Böhm, J., Schuh, H., 2004: Vienna map** functions in VLBI analyses, Geophys. Res. Lett., 31, L01603.

    ADS  Google Scholar 

  • Bosi, F., Cella, G., Di Virgilio, A., Ortolan, A., Porzio, A., Solimeno, S., Cerdonio, M., Zendri, J.P., Allegrini, M., Belfi, J., Beverini, N., Bouhadef, Carelli, G., Ferrante, I., Maccioni, E., Passaquieti, R., Stefani, F., Ruggiero, M.L., Tartaglia, A., Schreiber, K.U., Gebauer, A., Wells, J.-P., 2011: Measuring Gravito-magnetic Effects by Multi Ring-Laser Gyroscope, Phys. Rev., D 84, 122002.

    Google Scholar 

  • Braxmaier, C., Dittus, H., Foulon, B., et al., 2012: Astrodynamical space test of relativity using optical devices I, Experimental Astronomy 34, pp. 181–201.

    Article  ADS  Google Scholar 

  • Brumberg, V.A., 1987: Post-post Newtonian propagation of light in the Schwarzschild field, Kin Fiz Neb 3, pp. 8–13 (in russian).

    Google Scholar 

  • Christophe, B., Andersen, P.H., Anderson, J.D., et at., 2009: Odyssey: a Solar System mission, Experimental Astronomy 23, 529.

    Article  ADS  Google Scholar 

  • Condon, J.J., Ransom, S.M., 2016: Essential Radio Astronomy, Princeton University Press, Princeton and Oxford.

    Book  Google Scholar 

  • Currie, D., Dell’Agnello, S., Delle Monache, G., 2011: A Lunar Laser Ranging Retroreflector Array for the 21st Century, Acta Astronautica 68, pp. 667–680.

    Article  ADS  Google Scholar 

  • Damour, T., Deruelle, N., 1986: General relativistic celestial mechanics of binary systems I. The post-Newtonian timing formula, Ann. Inst. Henri Poincaré 44, pp. 263–292.

    MATH  Google Scholar 

  • de Sitter, S., 1916: On Einstein’s Theory of Gravitation and its Astronomical Consequences, Mon. Not. Roy. Astr. Soc., 77, pp. 155–184.

    Article  ADS  Google Scholar 

  • Di Virgioli, A., Schreiber, K.U., Gebauer, A., Wells, J.-P., Tartaglia, A., Belfi, J., Beverini, N., Ortolan, A., 2019: A laser gyroscope system to detect the Gravito-Magnetic effect on Earth, Int. J. Mod. Phys., D 19, pp. 2331–2343.

    Article  Google Scholar 

  • DR1, Data Release 1, 2016: Astron. Astrophys., 595 (special issue in connection with the first data release of the Gaia misison).

    Google Scholar 

  • Epstein, R., 1977: The binary pulsar: post-Newtonian timing effects, Astrophys. J., 216, pp. 92–100; errata 231, 644.

    Article  ADS  Google Scholar 

  • Eubanks, T., 1991: Proceedings of the U.S. Naval Observatory Workshop on Relativistic Models for Use in Space Geodesy. U.S. Naval Observatory, Washington, D.C.

    Google Scholar 

  • Finkelstein, A.M., Kreinovich, V.J., Pandey, S.N., 1983: Relativistic reductions for radiointerferometric observables, Astrophysics and Space Science 94, pp. 233–247.

    Article  ADS  Google Scholar 

  • Gradshteyn, I.S., Ryzhik, I.M., 1994, Tables of Integrals, Series, and Products, 5th Edition, Academic Press, New York.

    MATH  Google Scholar 

  • Guyon, O., Bendek, E.A., Eisner, J.A., et al., 2012: High-precision astrometry with a diffractive pupil telescope, The Astrophysical Journal Supplement 200, 11.

    Article  ADS  Google Scholar 

  • Haugan, M., 1985: Post-Newtonian arrival-time analysis for a pulsar in a binary system, Astrophys. J., 296, pp. 1–12.

    Article  ADS  Google Scholar 

  • Hellings, R., 1986: Relativistic effects in astronomical timing measurements, Astron. J., 91 (3), pp. 650–659. Erratum, ibid, 92 (6), 1446.

    Google Scholar 

  • Herring, T.A., 1992: Modelling atmospheric delays of space geodetic data, in: Symposium on Refraction of Transatmospheric Signals in Geodesy, J.C. DeMunk, T.A. Spoelstra (eds.), Netherlands Geodetic Comission Series No. 36, pp. 157–164.

    Google Scholar 

  • Hobbs, D., Brown, A., Mora, A., et al., 2016: GaiaNIR - Combining optical and Near-Infra-Red (NIR) capabilities with Time-Delay-Integration (TDI) sensors for a future Gaia-like mission, ar**v:astro-ph/1609.07325.

    Google Scholar 

  • Høg, E., Bäassgen, G., Bastian, U., et al., 1997: The Tycho Catalogue, Astron. Astrophys., 323, L57.

    ADS  Google Scholar 

  • Høg, E., Fabricius, C., Makarov, V.V., et al., 2000: The Tycho-2 Catalogue of the 2.5 million brightest stars, Astron. Astrophys., 355, L27.

    Google Scholar 

  • Hofmann, F., Müller, J., Biskupek, L., 2010: Lunar laser ranging test of the Nordtvedt parameter and a possible variation in the gravitational constant, Astron. Astrophys., 522, L5.

    Article  ADS  Google Scholar 

  • Hofmann, F., Müller, J., 2018: Relativistic tests with lunar laser ranging, Class. Quantum Grav., 35, 035015.

    Article  ADS  Google Scholar 

  • Hurst, R.B., Stedman, G.E., Schreiber, K.U., Thirkettle, R.J., Graham, R.D., Rabeendran, N., 2009: Experiments with a 834 m2 ring laser interferometer, J.-P.R. Wells, J. Appl. Phys., 105, 113115.

    Article  ADS  Google Scholar 

  • Klioner, S., (1991a): General relativistic model of VLBI observations. In Proc. AGU Chapman Conf. on Geodetic VLBI: Monitoring Global Change, W. Carter(Ed.), NOAA Rechnical Report NOS 137 NGS 49, American Geophysical Union, Washington, D.C., 188

    Google Scholar 

  • Klioner, S., (1991b): Influence of the quadrupole field and rotation of objects on light propagation, Sov. Astron., 45(5), pp. 523–530.

    ADS  Google Scholar 

  • Klioner, S., 2003: A Practical Relativistic Model For Microarcsecond Astrometry In Space, Astron. J., 125, pp. 1580–1597.

    Article  ADS  Google Scholar 

  • Klioner, S., Kopeikin, S., 1992: Microarcsecond astrometry in space - Relativistic effects and reduction of observations, Astron. J., 104, pp. 897–914.

    Article  ADS  Google Scholar 

  • Kopeikin, S.M., 1990: Theory of relativity in observational radio astronomy, Sov. Astron., 34, pp. 5–9.

    ADS  Google Scholar 

  • Kopeikin, S.M., 1997: Propagation of light in the stationary field of multipole gravitational lens, J.Math.Phys., 38 (5), pp. 2587–2601

    Article  ADS  MathSciNet  Google Scholar 

  • Kopeikin, S.M., Schäfer, G., 1999: Lorentz Covariant Theory of Light Propagation in Gravitational Fields of Arbitrary-Moving Bodies, Phys. Rev., D 60, 124002.

    Google Scholar 

  • Kopeikin, S.M., Mashhoon, B., 2002: Gravitomagnetic-effects in the propagation of electromagnetic waves in variable gravitational fields of arbitrary-moving and spinning bodies, Phys. Rev., D 65, 064025.

    Google Scholar 

  • Kopeikin, S., Han, W.-B., 2015: The Fresnel-Fizeau effect and the atmospheric time delay in geodetic VLBI, J. Geod., 89, pp. 829–835.

    Article  ADS  Google Scholar 

  • Kovalevsky, J., 1995: Modern Astrometry, Springer, Berlin.

    Book  Google Scholar 

  • Kovalevsky, J., Seidelmann, P.K., 2004: Fundamentals of Astrometry, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Kramer, M (2004) Millisecond pulsars as tools of fundamental physics. In Karshenboim, SG and Peik, E (eds). Astrophysics, Clocks and Fundamental Constants. Lecture Notes in Physics 648. Berlin Heidelberg: Springer, pp. 33–54.

    Chapter  Google Scholar 

  • Lefevre, H., 1993: The Fiber-Optic Gyroscope, Artech House Inc.

    Google Scholar 

  • Macek, W.M., Davies Jr., D.T.M., 1963: Rotation Rate Sensing with Travelling-wave Ring lasers, App. Phys. Lett., 2, (3), pp. 67–68.

    Article  ADS  Google Scholar 

  • Malbet, F., Léger, A., Goullioud, R., et al., 2011: An Astrometric Telescope To Probe Planetary Systems Down To The Earth Mass Around Nearby Solar-Type Stars, ar**v:astro-ph/1108.4784.

    Google Scholar 

  • Malbet, F., Léger, A., Anglada Escudé, G., 2016: Microarcsecond astrometric observatory Theia: from dark matter to compact objects and nearby earths Results, Proceeding in Front Matter Vol. 9904: Space Telescopes and Instrumentation 2016 - Optical, Infrared, and Millimeter Wave (August 26, 2016), doi:10.1117/12.2249638.

    Google Scholar 

  • Manchester, R.N. (for the IPTA), 2013: The International Pulsar Timing Array, Class. Quantum Grav., 30, 224010.

    Article  ADS  Google Scholar 

  • Martin, C.F., Torrence, M.H., Misner, C.W., 1985: Relativistic effects on an Earth orbiting satellite in the barycentric coordinate system, J. Geophys. Res., 90, pp. 9403–9410.

    Article  ADS  Google Scholar 

  • Michelson, A.A., Gale, H.G., 1925: The Effect of the Earth’s Rotation on the Velocity of Light, Ap. J., 61, pp. 140–145.

    Article  ADS  Google Scholar 

  • Mignard, F., Klioner, S., 2008: Space Astrometry and Relativity, The Eleventh Marcel Grossmann Meeting on General Relativity, Kleinert, H., Jantzen, R., Ruffini, R., (eds.), World Scientific, pp. 245–271.

    Google Scholar 

  • Müller, J., Schneider, M., Soffel, M., Ruder, H., 1991, Testing Einstein’s theory of gravity by analyzing Lunar Laser Ranging data, Ap. J., 382, pp. L101–L103.

    Article  ADS  Google Scholar 

  • Müller, J., Nordtvedt, K., 1998: Lunar laser ranging and the equivalence principle signal, Phys. Rev., D, 58, 062001.

    Google Scholar 

  • Müller, H., Stanwix, P., Tobar, M., Ivanov, E., Wolf, P., Herrmann, S., Senger, A., Kovalchuk, E., Peters, A., 2007: Relativity tests by complementary rotating Michelson-Morley experiments, Phys. Rev. Lett., 99, 050401.

    Article  ADS  Google Scholar 

  • Müller, J., Murphy, T.W., Schreiber, U., Shelus, P., Torre, J.-M., Williams, J., Boggs, D.H., Bouquillon, S., Bourgoin, A., Hofmann, F., 2019: Lunar Laser Ranging - A Toll for General Relativity, Lunar Geophysics and Earth Science, Journal of Geodesy, in press.

    Google Scholar 

  • Murphy, T.W., 2011: private communication.

    Google Scholar 

  • Murphy, T.W., 2013: Lunar laser ranging: the millimeter challenge, Reports on Progress in Physics 76 (7), 076901.

    Article  ADS  Google Scholar 

  • Murphy, T.W., Adelberger, E.G., Battat, J.B.R., Hoyle, C.D., Johnson, N.H., McMillan, R.J., Michelsen, E.L., Stubbs, C.W., Swanson, H.E., 2010: Laser Ranging to the Lost Lunokhod 1 Reflector, ar**v:1009.5720.

    Google Scholar 

  • NEAT, 2011: Nearby Earth Astrometric Telescope, http://neat.obs.ujf-grenoble.fr/NEAT.html

  • Ni, W.-T., 2008: Astrod and Astrod 1 - overview and progress, Int. J. Mod. Phys., D 17, 921.

    Article  ADS  Google Scholar 

  • Niell, A.E., 1996: Global map** functions for the atmosphere delay at radio wavelength, J. Geophys. Res., 100, pp. 3227–3246.

    Article  ADS  Google Scholar 

  • Niell, A.E., 2000: Improved atmospheric map** functions for VLBI and GPS’, Earth Planets Space, 52, pp. 699–702.

    Article  ADS  Google Scholar 

  • Nordtvedt, K., 1968: Testing Relativity with Laser Ranging to the Moon, Phys. Rev., 170, (5), pp. 1186–1187.

    Article  ADS  Google Scholar 

  • Nordtvedt, K., 1995: The relativistic orbit observables in lunar laser ranging, Icarus 114, pp. 51–62.

    Article  ADS  Google Scholar 

  • Plowman, J.E., Hellings, R.W., 2006: Lator covariance analysis, Class. Quantum Grav., 23, 309.

    Article  ADS  Google Scholar 

  • Richter, G.W., Matzner, R.A., 1983: Second-order contributions to relativistic time-delay in the parametrized post-Newtonian formalism, Phys. Rev., D 28, pp. 3007–3012.

    Article  ADS  Google Scholar 

  • Sagnac, G., 1913: L’éther lumineux démontré par l’effect du vent relatif d’éther dans un interféromètre en rotation uniforme, Comptes Rendus Acad. Sci., (Paris), 157, pp. 708–710.

    Google Scholar 

  • Samain, E., 2002: One way laser ranging in the Solar System: Tipo, EGS XXVII General Assembly, Nice, 80.

    Google Scholar 

  • Schreiber, K.U., Stedman, G.E., Klügel, T., 2003: Earth tide and tilt detection by a ring laser gyroscope, J. Geophys. Res., 108 (B) 2, 10.1029/2001JB000569.

    Google Scholar 

  • Schreiber, K.U., Klügel, T., Velikoseltsev, A., Schlüter, W., Stedman, G.E., Wells, J.-P.R., 2009: The Large Ring Laser G for Continuous Earth Rotation Monitoring, Pure and Applied Geophysics (PAGEOPH), 166, pp. 1485–1498.

    Article  ADS  Google Scholar 

  • Schreiber, K.U., Klügel, T., Wells, J.-P.R., Hurst, R.B., Gebauer, A., 2011: How to Detect the Chandler and the Annual Wobble of the Earth with a Large Ring Laser Gyroscope, Phys. Rev. Lett., 107, 17, 173904, DOI 10.1103/PhysRevLett.107.173904.

    Google Scholar 

  • Scully, M.O., Zubairy, M.S., Haugan, M.P., 1981: Proposed optical test of metric gravitation theories, Phys. Rev., A 24, pp. 2009–2016.

    Article  ADS  Google Scholar 

  • Seeber, G., 2003: Satellite Geodesy, 2nd edition, de Gruyter, Berlin.

    Book  Google Scholar 

  • Sekido, M., Fukushima, T., 2006: VLBI model for radiosources at finite distance, J. Geod., 86, pp. 137–149.

    Article  ADS  Google Scholar 

  • Shapiro, I.I., Reasenberg, R.D., Chandler, J.F., Babcock, R.W., 1988: Measurement of the de Sitter precession of the Moon: A relativistic three-body effect, Phys. Rev. Lett., 61, pp. 2643–2646.

    Article  ADS  Google Scholar 

  • Shectman, S.A., Landy, S.D., Oemler, A., Tucker, D.L., Lin, H., Kirshner, R.P., Schechter, P.L., 1996: The Las Campanas Redshift Survey, Astrophys. J., 470, pp. 172–188.

    Article  ADS  Google Scholar 

  • Smarr, L.L., Blandford, R., 1976: The Binary Pulsar: Physical Processes, Possible Companions, and Evolutionary Histories, Astrophys. J., 207, pp. 574–588.

    Article  ADS  Google Scholar 

  • Soffel, M.H., 1989: Relativity in Astrometry, Celestial Mechanics and Geodesy, Springer, Berlin.

    Google Scholar 

  • Soffel, M., Müller, J., Wu, X., Xu, C., 1991: Consistent Relativistic VLBI Theory with picosecond accuracy, Astron. J., 101, pp. 2306–2310.

    Article  ADS  Google Scholar 

  • Soffel, M., Tian, W., 2011: Proceedings of the “Journées 2011 Systèmes de Référence Spatio-temporels” N. Capitaine (Ed.), Paris Observatory.

    Google Scholar 

  • Soffel, M., Langhans, R., 2013: Space-Time Reference Systems, Springer, Berlin.

    Book  Google Scholar 

  • Soffel, M., Kopeikin, S., Han, W.-B., 2017: Advanced relativistic VLBI model for geodesy, J. Geod., 91, pp. 783–801.

    Article  ADS  Google Scholar 

  • Stedman, G.E., 1997: Ring-laser tests of fundamental physics and geophysics, Rep. Prog. Phys., 60, pp. 615–688.

    Article  ADS  Google Scholar 

  • Straumann, N., 2012: General Relativity and Relativistic Astrophysics, Springer, Berlin.

    Google Scholar 

  • Turon, C., O’Flaherty, K.S., Perryman, M.A. (eds.) 2004: The Three-Dimensional Universe with Gaia, Observatoire de Paris-Meudon, France, 4–7 October 2004.

    Google Scholar 

  • Turyshev, S.G., Shao, M., Nordtvedt, K., et al., 2009: Advancing fundamental physics with the Laser Astrometric Test of Relativity, The LATOR mission, Experimental Astronomy, DOI 10.1007/s10686-009-9170-9.

    Google Scholar 

  • Turyshev, S.G., Williams, J., Nordtvedt, K., Shao, M., Murphy, T., 2004: 35 Years of Testing Relativistic Gravity: Where do we go from here?, in: Proc. “302. WE-Heraeus-Seminar: Astrophysics, Clocks and Fundamental Constants, 16–18 June 2003”, Springer Lecture Notes Phys., 648, pp. 301–320.

    Chapter  Google Scholar 

  • Will, C.M., 1993: Theory and Experiment in Gravitational Physics, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Williams, J., Newhall, X.X., Dickey, J., 1996: Relativity parameters determined from lunar laser ranging, Phys. Rev., D 53, pp. 6730–6739.

    Article  ADS  Google Scholar 

  • Williams, J., Turyshev, S., Boggs, D., 2004: Progress in Lunar Laser Ranging Tests of Relativistic Gravity, Phys. Rev. Lett., 93, 261101.

    Article  ADS  Google Scholar 

  • Williams, J.G., Turyshev, S.G., Boggs, D.H., 2009: Lunar Laser Ranging Tests of the Equivalence Principle with the Earth and Moon, Int. J. Mod. Phys., D 18, pp. 1129–1175.

    Article  ADS  Google Scholar 

  • Wolf, P., Bordé, Ch., Clairon, A., et al., 2009: Quantum physics exploring gravity in the outer Solar System: the Sagas project, Experimental Astronomy 23, 651.

    Article  ADS  Google Scholar 

  • Zeller, G., Soffel, M., Ruder, H., Schneider, M., 1986: Relativistische Effekte bei der Laufzeitdifferenz der VLB, Veröff. der Bayr. Komm. f.d. Intern. Erdmessung, Astronomisch-Geodätische Arbeiten, Heft Nr. 48, pp. 218–236.

    Google Scholar 

  • Zschocke, S., 2018: the following section is based upon private notes of Sven Zschocke.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Soffel, M.H., Han, WB. (2019). Metrology. In: Applied General Relativity. Astronomy and Astrophysics Library. Springer, Cham. https://doi.org/10.1007/978-3-030-19673-8_12

Download citation

Publish with us

Policies and ethics

Navigation