Global Proteomics of Extremophilic Fungi: Mission Accomplished?

  • Chapter
  • First Online:
Fungi in Extreme Environments: Ecological Role and Biotechnological Significance

Abstract

Proteomic analyses of extremophilic and extremotolerant fungi have gained rapidly in importance since the biology of these organisms revealed their extraordinary resistance to harsh climate and environmental conditions. Besides representing excellent model organisms for studies of the stress tolerance, extremophiles are increasingly becoming the target of many biotechnological applications.

Proteomics has proved its strength as an analytical endeavor to explore extremophiles and to provide sufficient depth of knowledge, particularly about quantitative measurements of cell events. However, the strategies developed by extremophiles to cope with the environmental changes also show remarkable resistance toward the biochemical methodologies applied in sampling, homogenization of fungal tissue, extraction, and separation of biomolecules.

On these premises, the current chapter focuses on the main questions, on dos and don’ts of the way to a full discovery of the extremophilic fungi proteome and deals with the obstacles and the solutions that have been confronted and solved up to now. Following a concise introduction, the state of the art of proteomics workflow for extremophilic fungi is reviewed, spanning from the techniques for protein separation to those for identification and comparative quantitative analysis. Advantages and limits of different approaches applied to several sample types are critically discussed. A collection of the methodological know-hows as well as tips for troubleshooting are provided to empower and support the readers in all steps from handling of samples to bioinformatics. By presenting examples of successful strategies to solve the sample-related challenges, this review aims at filling the gaps in the laboratory practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abyzov SS, Mitskevicha IN, Poglazovaa MN, Narciss I, Lipenkov VY, Bobiflc NE, Koudryashovc BB, Pashkevichc VM (1998) Long-term conservation of viable microorganisms in ice sheet of Central Antarctica. SPIE Conf. Instruments, Methods Mission. Astrobiology 3441:75–84

    Google Scholar 

  • Adav SS, Li AA, Manavalan A, Punt P, Sze SK (2010) Quantitative iTRAQ secretome analysis of Aspergillus niger reveals novel hydrolytic enzymes. J Proteome Res 9:3932–3940

    Article  CAS  PubMed  Google Scholar 

  • Adav SS, Chao LT, Sze SK (2012) Quantitative secretome of Trichoderma reesei strains reveals enzymatic composition for lignocellulosic biomass degradation. Mol Cell Proteomics 65:1–46

    Google Scholar 

  • Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207

    Article  CAS  PubMed  Google Scholar 

  • Agustinho DP, Miller LC, Li LX, Doering TL (2018) Peeling the onion: the outer layers of Cryptococcus neoformans. Mem Inst Oswaldo Cruz 113:1–8

    Article  Google Scholar 

  • Albuquerque PC, Nakayasu ES, Rodrigues ML, Frases S, Casadevall A, Zancope-Oliveira RM, Almeida IC, Nosanchuk JD (2008) Vesicular transport in Histoplasma capsulatum: an effective mechanism for trans-cell wall transfer of proteins and lipids in ascomycetes. Cell Microbiol 10:1695–1710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amin S, Rastogi RP, Sonani RR, Ray A, Sharma R, Madamwar D (2018) Bioproduction and characterization of extracellular melanin-like pigment from industrially polluted metagenomic library equipped Escherichia coli. Sci Total Environ 635:323–332

    Article  CAS  PubMed  Google Scholar 

  • Anjo SI, Figueiredo F, Fernandes R, Manadas B, Oliveira M (2017) A proteomic and ultrastructural characterization of Aspergillus fumigatus’ conidia adaptation at different culture ages. J Proteomics 161:47–56

    Article  CAS  PubMed  Google Scholar 

  • Armengaud J, Trapp J, Pible O, Geffard O, Chaumot A, Hartmann EM (2014) Non-model organisms, a species endangered by proteogenomics. J Proteomics 105:5–18

    Article  CAS  PubMed  Google Scholar 

  • de Arruda Grossklaus D, BailĂŁo AM, Vieira Rezende TC, Borges CL, de Oliveira MA, Parente JA, de Almeida Soares CM (2013) Response to oxidative stress in Paracoccidioides yeast cells as determined by proteomic analysis. Microbes Infect 15:347–364

    Article  PubMed  CAS  Google Scholar 

  • Barreiro C, GarcĂ­a-estrada C, MartĂ­n JF (1991) Proteomics methodology applied to the analysis of filamentous fungi - new trends for an impressive diverse group of organisms. In: Prasain J, Harn G (eds) Tandem mass spectrometry- applications and principles. Intech-Open Access Publisher, Rijeka, Croatia, pp 127–160

    Google Scholar 

  • Barreiro C, MartĂ­n JF, GarcĂ­a-Estrada C (2012) Proteomics shows new faces for the old penicillin producer Penicillium chrysogenum. J Biomed Biotechnol 2012:105109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Becker PT, De Bel A, Martiny D, Ranque S, Piarroux R, Cassagne C, Detandt M, Hendrickx M (2014) Identification of filamentous fungi isolates by MALDI-TOF mass spectrometry: clinical evaluation of an extended reference spectra library. Med Mycol 52:826–834

    Article  CAS  PubMed  Google Scholar 

  • Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795

    Article  PubMed  CAS  Google Scholar 

  • Benndorf D, MĂĽller A, Bock K, Manuwald O, Herbarth O, Von Bergen M (2008) Identification of spore allergens from the indoor mould Aspergillus versicolor. Allergy Eur J Allergy Clin Immunol 63:454–460

    Article  CAS  Google Scholar 

  • Bhadauria V, Zhao W, Wang L, Zhang Y, Liu J, Yang J, Kong LA, Peng YL (2007) Advances in fungal proteomics. Microbiol Res 162:193–200

    Article  CAS  PubMed  Google Scholar 

  • Bhadauria V, Banniza S, Wang L-X, Wei Y-D, Peng Y-L (2009) Proteomic studies of phytopathogenic fungi, oomycetes and their interactions with hosts. Eur J Plant Pathol 126:81–95

    Article  Google Scholar 

  • Bianco L, Perrotta G (2015) Methodologies and perspectives of proteomics applied to filamentous fungi: from sample preparation to secretome analysis. Int J Mol Sci 16:5803–5829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blasi B, Tafer H, Tesei D, Sterflinger K (2015) From glacier to sauna: RNA-seq of the human pathogen black fungus Exophiala dermatitidis under varying temperature conditions exhibits common and novel fungal response. PLoS One 10:e0127103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blasi B, Poyntner C, Rudavsky T, Prenafeta-BoldĂş FX, de Hoog GS, Tafer H, Sterflinger K (2016) Pathogenic yet environmentally friendly? Black fungal candidates for bioremediation of pollutants. Geomicrobiol J 33:308–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blasi B, Tafer H, Kustor C, Poyntner C, Lopandic K, Sterflinger K (2017) Genomic and transcriptomic analysis of the toluene degrading black yeast Cladophialophora immunda. Sci Rep 7:1–13

    Article  CAS  Google Scholar 

  • Blum T, Briesemeister S, Kohlbacher O (2009) MultiLoc2: integrating phylogeny and Gene Ontology terms improves subcellular protein localization prediction. BMC Bioinformatics 10:274

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blumer-Schuette SE, Kataeva I, Westpheling J, Adams MW, Kelly RM (2008) Extremely thermophilic microorganisms for biomass conversion: status and prospects. Curr Opin Biotechnol 19:210–217

    Article  CAS  PubMed  Google Scholar 

  • Borman AM, Fraser M, Szekely A, Larcombe DE, Johnson EM (2017) Rapid identification of clinically relevant members of the genus exophiala by matrix-assisted laser desorption ionization-time of flight mass spectrometry and description of two novel species, Exophiala campbellii and Exophiala lavatrina. J Clin Microbiol 55:1162–1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Branda E, Turchetti B, Diolaiuti G, Pecci M, Smiraglia C, Buzzini P (2010) Yeast and yeast-like diversity in the southernmost glacier of Europe (Calderone Glacier, Apennines, Italy). FEMS Microbiol Ecol 72:354–369

    Article  CAS  PubMed  Google Scholar 

  • Breitenbach R, Silbernagl D, Toepel J, Sturm H, Broughton WJ, Sassaki GL, Gorbushina AA (2018) Corrosive extracellular polysaccharides of the rock-inhabiting model fungus Knufia petricola. Extremophiles 22:165–175

    Article  CAS  PubMed  Google Scholar 

  • Briesemeister S, RahnenfĂĽhrer J, Kohlbacher O (2010) Going from where to why—interpretable prediction of protein subcellular localization. Bioinformatics 26:1232–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown SM, Campbell LT, Lodge JK (2007) Cryptococcus neoformans, a fungus under stress. Curr Opin Microbiol 10:320–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burg DW, Lauro FM, Williams TJ, Raftery MJ, Guilhaus M, Cavicchioli R (2010) Analyzing the hydrophobic proteome of the Antarctic archaeon Methanococcoides burtonii using differential solubility fractionation. J Proteome Res 9:664–676

    Article  CAS  PubMed  Google Scholar 

  • Burg D, Ng C, Ting L, Cavicchioli R (2011) Proteomics of extremophiles. Environ Microbiol 13:1934–1955

    Article  CAS  PubMed  Google Scholar 

  • Buskirk AD, Hettick JM, Chipinda I, Law BF, Siegel PD, Slaven JE, Green BJ, Beezhold DH (2011) Fungal pigments inhibit the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis of darkly pigmented fungi. Anal Biochem 411:122–128

    Article  CAS  PubMed  Google Scholar 

  • Cagas SE, Jain MR, Li H, Perlin DS (2011) Profiling the Aspergillus fumigatus proteome in response to caspofungin. Antimicrob Agents Chemother 55:146–154

    Article  CAS  PubMed  Google Scholar 

  • Catherman AD, Skinner OS, Kelleher NL (2014) Top Down proteomics: facts and perspectives. Biochem Biophys Res Commun 445:683–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavicchioli R (2002) Extremophiles and the Search for Extraterrestrial Life. Astrobiology 2:281–292

    Article  CAS  PubMed  Google Scholar 

  • Chahrour O, Cobice D, Malone J (2015) Stable isotope labelling methods in mass spectrometry-based quantitative proteomics. J Pharm Biomed Anal 113:2–20

    Article  CAS  PubMed  Google Scholar 

  • Chalkias S, Alonso CD, Levine JD, Wong MT (2014) Emerging pathogen in immunocompromised hosts: Exophiala dermatitidis mycosis in graft-versus-host disease. Transpl Infect Dis 16:616–620

    Article  CAS  PubMed  Google Scholar 

  • Chalupová J, Raus M, Sedlářová M, Ĺ ebela M, Sebela M (2014) Identification of fungal microorganisms by MALDI-TOF mass spectrometry. Biotechnol Adv 32:230–241

    Article  PubMed  CAS  Google Scholar 

  • Champer J, Diaz-Arevalo D, Champer M, Hong TB, Wong M, Shannahoff M, Ito JI, Clemons KV, Stevens DA, Kalkum M (2012) Protein targets for broad-spectrum mycosis vaccines: quantitative proteomic analysis of Aspergillus and Coccidioides and comparisons with other fungal pathogens. Ann N Y Acad Sci 1273:44–51

    Article  CAS  PubMed  Google Scholar 

  • Champer J, Ito J, Clemons K, Stevens D, Kalkum M (2016) Proteomic analysis of pathogenic fungi reveals highly expressed conserved cell wall proteins. J Fungi 2:6

    Article  CAS  Google Scholar 

  • Choi J, Park J, Kim D, Jung K, Kang S, Lee Y-H (2010) Fungal Secretome Database: Integrated platform for annotation of fungal secretomes. BMC Genomics 11:105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Collier TS, Muddiman DC (2012) Analytical strategies for the global quantification of intact proteins. Amino Acids 43:1109–1117

    Article  CAS  PubMed  Google Scholar 

  • Collier TS, Hawkridge AM, Georgianna DR, Payne GA, Muddiman DC (2008) Top-down identification and quantification of stable isotope labeled proteins from Aspergillus flavus using online nano-flow reversed-phase liquid chromatography coupled to a LTQ-FTICR mass spectrometer. Anal Chem 80:4994–5001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cordero RJB, Vij R, Casadevall A (2017) Microbial melanins for radioprotection and bioremediation. J Microbial Biotechnol 10:1186–1190

    Article  Google Scholar 

  • Cordero RJB, Robert V, Cardinali G, Arinze ES, Thon SM, Casadevall A (2018) Impact of yeast pigmentation on heat capture and latitudinal distribution. Curr Biol 28:2657–2664.e3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coumans JVF, Moens PDJ, Poljak A, Al-Jaaidi S, Pereg L, Raftery MJ (2010) Plant-extract-induced changes in the proteome of the soil-borne pathogenic fungus Thielaviopsis basicola. Proteomics 10:1573–1591

    Article  CAS  PubMed  Google Scholar 

  • Crichton PG, Harding M, Ruprecht JJ, Lee Y, Kunji ERS (2013) Lipid, detergent, and coomassie blue G-250 affect the migration of small membrane proteins in blue native gels: mitochondrial carriers migrate as monomers not dimers. J Biol Chem 288:22163–22173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dadachova E, Casadevall A (2008) Ionizing radiation: how fungi cope, adapt, and exploit with the help of melanin. Curr Opin Microbiol 11:525–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dadachova E, Bryan RA, Huang X, Moadel T, Schweitzer AD, Aisen P, Nosanchuk JD, Casadevall A (2007) Ionizing radiation changes the electronic properties of melanin and enhances the growth of melanized fungi. PLoS One 2(5):e457

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Toro J, Herschlik L, Waldner C, Mongini C (2015) Emerging roles of exosomes in normal and pathological conditions: new insights for diagnosis and therapeutic applications. Front Immunol 6:1–12

    Article  CAS  Google Scholar 

  • Del Chierico F, Masotti A, Onori M, Fiscarelli E, Mancinelli L, Ricciotti G, Alghisi F, Dimiziani L, Manetti C, Urbani A, Muraca M, Putignani L (2012) MALDI-TOF MS proteomic phenoty** of filamentous and other fungi from clinical origin. J Proteomics 75:3314–3330

    Article  PubMed  CAS  Google Scholar 

  • Dodds PN, Rafiqi M, Gan PHP, Hardham AR, Jones DA, Ellis JG (2009) Effectors of biotrophic fungi and oomycetes: pathogenicity factors and triggers of host resistance. New Phytol 183:993–1000

    Article  PubMed  Google Scholar 

  • Eisenman HC, Casadevall A (2012) Synthesis and assembly of fungal melanin. Appl Microbiol Biotechnol 93:931–940

    Article  CAS  PubMed  Google Scholar 

  • Eisenman HC, Chow SK, TsĂ© KK, McClelland EE, Casadevall A (2011) The effect of L-DOPA on Cryptococcus neoformans growth and gene expression. Virulence 2:329–336

    Article  PubMed  PubMed Central  Google Scholar 

  • Ellen AF, Albers SV, Huibers W, Pitcher A, Hobel CFV, Schwarz H, Folea M, Schouten S, Boekema EJ, Poolman B, Driessen AJM (2009) Proteomic analysis of secreted membrane vesicles of archaeal Sulfolobus species reveals the presence of endosome sorting complex components. Extremophiles 13:67–79

    Article  CAS  PubMed  Google Scholar 

  • Enjalbert B, Whiteway M (2003) Stress-induced gene expression in Candida albicans: absence of a general stress response. Mol Biol Cell 14:1460–1467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Epova E, Guseva M, Kovalyov L, Isakova E, Deryabina Y, Belyakova A, Zylkova M, Shevelev A (2012) Identification of proteins involved in pH adaptation in extremophile yeast Yarrowia lipolytica. In: Heazlewood J (ed) Proteomic applications in biology. In Tech Open, Rijeka, Croatia, pp 209–224

    Google Scholar 

  • Evilia C (2018) Understanding protein adaptations can help us solve real problems. Semin Cell Dev Biol:9–10

    Google Scholar 

  • Fernández-Acero FJ, Jorge I, Calvo E, Vallejo I, CarbĂş M, Camafeita E, LĂłpez JA, Cantoral JM, JorrĂ­n J (2006) Two-dimensional electrophoresis protein profile of the phytopathogenic fungus Botrytis cinerea. Proteomics 6:S88–S96

    Article  PubMed  Google Scholar 

  • Fernández RG, Redondo I, Jorrin-Novo JV (2014) Making a Protein Extract from Plant Pathogenic Fungi for Gel- and LC-Based Proteomics. In: Jorrin-Novo J., Komatsu S, Weckwerth W, Wienkoop S (eds) Plant Proteomics. Methods in Molecular Biology (Methods and Protocols), vol 1072. Humana Press, Totowa, NJ

    Google Scholar 

  • Flieger K, Knabe N, Toepel J (2018) Development of an improved carotenoid extraction method and characterisation of the carotenoid composition under oxidative and cold stress in the rock inhabiting fungus Knufia petricola A95. J Fungi 4:1–10

    Article  Google Scholar 

  • Fragner D, Zomorrodi M, KĂĽes U, Majcherczyk A (2009) Optimized protocol for the 2-DE of extracellular proteins from higher basidiomycetes inhabiting lignocellulose. Electrophoresis 30:2431–2441

    Article  CAS  PubMed  Google Scholar 

  • Furi I, Momen-Heravi F, Szabo G (2017) Extracellular vesicle isolation: present and future. Ann Transl Med 5:263–263

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia-Rivera J, Tucker S, Feldmesser M, Williamson P, Casadevall A (2005) Laccase expression in murine pulmonary Cryptococcus neoformans infection. Infect Immun 73:3124–3127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geisow MJ (1998) Proteomics: one small step for a digital computer, one giant leap for humankind. Nat Biotechnol 16:206

    Article  CAS  PubMed  Google Scholar 

  • Gillet LC, Navarro P, Tate S, Röst H, Selevsek N, Reiter L, Bonner R, Aebersold R (2012) Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics 11:O111.016717

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • González-Fernández R, Redondo I, Jorrin-Novo JV (2014) Making a protein extract from plant pathogenic fungi for Gel- and LC-based proteomics. In: Jorrin-Novo JV, Komatsu S, Weckwerth W, Wienkoop S (eds) Plant proteomics, Methods and Protocols. Humana Press, New York, NY, pp 93–109

    Chapter  Google Scholar 

  • GostinÄŤar C, Muggia L, Grube M (2012) Polyextremotolerant black fungi: oligotrophism, adaptive potential, and a link to lichen symbioses. Front Microbiol 3:390

    Article  PubMed  PubMed Central  Google Scholar 

  • Gow NAR, Latge J, Munro CA (2017) The fungal cell wall: structure, biosynthesis and function. J Microbiol Spectr 5:1–25

    Google Scholar 

  • Grinyer J, McKay M, Herbert B, Nevalainen H (2004) Fungal proteomics: map** the mitochodrial proteins of a Trichoderma harzianum strain applied for biological control. Curr Genet 45:170–175

    Article  CAS  PubMed  Google Scholar 

  • GuimarĂŁes AJ, Nakayasu ES, Sobreira TJP, Cordero RJB, Nimrichter L, Almeida IC, Nosanchuk JD (2011) Histoplasma capsulatum heat-shock 60 orchestrates the adaptation of the fungus to temperature stress. PLoS One 6:e14660

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gunde-Cimerman N, Zalar P, de Hoog GS, Plemenitaš A (2000) Hypersaline waters in saltern - natural ecological niches for halophilic black yeasts. FEMS Microbiol Ecol 32:235–240

    CAS  Google Scholar 

  • Gunde-Cimerman N, Sonjak S, Zalar P, Frisvad JCC, Diderichsen B, Plemenitaš A (2003) Extremophilic fungi in arctic ice: a relationship between adaptation to low temperature and water activity. Phys Chem Earth 28:1273–1278

    Article  Google Scholar 

  • Hoff KJ, Stanke M (2013) WebAUGUSTUS—a web service for training AUGUSTUS and predicting genes in eukaryotes. Nucleic Acids Res 41:123–128

    Article  Google Scholar 

  • de Hoog GS, Grube M (2008) Black fungal extremes. Stud Mycol 61

    Google Scholar 

  • Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35:W585–W587

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang Q, Yang L, Luo J, Guo L, Wang Z, Yang X, ** W, Fang Y, Ye J, Shan B, Zhang Y (2015) SWATH enables precise label-free quantification on proteome scale. Proteomics 15:1215–1223

    Article  CAS  PubMed  Google Scholar 

  • Isola D, Marzban G, Selbmann L, Onofri S, Laimer M, Sterflinger K (2011) Sample preparation and 2-DE procedure for protein expression profiling of black microcolonial fungi. Fungal Biol 115:971–977

    Article  CAS  PubMed  Google Scholar 

  • Jacobson ES (2000) Pathogenic roles for fungal melanins. Clin Microbiol Rev 13:708–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jami M-S, Barreiro C, GarcĂ­a-Estrada C, MartĂ­n J-F (2010a) Proteome analysis of the penicillin producer Penicillium chrysogenum: characterization of protein changes during the industrial strain improvement. Mol Cell Proteomics 9:1182–1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jami M-S, GarcĂ­a-Estrada C, Barreiro C, Cuadrado A-A, Salehi-Najafabadi Z, MartĂ­n J-F (2010b) The Penicillium chrysogenum extracellular proteome. Conversion from a food-rotting strain to a versatile cell factory for white biotechnology. Mol Cell Proteomics 9:2729–2744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong ES, Shin JH, Shin MG, Suh SP, Ryang DW (2010) Fungemia due to Exophiala dermatitidis. Korean J Clin Microbiol 13:135

    Article  Google Scholar 

  • Joffe LS, Nimrichter L, Rodrigues ML, Del Poeta M (2016) Potential roles of fungal extracellular vesicles during infection. mSphere 1:e00099-16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • JorrĂ­n-Novo JV, Maldonado AM, EchevarrĂ­a-Zomeño S, Valledor L, Castillejo MA, Curto M, Valero J, Sghaier B, Donoso G, Redondo I (2009) Plant proteomics update (2007-2008): Second-generation proteomic techniques, an appropriate experimental design, and data analysis to fulfill MIAPE standards, increase plant proteome coverage and expand biological knowledge. J Proteomics 72:285–314

    Article  PubMed  CAS  Google Scholar 

  • Kapp K, Schrempf S, Lemberg MK, Dobberstein B (2009) Post-targeting functions of signal peptides. In: Madame Curie Bioscience Database [Internet]. Landes Bioscience, Austin, TX, pp 2000–2013

    Google Scholar 

  • Karkowska-Kuleta J, Kozik A (2015) Cell wall proteome of pathogenic fungi. Acta Biochim Pol 62:339–351

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Nandakumar MP, Marten MR (2007) Proteomics of filamentous fungi. Trends Biotechnol 25:395–400

    Article  CAS  PubMed  Google Scholar 

  • Klis FM, de Jong M, Brul S, de Groot PWJ (2007) Extraction of cell surface-associated proteins from living yeast cells. Yeast 24:253–258

    Article  CAS  PubMed  Google Scholar 

  • Kniemeyer O (2011) Proteomics of eukaryotic microorganisms: the medically and biotechnologically important fungal genus Aspergillus. Proteomics 11:3232–3243

    Article  CAS  PubMed  Google Scholar 

  • Kohl M, Megger D a, Trippler M, Meckel H, Ahrens M, Bracht T, Weber F, Hoffmann AC, Baba H a, Sitek B, Schlaak JF, Meyer HE, Stephan C, Eisenacher M (2014) A practical data processing workflow for multi-OMICS projects. Biochim Biophys Acta Proteins Proteomics 1844:52–62

    Article  CAS  Google Scholar 

  • Kondo T, Hirohashi S (2007) Application of highly sensitive fluorescent dyes (Cydye dige fluor saturation dyes) to laser microdissection and two-dimensional difference gel electrophoresis (2d-Dige) for cancer proteomics. Nat Protoc 1:2940–2956

    Article  CAS  Google Scholar 

  • Kondori N, Erhard M, Welinder-Olsson C, Groenewald M, Verkley G, Moore ERB (2015) Analyses of black fungi by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS): species-level identification of clinical isolates of Exophiala dermatitidis. FEMS Microbiol Lett 362:1–6

    Article  CAS  PubMed  Google Scholar 

  • Kratochwill K, Bender TO, Lichtenauer AM, Herzog R, Tarantino S, Bialas K, Jörres A, Aufricht C (2015) Cross-omics comparison of stress responses in mesothelial cells exposed to heat- versus filter-sterilized peritoneal dialysis fluids. Biomed Res Int 2015(628158):1–12

    Article  CAS  Google Scholar 

  • Krijger JJ, Thon MR, Deising HB, Wirsel SGR (2014) Compositions of fungal secretomes indicate a greater impact of phylogenetic history than lifestyle adaptation. BMC Genomics 15:1–18

    Article  Google Scholar 

  • Kubitschek-Barreira PH, Curty N, Neves GWP, Gil C, Lopes-Bezerra LM (2013) Differential proteomic analysis of Aspergillus fumigatus morphotypes reveals putative drug targets. J Proteomics 78:522–534

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Alam A, Tripathi D, Rani M, Khatoon H, Pandey S, Ehtesham NZ, Hasnain SE (2018) Protein adaptations in extremophiles: an insight into extremophilic connection of mycobacterial proteome. Semin Cell Dev Biol 84:147–157

    Article  CAS  PubMed  Google Scholar 

  • Kusenbach G, Skopnik H, Haase G, Friedrichs F, Döhmen H (1992) Exophiala dermatitidis pneumonia in cystic fibrosis. Eur J Pediatr 151:344–346

    Article  CAS  PubMed  Google Scholar 

  • Lambert M, Blanchin-Roland S, Le Louedec F, Le**le A, Gaillardin C (1997) Genetic analysis of regulatory mutants affecting synthesis of extracellular proteinases in the yeast Yarrowia lipolytica: identification of a RIM101/pacC homolog. Mol Cell Biol 17:3966–3976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langfelder K, Streibel M, Jahn B, Haase G, Brakhage A (2003) Biosynthesis of fungal melanins and their importance for human pathogenic fungi. Fungal Genet Biol 38:143–158

    Article  CAS  PubMed  Google Scholar 

  • Lau AF, Drake SK, Calhoun LB, Henderson CM, Zelazny AM (2013) Development of a clinically comprehensive database and a simple procedure for identification of molds from solid media by matrix-assisted laser desorption ionization-Time of flight mass spectrometry. J Clin Microbiol 51:828–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Tian X, Wang C, Zeng X, **ng Y, Ling H, Yin W, Tian L, Meng Z, Zhang J, Guo S (2017) SWATH label-free proteomics analyses revealed the roles of oxidative stress and antioxidant defensing system in sclerotia formation of Polyporus umbellatus. Sci Rep 7:1–13

    Article  CAS  Google Scholar 

  • Lima PS, Casaletti L, BailĂŁo AM, de Vasconcelos AT, Fernandes Gda R, Soares CM (2014) Transcriptional and proteomic responses to carbon starvation in Paracoccidioides. PLoS Negl Trop Dis 8:e2855

    Article  PubMed Central  CAS  Google Scholar 

  • Loginov D, Ĺ ebela M (2016) Proteomics of survival structures of fungal pathogens. N Biotechnol 33:655–665

    Article  CAS  PubMed  Google Scholar 

  • Longo LVG, da Cunha JPC, Sobreira TJP, Puccia R (2014) Proteome of cell wall-extracts from pathogenic Paracoccidioides brasiliensis: comparison among morphological phases, isolates, and reported fungal extracellular vesicle proteins. EuPA Open Proteom 3:216–228

    Article  CAS  Google Scholar 

  • LĂłpez-GarcĂ­a P, Rodrguez-Valera F, PedrĂłs-AliĂł C, Moreira D (2002) Unexpected diversity of smal eukaryotes in Deep-Sea Antartic Plankton. Nature 409:603–606

    Article  Google Scholar 

  • Lu X, Sun J, Nimtz M, Wissing J, Zeng A-P, Rinas U (2010) The intra- and extracellular proteome of Aspergillus niger growing on defined medium with xylose or maltose as carbon substrate. Microb Cell Fact 9:1–13

    Article  CAS  Google Scholar 

  • Ly L, Wasinger VC (2011) Protein and peptide fractionation, enrichment and depletion: tools for the complex proteome. Proteomics 11:513–534

    Article  CAS  PubMed  Google Scholar 

  • Maddi A, Bowman SM, Free SJ (2009) Trifluoromethanesulfonic acid-based proteomic analysis of cell wall and secreted proteins of the ascomycetous fungi Neurospora crassa and Candida albicans. Fungal Genet Biol 46:768–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mafart P, Couvert O, LeguĂ©rinel I (2001) Effect of pH on the heat resistance of spores. Int J Food Microbiol 63:51–56

    Article  CAS  PubMed  Google Scholar 

  • Magan N (2007) Fungi in extreme environments. In: Kubicek C, Druzhinina I (eds) Environmental and microbial relationships, The Mycota, vol 4. Springer, Berlin/Heidelberg, pp 85–103

    Chapter  Google Scholar 

  • Marcotte EM (2007) How do shotgun proteomics algorithms identify proteins? Nat Biotechnol 25:755–757

    Article  CAS  PubMed  Google Scholar 

  • Marouga R, David S, Hawkins E (2005) The development of the DIGE system: 2D fluorescence difference gel analysis technology. Anal Bioanal Chem 382:669–678

    Article  CAS  PubMed  Google Scholar 

  • Marzban G, Tesei D, Sterflinger K (2013) A review beyond the borders: proteomics of microclonial black fungi and black yeasts. Nat Sci 05:640–645

    Google Scholar 

  • Meinken J, Asch DK, Neizer-Ashun KA, Chang G-H, Cooper CR, Min XJ (2014) FunSecKB2: a fungal protein subcellular location knowledgebase. Comput Mol Biol 4:1–17

    Google Scholar 

  • Mesbah NM, Cook GM, Wiegel J (2009) The halophilic alkalithermophile Natranaerobius thermophilus adapts to multiple environmental extremes using a large repertoire of Na +(K+)/H+ antiporters. Mol Microbiol 74:270–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitra SK, Gantt JA, Ruby JF, Clouse SD, Goshe MB (2007) Membrane proteomic analysis of Arabidopsis thaliana using alternative solubilization techniques. J Proteome Res 6:1933–1950

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki K, Hirase T, Kojima Y, Flint HJ (2005) Medium- to large-sized xylo-oligosaccharides are responsible for xylanase induction in Prevotella bryantii B14. Microbiology 151:4121–4125

    Article  CAS  PubMed  Google Scholar 

  • Mooney C, Wang YH, Pollastri G (2011) SCLpred: protein subcellular localization prediction by N-to-1 neural networks. Bioinformatics 27:2812–2819

    Article  CAS  PubMed  Google Scholar 

  • Moreno LF, Vicente VA, de Hoog S (2018) Black yeasts in the omics era: achievements and challenges. Med Mycol 56:32–41

    Article  PubMed  CAS  Google Scholar 

  • Muddiman D, Andrews G, Lewis D, Notey J, Kelly R (2010) Part II: defining and quantifying individual and co-cultured intracellular proteomes of two thermophilic microorganisms by GeLC-MS2 and spectral counting. Anal Bioanal Chem 398:391–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murad AM, Souza GHMF, Garcia JS, Rech EL (2011) Detection and expression analysis of recombinant proteins in plant-derived complex mixtures using nanoUPLC-MSE. J Sep Sci 34:2618–2630

    Article  CAS  PubMed  Google Scholar 

  • Nai C (2014) Rock-inhabiting fungi studied with the aid of the model black fungus Knufia petricola A95 and other related strains

    Google Scholar 

  • Nandakumar MP, Marten MR (2002) Comparison of lysis methods and preparation protocols for one- and two-dimensional electrophoresis of Aspergillus oryzae intracellular proteins. Electrophoresis 23:2216–2222

    Article  CAS  PubMed  Google Scholar 

  • Nguyen CH, Tsurumizu R, Sato T, Takeuchi M (2005) Taka-amylase A in the conidia of Aspergillus oryzae RIB40. Biosci Biotechnol Biochem 69:2035–2041

    Article  CAS  PubMed  Google Scholar 

  • Nienow J, Friedmann IE (1993) In: Friedmann EI (ed) Terrestrial lithophytic (rock) communities. Wiley-Liss, New York, NY, pp 343–412

    Google Scholar 

  • Noack-Schönmann S, Bus T, Banasiak R, Knabe N, Broughton WJ, Den Dulk-Ras H, Hooykaas PJJ, Gorbushina AA (2014) Genetic transformation of Knufia petricola A95 - a model organism for biofilm-material interactions. AMB Express 4:80

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nöbauer K, Hummel K, Mayrhofer C, Ahrens M, Setyabudi FMC, Schmidt-Heydt M, Eisenacher M, Razzazi-Fazeli E (2017) Comprehensive proteomic analysis of Penicillium verrucosum. Proteomics 17:1–5

    Article  CAS  Google Scholar 

  • Nosanchuk JD, Casadevall A (2003) The contribution of melanin to microbial pathogenesis. Microreview 5:203–223

    CAS  Google Scholar 

  • Oh YT, Ahn CS, Kim JG, Ro HS, Lee CW, Kim JW (2010) Proteomic analysis of early phase of conidia germination in Aspergillus nidulans. Fungal Genet Biol 47:246–253

    Article  CAS  PubMed  Google Scholar 

  • Olaya-Abril A, JimĂ©nez-MunguĂ­a I, GĂłmez-GascĂłn L, RodrĂ­guez-Ortega MJ (2014) Surfomics: shaving live organisms for a fast proteomic identification of surface proteins. J Proteomics 97:164–176

    Article  CAS  PubMed  Google Scholar 

  • de Oliveira JM, de Graaff LH (2011) Proteomics of industrial fungi: trends and insights for biotechnology. Appl Microbiol Biotechnol 89:225–237

    Article  PubMed  CAS  Google Scholar 

  • Oliveira DL, Nakayasu ES, Joffe LS, GuimarĂŁes AJ, Sobreira TJP, Nosanchuk JD, Cordero RJB, Frases S, Casadevall A, Almeida IC, Nimrichter L, Rodrigues ML (2010) Biogenesis of extracellular vesicles in yeast. Commun Integr Biol 3:533–535

    Article  PubMed  PubMed Central  Google Scholar 

  • Oliveira DL, Rizzo J, Joffe LS, Godinho RMC, Rodrigues ML (2013) Where do they come from and where do they go: candidates for regulating extracellular vesicle formation in fungi. Int J Mol Sci 14:9581–9603

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Onofri S, Barreca D, Selbmann L, Isola D, Rabbow E, Horneck G, de Vera JPP, Hatton J, Zucconi L (2008) Resistance of Antarctic black fungi and cryptoendolithic communities to simulated space and Martian conditions. Stud Mycol 61:99–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Onofri S, de la Torre R, de Vera J-P, Ott S, Zucconi L, Selbmann L, Scalzi G, Venkateswaran KJ, Rabbow E, Sánchez Iñigo FJ, Horneck G (2012) Survival of rock-colonizing organisms after 1.5 years in outer space. Astrobiology 12:508–516

    Article  PubMed  Google Scholar 

  • Ouyang H, Luo Y, Zhang L, Li Y, ** C (2010) Proteome analysis of Aspergillus fumigatus total membrane proteins identifies proteins associated with the glycoconjugates and cell wall biosynthesis using 2D LC-MS/MS. Mol Biotechnol 44:177–189

    Article  CAS  PubMed  Google Scholar 

  • Ă–zhak-Baysan B, Ă–gĂĽnc D, Dögen A, Ilkit M, De Hoog GS (2015) MALDI-TOF MS-based identification of black yeasts of the genus Exophiala. Med Mycol 53:347–352

    Article  PubMed  Google Scholar 

  • Pacelli C, Selbmann L, Zucconi L, De Vera J-P, Rabbow E, Horneck G, de la Torre R, Onofri S (2016) BIOMEX experiment: ultrastructural alterations, molecular damage and survival of the fungus Cryomyces antarcticus after the experiment verification tests. Orig Life Evol Biosph 47:187–202

    Article  PubMed  CAS  Google Scholar 

  • Panda A, Ghosh AK, Mirdha BR, Xess I, Paul S, Samantaray JC, Srinivasan A, Khalil S, Rastogi N, Dabas Y (2015) MALDI-TOF mass spectrometry for rapid identification of clinical fungal isolates based on ribosomal protein biomarkers. J Microbiol Methods 109:93–105

    Article  CAS  PubMed  Google Scholar 

  • Pandey A, Mann M (2000) Proteomics to study genes and genomes. Nature 405:837–846

    Article  CAS  PubMed  Google Scholar 

  • Parente AFA, de Rezende TCV, de Castro KP, BailĂŁo AM, Parente JA, Borges CL, Silva LP, Soares CM (2013) A proteomic view of the response of Paracoccidioides yeast cells to zinc deprivation. Fungal Biol 117:399–410

    Article  CAS  PubMed  Google Scholar 

  • Parente AFA, Naves PEC, Pigosso LL, Casaletti L, McEwen JG, Parente-Rocha JA, Soares CMA (2015) The response of Paracoccidioides spp. to nitrosative stress. Microbes Infect 17:575–585

    Article  PubMed  Google Scholar 

  • Parente-Rocha JA, Parente AFA, Baeza LC, Bonfim SMRC, Hernandez O, McEwen JG, BailĂŁo AM, Taborda CP, Borges CL, De Almeida Soares CM (2015) Macrophage interaction with paracoccidioides brasiliensis yeast cells modulates fungal metabolism and generates a response to oxidative stress. PLoS One 10:1–18

    Article  CAS  Google Scholar 

  • Parkhey S, Chandrakar V, Naithani SC, Keshavkant S (2015) Efficient extraction of proteins from recalcitrant plant tissue for subsequent analysis by two-dimensional gel electrophoresis. J Sep Sci 38:3622–3628

    Article  CAS  PubMed  Google Scholar 

  • Paul S, Singh P, Rudramurthy SM, Chakrabarti A, Ghosh AK (2017) Matrix-assisted laser desorption/ionization–time of flight mass spectrometry: protocol standardization and database expansion for rapid identification of clinically important molds. Future Microbiol 12:1457–1466

    Article  CAS  PubMed  Google Scholar 

  • Paul S, Singh P, Sharma S, Prasad GS, Rudramurthy SM, Chakrabarti A, Ghosh AK (2018) MALDI-TOF MS-based identification of melanized fungi is faster and reliable after the expansion of in-house database. Proteomics Clin Appl 1800070:1–8

    Google Scholar 

  • Piette F, D’Amico S, Struvay C, Mazzucchelli G, Renaut J, Tutino ML, Danchin A, Leprince P, Feller G (2010) Proteomics of life at low temperatures: trigger factor is the primary chaperone in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Mol Microbiol 76:120–132

    Article  CAS  PubMed  Google Scholar 

  • Pinto L, Granja LFZ, Almeida MA, Alviano DS, Silva MHD, Ejzemberg R, Rozental S, Alviano CS (2018) Melanin particles isolated from the fungus Fonsecaea pedrosoi activates the human complement system. Mem Inst Oswaldo Cruz 113:e180120

    Article  PubMed  PubMed Central  Google Scholar 

  • Pitarch A, Nombela C, Gil C (2008) Cell wall fractionation for yeast and fungal proteomics. Methods Mol Biol 425:217–239

    Article  CAS  PubMed  Google Scholar 

  • Plemenitaš A, Lenassi T, Konte T, KejĹľar A, Zajc J, GostinÄŤar C, Gunde-Cimerman N (2014) Adaptation to high salt concentrations in halotolerant/halophilic fungi: a molecular perspective. Front Microbiol 5:1–12

    Google Scholar 

  • Poyntner C, Blasi B, Arcalis E, Mirastschijski U, Sterflinger K, Tafer H (2016) The transcriptome of Exophiala dermatitidis during ex-vivo skin model infection. Front Cell Infect Microbiol 6:1–19

    Article  CAS  Google Scholar 

  • Poyntner C, Mirastschijski U, Sterflinger K, Tafer H (2018) Transcriptome study of an Exophiala dermatitidis PKS1 mutant on an ex vivo skin model: is melanin important for infection? Front Microbiol 9:1–13

    Article  Google Scholar 

  • Prenafeta-BoldĂş FX, Guivernau M, Gallastegui G, Viñas M, de Hoog GS, ElĂ­as A (2012) Fungal/bacterial interactions during the biodegradation of TEX hydrocarbons (toluene, ethylbenzene and p-xylene) in gas biofilters operated under xerophilic conditions. FEMS Microbiol Ecol 80:722–734

    Article  PubMed  CAS  Google Scholar 

  • Putignani L, Del Chierico F, Onori M, Mancinelli L, Argentieri M, Bernaschi P, Coltella L, Lucignano B, Pansani L, Ranno S, Russo C, Urbani A, Federici G, Menichella D (2011) MALDI-TOF mass spectrometry proteomic phenoty** of clinically relevant fungi. Mol Biosyst 7:620–629

    Article  CAS  PubMed  Google Scholar 

  • Rabilloud T, Chevallet M, Luche S, Lelong C (2008) Fully denaturing two-dimensional electrophoresis of membrane proteins: a critical update. Proteomics 8:3965–3973

    Article  CAS  PubMed  Google Scholar 

  • Ranque S, Normand AC, Cassagne C, Murat JB, Bourgeois N, Dalle F, Gari-Toussaint M, Fourquet P, Hendrickx M, Piarroux R (2014) MALDI-TOF mass spectrometry identification of filamentous fungi in the clinical laboratory. Mycoses 57:135–140

    Article  CAS  PubMed  Google Scholar 

  • Ravalason H, Jan G, MollĂ© D, Pasco M, Coutinho PM, Lapierre C, Pollet B, Bertaud F, Petit-Conil M, Grisel S, Sigoillot J-C, Asther M, HerpoĂ«l-Gimbert I (2008) Secretome analysis of Phanerochaete chrysosporium strain CIRM-BRFM41 grown on softwood. Appl Microbiol Biotechnol 80:719

    Article  CAS  PubMed  Google Scholar 

  • Robertson KL, Mostaghim A, Cuomo CA, Soto CM, Lebedev N, Bailey RF, Wang Z (2012) Adaptation of the black yeast Wangiella dermatitidis to ionizing radiation: molecular and cellular mechanisms. PLoS One 7:e48674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues ML, Nakayasu ES, Oliveira DL, Nimrichter L, Nosanchuk JD, Almeida IC, Casadevall A (2008) Extracellular vesicles produced by Cryptococcus neoformans contain protein components associated with virulence. Eukaryot Cell 7:58–67

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues ML, Nakayasu ES, Almeida IC, Nimrichter L (2014) The impact of proteomics on the understanding of functions and biogenesis of fungal extracellular vesicles. J Proteomics 97:177–186

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues ML, Godinho RMC, Zamith-Miranda D, Nimrichter L (2015) Traveling into outer space: unanswered questions about fungal extracellular vesicles. PLoS Pathog 11:1–6

    Google Scholar 

  • Rodrigues LNDS, Brito WA, Parente AFA, Weber SS, BailĂŁo AM, Casaletti L, Borges CL, Soares CMA (2016) Osmotic stress adaptation of Paracoccidioides lutzii, Pb01, monitored by proteomics. Fungal Genet Biol 95:13–23

    Article  CAS  PubMed  Google Scholar 

  • Rohrbough JG, Galgiani JN, Wysocki VH (2007) The application of proteomic techniques to fungal protein identification and quantification. Ann N Y Acad Sci 1111:133–146

    Article  CAS  PubMed  Google Scholar 

  • Romsdahl J, Blachowicz A, Chiang A, Singh NK, Stajich JE, Kalkum M, Venkateswaran KJ, Wang C (2018) Characterization of Aspergillus niger isolated from the international space station. mSystems 3:1–13

    Article  Google Scholar 

  • Sanchez-Pulido L, Andrade-Navarro MA (2007) The FTO (fat mass and obesity associated) gene codes for a novel member of the non-heme dioxygenase superfamily. BMC Biochem 8:23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmitt S, Prokisch H, Schlunck T, Camp DG, Ahting U, Waizenegger T, Scharfe C, Meitinger T, Imhof A, Neupert W, Oefner PJ, Rapaport D (2006) Proteome analysis of mitochondrial outer membrane from Neurospora crassa. Proteomics 6:72–80

    Article  CAS  PubMed  Google Scholar 

  • Selbmann L, Hoog GS, De Mazzaglia A, Friedmann EI, Onofri S (2005) Fungi at the edge of life: cryptoendolithic black fungi from Antarctic desert. Stud Mycol 51:1–32

    Google Scholar 

  • Selbmann L, de Hoog GS, Zucconi L, Isola D, Ruisi S, van den Ende AH, Ruibal C, De Leo F, Urzì C, Onofri S (2008) Drought meets acid: three new genera in a dothidealean clade of extremotolerant fungi. Stud Mycol 61:1–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selbmann L, Egidi E, Isola D, Onofri S, Zucconi L, de Hoog GS, Chinaglia S, Testa L, Tosi S, Balestrazzi A, Lantieri A, Compagno R, Tigini V, Varese GC (2013) Biodiversity, evolution and adaptation of fungi in extreme environments. Plant Biosyst 147:237–246

    Article  Google Scholar 

  • Selbmann L, Zucconi L, Isola D, Onofri S (2014) Rock black fungi: excellence in the extremes, from the Antarctic to space. Curr Genet 61:335–345

    Article  PubMed  CAS  Google Scholar 

  • Selbmann L, Pacelli C, Zucconi L, Dadachova E, Moeller R, de Vera JP, Onofri S (2018) Resistance of an Antarctic cryptoendolithic black fungus to radiation gives new insights of astrobiological relevance. Fungal Biol 122:546–554

    Article  PubMed  Google Scholar 

  • Sert H, SĂĽmbĂĽl H, Sterflinger K (2007) Microcolonial fungi from antique marbles in Perge/Side/Termessos (Antalya/Turkey). Antonie van Leeuwenhoek. Int J Gen Mol Microbiol 91:217–227

    CAS  Google Scholar 

  • Seyedmousavi S, Guillot J, de Hoog GS (2013) Phaeohyphomycoses, emerging opportunistic diseases in animals. Clin Microbiol Rev 26:19–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seyedmousavi S, Netea MG, Mouton JW, Melchers WJG, Verweij PE, de Hoog GS (2014) Black yeasts and their filamentous relatives: principles of pathogenesis and host defense. Clin Microbiol Rev 27:527–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiqui KS, Thomas T (2008) Protein adaptation in extremophiles. Nova Science Publishers Inc., Hauppauge, NY

    Google Scholar 

  • Siglioccolo A, Paiardini A, Piscitelli M, Pascarella S (2011) Structural adaptation of extreme halophilic proteins through decrease of conserved hydrophobic contact surface. BMC Struct Biol 11:50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson RJ, Jensen SS, Lim JWE (2008) Proteomic profiling of exosomes: current perspectives. Proteomics 8:4083–4099

    Article  CAS  PubMed  Google Scholar 

  • Sinitcyn P, Daniel Rudolph J, Cox J (2018) Computational methods for understanding mass spectrometry–based shotgun proteomics data. Annu Rev Biomed Data Sci 1:207–234

    Article  Google Scholar 

  • Sørensen LM, Lametsch R, Andersen MR, Nielsen PV, Frisvad JC (2009) Proteome analysis of Aspergillus niger: lactate added in starch-containing medium can increase production of the mycotoxin fumonisin B2 by modifying acetyl-CoA metabolism. BMC Microbiol 9:255

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sterflinger K, Krumbein WE (1995) Multiple stress factors affecting growth of rock-inhabiting black fungi. Bot Acta 108:490–496

    Article  Google Scholar 

  • Sterflinger K, Krumbein WE (1997) Dematiaceous fungi as a major agent of biopitting for Mediterranean marbles and limestones. Geomicrobiol J 14:219–230

    Article  Google Scholar 

  • Sterflinger K, Tesei D, Zakharova K (2012) Fungi in hot and cold deserts with particular reference to microcolonial fungi. Fungal Ecol 5:453–462

    Article  Google Scholar 

  • Strohkamp S, Gemoll T, Habermann JK (2016) Possibilities and limitations of 2DE-based analyses for identifying low-abundant tumor markers in human serum and plasma. Proteomics 16:2519–2532

    Article  CAS  PubMed  Google Scholar 

  • Su Y, Jiang X, Wu W, Wang M, Hamid MI, **ang M, Liu X (2016) Genomic, transcriptomic and proteomic analysis provide insights into the cold adaptation mechanism of the obligate psychrophilic fungus Mrakia psychrophila. G3 6:3603–3613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suh M-J, Fedorova ND, Cagas SE, Hastings S, Fleischmann RD, Peterson SN, Perlin DS, Nierman WC, Pieper R, Momany M (2012) Development stage-specific proteomic profiling uncovers small, lineage specific proteins most abundant in the Aspergillus Fumigatus conidial proteome. Proteome Sci 10:30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Supek F, Bošnjak M, Ĺ kunca N, Ĺ muc T (2011) REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One 6:e21800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor D, Shah S (2015) Methods of isolating extracellular vesicles impact down-stream analyses of their cargoes. Methods 87:3–10

    Article  CAS  PubMed  Google Scholar 

  • Taylor RD, Saparno A, Blackwell B, Anoop V, Gleddie S, Tinker NA, Harris LJ (2008) Proteomic analyses of Fusarium graminearum grown under mycotoxin-inducing conditions. Proteomics 8:2256–2265

    Article  CAS  PubMed  Google Scholar 

  • Taylor D, Zacharias W, Taylor C (2011) Exosome isolation for proteomics analyses and RNA profiling. In: Simpson RJ, Greening DW (eds) Serum/plasma proteomics, Methods and Protocols. Humana Press, New York, USA, pp 235–246

    Chapter  Google Scholar 

  • Teixeira MM, Moreno LF, Stielow BJ, Muszewska A, Hainaut M, Gonzaga L, Abouelleil A, PatanĂ© JSL, Priest M, Souza R, Young S, Ferreira KS, Zeng Q, da Cunha MML, Gladki A, Barker B, Vicente VA, de Souza EM, Almeida S, Henrissat B, Vasconcelos ATR, Deng S, Voglmayr H, Moussa TAA, Gorbushina A, Felipe MSS, Cuomo CA, de Hoog GS (2017) Exploring the genomic diversity of black yeasts and relatives (Chaetothyriales, Ascomycota). Stud Mycol 86:1–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tesei D, Marzban G, Zakharova K, Isola D, Selbmann L, Sterflinger K, Rosling A (2012) Alteration of protein patterns in black rock inhabiting fungi as a response to different temperatures. Fungal Biol 116:932–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tesei D, Marzban G, Marchetti-Deschmann M, Tafer H, Arcalis E, Sterflinger K (2015a) Proteome of tolerance fine-tuning in the human pathogen black yeast Exophiala dermatitidis. J Proteomics 128:39–57

    Article  CAS  PubMed  Google Scholar 

  • Tesei D, Marzban G, Marchetti-Deschmann M, Tafer H, Arcalis E, Sterflinger K (2015b) Protein functional analysis data in support of comparative proteomics of the pathogenic black yeast Exophiala dermatitidis under different temperature conditions. Data Brief 5:372–375

    Article  PubMed  PubMed Central  Google Scholar 

  • Tesei D, Tafer H, Poyntner C, Piñar G, Lopandic K, Sterflinger K (2017) Draft genome sequences of the black rock fungus Knufia petricola and its spontaneous nonmelanized mutant. Genome Announc 5:1–2

    Article  Google Scholar 

  • Tiquia-Arashiro SM (2014) Thermophilic carboxydotrophs and their applications in biotechnology. In: Tiquia-Arashiro SM, Mormile M (eds) Springer briefs in microbiology, extremophilic bacteria. Springer, New York, NY, p 131

    Google Scholar 

  • Tiquia-Arashiro SM, Rodrigues DF (2016) Thermophiles and psychrophiles in nanobiotechnology. In: Tiquia-Arashiro SM, Rodrigues DF (eds) Extremophiles: applications in nanotechnology. Springer, Cham/New York, pp 89–127

    Chapter  Google Scholar 

  • Uranga CC, Ghassemian M, Hernández-MartĂ­nez R (2017) Novel proteins from proteomic analysis of the trunk disease fungus Lasiodiplodia theobromae (Botryosphaeriaceae). Biochim Open 4:88–98

    Article  PubMed  PubMed Central  Google Scholar 

  • Vallejo M, Nakayasu E, Matsuo A, Sobreira TP, Longo LG, Ganiko L, Almeida I, Puccia R (2012) Vesicle and vesicle-free extracellular proteome of Paracoccidioides brasiliensis: comparative analysis with other pathogenic fungi. J Proteome Res 11:1676–1685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vember VV, Zhdanova NN (2001) Peculiarities of linear growth of the melanin containing fungi Cladosporium sphaerospermum Perz. and Alternaria alternata (Fr.) Keissler. Mikrobiol Zh 63:3–12

    CAS  Google Scholar 

  • Vialás V, Perumal P, Gutierrez D, **mĂ©nez-EmbĂşn P, Nombela C, Gil C, Chaffin WL (2012) Cell surface shaving of Candida albicans biofilms, hyphae, and yeast form cells. Proteomics 12:2331–2339

    Article  PubMed  CAS  Google Scholar 

  • Vincent D, Kohler A, Claverol S, Solier E, Joets J, Gibon J, Lebrun M, Plomion C, Martin F (2012) Secretome of the free-living mycelium from the ectomycorrhizal basidiomycete Laccaria bicolor. J Proteome Res 11:157–171

    Article  CAS  PubMed  Google Scholar 

  • Vödisch M, Scherlach K, Winkler R, Hertweck C, Braun HP, Roth M, Haas H, Werner ER, Brakhage AA, Kniemeyer O (2011) Analysis of the Aspergillus fumigatus proteome reveals metabolic changes and the activation of the pseurotin A biosynthesis gene cluster in response to hypoxia. J Proteome Res 10:2508–2524

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Washburn MP, Wolters D, Yates JR III (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19:242–247

    Article  CAS  PubMed  Google Scholar 

  • Wasinger VC, Cordwell SJ, Cerpa-Poljak A, Yan JX, Gooley AA, Wilkins MR, Duncan MW, Harris R, Williams KL, Humphery-Smith I (1995) Progress with gene-product map** of the mollicutes: Mycoplasma genitalium. Electrophoresis 16:1090–1094

    Article  CAS  PubMed  Google Scholar 

  • Wasinger VC, Zeng M, Yau Y (2013) Current status and advances in quantitative proteomic mass spectrometry. Int J Proteomics 2013:1–12

    Article  CAS  Google Scholar 

  • Westwood GS, Huang SW, Keyhani NO (2005) Allergens of the entomopathogenic fungus Beauveria bassiana. Clin Mol Allergy 3:1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wiese S, Reidegeld KA, Meyer HE, Warscheid B (2007) Protein labeling by iTRAQ: a new tool for quantitative mass spectrometry in proteome research. Proteomics 7:340–350

    Article  CAS  PubMed  Google Scholar 

  • Williams TJ, Burg DW, Ertan H, Raftery MJ, Poljak A, Guilhaus M, Cavicchioli R (2010) Global proteomic analysis of the insoluble, soluble, and supernatant fractions of the psychrophilic archaeon Methanococcoides burtonii part II: the effect of different methylated growth substrates. J Proteome Res 9:653–663

    Article  CAS  PubMed  Google Scholar 

  • WiĹ›niewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6:359–362

    Article  PubMed  CAS  Google Scholar 

  • Woo PCY, Ngan AHY, Tsang CCC, Ling IWH, Chan JFW, Leung S-Y, Yuen K-Y, Lau SKP (2013) Clinical spectrum of Exophiala infections and a novel Exophiala species, Exophiala hongkongensis. J Clin Microbiol 51:260–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wösten HAB (2001) Hydrophobins: multipurpose proteins. Annu Rev Microbiol 55:625–646

    Article  PubMed  Google Scholar 

  • Wu HC, Chen TN, Kao SH, Shui HA, Chen WJ, Lin HJ, Chen HM (2010) Isoelectric focusing management: an investigation for salt interference and an algorithm for optimization. J Proteome Res 9:5542–5556

    Article  CAS  PubMed  Google Scholar 

  • Yeung YG, Nieves E, Angeletti RH, Stanley ER (2008) Removal of detergents from protein digests for mass spectrometry analysis. Anal Biochem 382:135–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yildirim V, Ă–zcan S, Becher D, BĂĽttner K, Ă–zcengiz G (2011) Characterization of proteome alterations in Phanerochaete chrysosporium in response to lead exposure. Proteome Sci 9:1–15

    Article  CAS  Google Scholar 

  • Yin QY, de Groot PWJ, de Koster CG, Klis FM (2008) Mass spectrometry-based proteomics of fungal wall glycoproteins. Trends Microbiol 16:20–26

    Article  CAS  PubMed  Google Scholar 

  • Zajc J, Liu Y, Dai W, Yang Z, Hu J, Gostin C (2013) Genome and transcriptome sequencing of the halophilic fungus Wallemia ichthyophaga: haloadaptations present and absent. BMC Genomics 14:1–20

    Article  CAS  Google Scholar 

  • Zakharova K, Tesei D, Marzban G, Dijksterhuis J, Wyatt T, Sterflinger K (2013) Microcolonial fungi on rocks: a life in constant drought? Mycopathologia 175:537–547

    Article  PubMed  Google Scholar 

  • Zakharova K, Marzban G, de Vera J-P, Lorek A, Sterflinger K (2014a) Protein patterns of black fungi under simulated mars-like conditions. Sci Rep 4:1–7

    Google Scholar 

  • Zakharova K, Sterflinger K, Razzazi-fazeli E, Noebauer K, Marzban G (2014b) Global proteomics of the extremophile black fungus Cryomyces antarcticus using 2D-electrophoresis. Nat Sci 6:978–995

    CAS  Google Scholar 

  • Zhang N, Chen R, Young N, Wishart D, Winter P, Weiner JH, Li L (2007) Comparison of SDS- and methanol-assisted protein solubilization and digestion methods for Escherichia coli membrane proteome analysis by 2-D LC-MS/MS. Proteomics 7:484–493

    Article  CAS  PubMed  Google Scholar 

  • Zhang SW, Liu YF, Yu Y, Zhang TH, Fan XN (2014) MSLoc-DT: a new method for predicting the protein subcellular location of multispecies based on decision templates. Anal Biochem 449:164–171

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Zhang L, Qiu J, Nian H (2015) Isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analysis of Cryptococcus humicola response to aluminum stress. J Biosci Bioeng 120:359–363

    Article  CAS  PubMed  Google Scholar 

  • Zhong Z, Li N, Liu L, He B, Igarashi Y, Luo F (2018) Label-free differentially proteomic analysis of interspecific interaction between white-rot fungi highlights oxidative stress response and high metabolic activity. Fungal Biol 122:774–784

    Article  PubMed  CAS  Google Scholar 

  • Zoglowek M, Brewer H, Norbeck A (2018) Discovery of novel cellulases using proteomic strategies. In: LĂĽbeck M (ed) Cellulases: methods and protocols. Springer, New York, NY, pp 103–113

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Austrian Science Fund (FWF-der Wissenschaftsfonds, Hertha-Firnberg Project T872-B22) and the BOKU Equipment GmbH as the founder of the VIBT-Extremophile Center for the technical and financial support of our research, whose outcomes widely contributed to this book chapter.

We also thank FWF for the project FWF-P24206, which allowed the initiation and the pioneering proteomics work on extremophilic black fungi.

The authors apologize to all researchers whose work could not be cited in this book chapter due to limits in manuscript dimensions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donatella Tesei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tesei, D., Sterflinger, K., Marzban, G. (2019). Global Proteomics of Extremophilic Fungi: Mission Accomplished?. In: Tiquia-Arashiro, S., Grube, M. (eds) Fungi in Extreme Environments: Ecological Role and Biotechnological Significance. Springer, Cham. https://doi.org/10.1007/978-3-030-19030-9_12

Download citation

Publish with us

Policies and ethics

Navigation