Non-MAX Phase Precursors for MXenes

  • Chapter
  • First Online:
2D Metal Carbides and Nitrides (MXenes)

Abstract

MXenes, as the new family of two-dimensional materials, have attracted extensive attention due to their widespread potential applications. To enrich the MXene family becomes an important research goal in recent years. Generally, MXenes are fabricated from selective etching of the Al-containing MAX phases. Here, in contrast to the traditional approach, the syntheses of MXenes by selective etching of non-MAX precursors are summarized in this chapter. In addition, the existing non-MAX layered carbides (MC)n[Al(A)]mCm−1 (n is generally 2~4, m is 3 or 4, A is Si and/or Ge) possible for MXene precursors are reviewed. Specially, Zr3C2Tx is firstly synthesized by selective etching of Zr3Al3C5, where an Al3C3 unit instead of an Al atomic layer is etched out. The obtained configuration shows relatively high thermal stability with its structure is stable even under 1200 °C. Hf3C2Tx is further synthesized from selective etching of a solid solution Hf3(Al,Si)4C6. Si is determined to weaken the layer adhesion and facilitate the etching process. Additionally, with a mild organic base as etchant, a semiconducting MXene member ScCxOH is realized by selective etching of ScAl3C3. Different from the Al-containing layered carbides, the Mo2Ga2C phase wherein two Ga layers stacked between Mo2C layers is also adopted for the synthesis of Mo2CTx. Both Hf3C2Tx and Mo2CTx are found to show promising applications in energy storage. For instance, the volumetric capacity for Hf3C2Tx is measured as high as 1567 mAh cm−3 for lithium-ion batteries at a current density of 200 mA g−1 after 200 cycles. Based on these non-MAX precursors, we look forward to more promising MXene configurations that could be realized in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Naguib, M., et al. (2011). Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 23, 4248–4253.

    Article  CAS  Google Scholar 

  2. Lukatskaya, M. R., et al. (2013). Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science, 341, 1502–1505.

    Article  CAS  Google Scholar 

  3. Ghidiu, M., Lukatskaya, M. R., Zhao, M.-Q., Gogotsi, Y., & Barsoum, M. W. (2014). Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature, 516, 78–81.

    Article  CAS  Google Scholar 

  4. Shahzad, F., et al. (2016). Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 353, 1137–1140.

    Article  CAS  Google Scholar 

  5. Mashtalir, O., et al. (2013). Intercalation and delamination of layered carbides and carbonitrides. Nature Communications, 4, 1716.

    Article  CAS  Google Scholar 

  6. Ma, Z., et al. (2014). Tunable band structures of heterostructured bilayers with transition-metal dichalcogenide and MXene monolayer. Journal of Physical Chemistry C, 118, 5593–5599.

    Article  CAS  Google Scholar 

  7. Gan, L.-Y., Zhao, Y.-J., Huang, D., & Schwingenschlögl, U. (2013). First-principles analysis of MoS2/Ti2C and MoS2/Ti2CY2 (Y=F and OH) all-2D semiconductor/metal contacts. Physical Review B, 87, 245307.

    Article  CAS  Google Scholar 

  8. Zha, X.-H., et al. (2015). Role of the surface effect on the structural, electronic and mechanical properties of the carbide MXenes. EPL (Europhysics Letters), 111, 26007.

    Article  CAS  Google Scholar 

  9. Zha, X.-H., et al. (2016). Promising electron mobility and high thermal conductivity in Sc2CT2(T = F, OH) MXenes. Nanoscale, 8, 6110–6117.

    Article  CAS  Google Scholar 

  10. Zha, X.-H., et al. (2016). The thermal and electrical properties of the promising semiconductor MXene Hf2CO2. Scientific Reports, 6, 27971.

    Article  Google Scholar 

  11. Wang, L., et al. (2016). Loading actinides in multilayered structures for nuclear waste treatment: The first case study of uranium capture with vanadium carbide MXene. ACS Applied Materials & Interfaces, 8, 16396–16403.

    Article  CAS  Google Scholar 

  12. Anasori, B., Lukatskaya, M. R., & Gogotsi, Y. (2017). 2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews Materials, 2, 16098.

    Article  CAS  Google Scholar 

  13. Naguib, M., et al. (2012). Two-dimensional transition metal carbides. ACS Nano, 6, 1322–1331.

    Article  CAS  Google Scholar 

  14. Naguib, M., et al. (2013). New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. Journal of the American Chemical Society, 135, 15966–15969.

    CAS  Google Scholar 

  15. Naguib, M., & Gogotsi, Y. (2014). Synthesis of two-dimensional materials by selective extraction. Accounts of Chemical Research, 48, 128–135.

    Article  CAS  Google Scholar 

  16. Zhou, Y.-C., He, L.-F., Lin, Z.-J., & Wang, J.-Y. (2013). Synthesis and structure–property relationships of a new family of layered carbides in Zr-Al(Si)-C and Hf-Al(Si)-C systems. Journal of the European Ceramic Society, 33, 2831–2865.

    Article  CAS  Google Scholar 

  17. Gesing, T. M., & Jeitschko, W. (1998). The crystal structures of Zr3Al3C5, ScAl3C3, and UAl3C3 and their relation to the structures of U2Al3C4 and Al4C3. Journal of Solid State Chemistry, 140, 396–401.

    Article  CAS  Google Scholar 

  18. Schuster, J. C., & Nowotny, H. (1980). Investigations of the ternary systems (Zr, Hf, Nb, Ta)-Al-C and studies on complex carbides. Zeitschrift fuer Metallkunde, 71, 341–346.

    CAS  Google Scholar 

  19. Wang, J., Zhou, Y., Liao, T., & Lin, Z. (2007). Trend in crystal structure of layered ternary T-Al-C carbides (T = Sc, Ti, V, Cr, Zr, Nb, Mo, Hf, W, and Ta). Journal of Materials Research, 22, 2685–2690.

    Article  CAS  Google Scholar 

  20. Medvedeva, N. I., Novikov, D. L., Ivanovsky, A. L., Kuznetsov, M. V., & Freeman, A. J. (1998). Electronic properties of Ti3SiC2-based solid solutions. Physical Review B, 58, 16042–16050.

    Article  CAS  Google Scholar 

  21. Barsoum, M. W., & Radovic, M. (2011). Elastic and mechanical properties of the MAX phases. Annual Review of Materials Research, 41, 195–227.

    CAS  Google Scholar 

  22. Zhou, J., et al. (2016). A two-dimensional zirconium carbide by selective etching of Al3C3 from nanolaminated Zr3Al3C5. Angewandte Chemie International Edition, 55, 5008–5013.

    Article  CAS  Google Scholar 

  23. Zhou, J., et al. (2017). Synthesis and electrochemical properties of two-dimensional hafnium carbide. ACS Nano, 11, 3841–3850.

    Article  CAS  Google Scholar 

  24. Meshkian, R., et al. (2015). Synthesis of two-dimensional molybdenum carbide, Mo2C, from the gallium based atomic laminate Mo2Ga2C. Scripta Materialia, 108, 147–150.

    Article  CAS  Google Scholar 

  25. Halim, J., et al. (2016). Synthesis and characterization of 2D molybdenum carbide (MXene). Advanced Functional Materials, 26, 3118–3127.

    Article  CAS  Google Scholar 

  26. Chaix-Pluchery, O., et al. (2017). First-order Raman scattering in three-layered Mo-based ternaries: MoAlB, Mo2Ga2C and Mo2GaC. Journal of Raman Specroscopy, 48, 631–638.

    Article  CAS  Google Scholar 

  27. Lai, C. C., et al. (2015). Structural and chemical determination of the new nanolaminated carbide Mo2Ga2C from first principles and materials analysis. Acta Materialia, 99, 157–164.

    Article  CAS  Google Scholar 

  28. Hadi, M. A. (2016). New ternary nanolaminated carbide Mo2Ga2C: A first-principles comparison with the MAX phase counterpart Mo2GaC. Computational Materials Science, 117, 422–427.

    Article  CAS  Google Scholar 

  29. Fahrenholtz, W. G., Hilmas, G. E., Talmy, I. G., & Zaykoski, J. A. (2007). Refractory diborides of zirconium and hafnium. Journal of the American Ceramic Society, 90, 1347–1364.

    Article  CAS  Google Scholar 

  30. Kohn, W., & Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Physics Review, 140, A1133–A1138.

    Article  Google Scholar 

  31. Zhang, X., et al. (2013). Ultrathin nanosheets of MAX phases with enhanced thermal and mechanical properties in polymeric compositions: Ti3Si0.75Al0.25C2. Angewandte Chemie, International Edition, 52, 4361–4365.

    Article  CAS  Google Scholar 

  32. Ziolkowski, J. (1985). New relation between ionic-radii, bond length, and bond strength. Journal of Solid State Chemistry, 57, 269–290.

    Article  CAS  Google Scholar 

  33. Hu, T., et al. (2016). Interlayer coupling in two-dimensional titanium carbide MXenes. Physical Chemistry Chemical Physics, 18, 20256–20260.

    Article  CAS  Google Scholar 

  34. Madsen, G. K. H., & Singh, D. J. (2006). BoltzTraP. A code for calculating band-structure dependent quantities. Computer Physics Communications, 175, 67–71.

    Article  CAS  Google Scholar 

  35. Zha, X.-H., et al. (2017). Controllable magnitude and anisotropy of the electrical conductivity of Hf3C2O2 MXene. Journal of Physics: Condensed Matter, 29, 165701.

    Google Scholar 

  36. Khazaei, M., et al. (2013). Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Advanced Functional Materials, 23, 2185–2192.

    Article  CAS  Google Scholar 

  37. Zhou, J., Zha, X.-H., Yildizhan, M., Eklund, P., Xue, J., Liao, M., Persson, P. O. Å., Du, S., & Huang, Q. (2019). Two-dimensional hydroxyl-functionalized and carbon-deficient scandium carbide, ScCxOH, a direct band gap semiconductor. ACS Nano, 132, 1195–1203.

    Google Scholar 

  38. Gundimeda, A., et al. (2017). Fabrication of non-polar GaN based highly responsive and fast UV photodetector. Applied Physics Letters, 110, 103507.

    Article  CAS  Google Scholar 

  39. Brisi, C., & Abbattista, F. (1961). Aluminum-carbon-thorium ternary alloy phase diagram. Annali di Chimica, 51, 452.

    Google Scholar 

  40. Tsokol, A. O., Bodak, O. I., Marusin, E. P., & Baivel’man, M. G. (1986). Crystal structure of the compound ScAl3C3. Soviet Physics Crystallography 31, 467.

    Google Scholar 

  41. Gesing, T. M., & Jeitschko, W. (1995). The crystal structure and chemical properties of U2AI3C4 and structure refinement of Al4C3. Zeitschrift für Naturforschung. Teil B, 50, 196–200.

    Article  CAS  Google Scholar 

  42. Gesing, T.-M., Pöttgen, R., Jeitschko, W., & Wortmann, U. (1992). Crystal structure and physical properties of the carbides UAl3C3 and YbAl3C3. Journal of Alloys and Compounds, 186, 321–331.

    Article  CAS  Google Scholar 

  43. Ochiai, A., Inukai, T., Matsumura, T., Oyamada, A., & Katoh, K. (2007). Spin gap state of S=1/2 Heisenberg antiferromagnet YbAl3C3. Journal of the Physical Society of Japan, 76, 123703.

    Article  CAS  Google Scholar 

  44. Fukuda, K., & Hisamura, M. (2007). Crystal structure and thermoelectric properties of YAl3C3. Journal of the American Ceramic Society, 90, 3299–3302.

    Article  CAS  Google Scholar 

  45. Ochiai, A., et al. (2000). Quantum spin system in f-electron compounds -YbAl3C3 and its related compounds. Journal of Physics: Conference Series, 200, 022040.

    Google Scholar 

  46. Iwata, T., Hattori, E., Hashimoto, S., & Fukuda, K. (2008). Synthesis and crystal structure of a new layered carbide ZrAl4C4. Journal of the American Ceramic Society, 91, 2713–2715.

    Article  CAS  Google Scholar 

  47. Iwata, T., Sugiura, K., Hashimoto, S., & Fukuda, K. (2008). Synthesis and crystal structure of a new layered carbide ZrAl8C7. Journal of the American Ceramic Society, 91, 3758–3761.

    Article  CAS  Google Scholar 

  48. Sugiura, K., Iwata, T., Yoshida, H., Hashimoto, S., & Fukuda, K. (2008). Syntheses, crystal structures and Si solubilities of new layered carbides Zr2Al4C5 and Zr3Al4C6. Journal of Solid State Chemistry, 181, 2864–2868.

    Article  CAS  Google Scholar 

  49. Fukuda, K., Hisamura, M., Iwata, T., Tera, N., & Sato, K. (2007). Synthesis, crystal structure and thermoelectric properties of a new carbide Zr2[Al3.56Si0.44]C5. Journal of Solid State Chemistry, 180, 1809–1815.

    Article  CAS  Google Scholar 

  50. Fukuda, K., Hisamura, M., Kawamoto, Y., & Iwata, T. (2007). Synthesis, crystal structure, and thermoelectric properties of a new layered carbide (ZrC)3[Al3.56Si0.44]C3. Journal of Materials Research, 22, 2888–2894.

    Article  CAS  Google Scholar 

  51. Fukuda, K., Hisamura, M., Iwata, T., Hashimoto, S., & Nakano, H. (2008). Synthesis and crystal structure of a new layered carbide [Zr1.97Y0.03]Al4C5. Journal of the American Ceramic Society, 91, 1342–1345.

    Article  CAS  Google Scholar 

  52. Sugiura, K., et al. (2009). Syntheses and crystal structures of Ge-bearing layered carbides Zr2Al4C5 and Zr3Al4C6. Journal of the Ceramic Society of Japan, 117, 22–27.

    Article  CAS  Google Scholar 

  53. Iwata, T., et al. (2009). Syntheses and crystal structures of Si-bearing layered carbides ZrAl8C7 and ZrAl4C4. Journal of the Ceramic Society of Japan, 117, 37–41.

    Article  CAS  Google Scholar 

  54. He, L. F., Lin, Z. J., Wang, J. Y., Bao, Y. W., & Zhou, Y. C. (2008). Crystal structure and theoretical elastic property of two new ternary ceramics Hf3Al4C6 and Hf2Al4C5. Scripta Materialia, 58, 679–682.

    Article  CAS  Google Scholar 

  55. Nian, H., He, L., Li, F., Wang, J., & Zhou, Y. (2010). Crystal structure and theoretical elastic property of a new ternary ceramic HfAl4C4. Journal of the American Ceramic Society, 93, 1164–1168.

    Article  CAS  Google Scholar 

  56. Khazaei, M., Arai, M., Sasaki, T., Estili, M., & Sakka, Y. (2014). Two-dimensional molybdenum carbides: Potential thermoelectric materials of the MXene family. Physical Chemistry Chemical Physics, 16, 7841.

    Article  CAS  Google Scholar 

  57. Wang, J., & Zhou, Y. (2009). Recent progress in theoretical prediction, preparation, and characterization of layered ternary transition-metal carbides. Annual Review of Materials Research, 39, 415–443.

    Article  CAS  Google Scholar 

  58. Boch, P., Glandus, J. C., Jarrige, J., Lecompte, J. P., & Mexmain, J. (1982). Sintering, oxidation and mechanical properties of hot pressed aluminium nitride. Ceramics International, 8, 34–40.

    Article  CAS  Google Scholar 

  59. Lin, Z. J., et al. (2006). Atomic-scale microstructures of Zr2Al3C4 and Zr3Al3C5 ceramics. Acta Materialia, 54, 3843–3851.

    Article  CAS  Google Scholar 

  60. Toth, L. (1967). High superconducting transition temperatures in the molybdenum carbide family of compounds. Journal of the Less-Common Metals, 13, 129–131.

    Article  CAS  Google Scholar 

  61. Hu, C., et al. (2015). Mo2Ga2C: A new ternary nanolaminated carbide. Chemical Communications, 51, 6560–6563.

    Article  CAS  Google Scholar 

  62. Halim, J., et al. (2014). Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chemistry of Materials, 26, 2374–2381.

    Article  CAS  Google Scholar 

Download references

Author information

Authors

Corresponding authors

Correspondence to Shiyu Du or Qing Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zha, XH., Zhou, J., Eklund, P., Bai, X., Du, S., Huang, Q. (2019). Non-MAX Phase Precursors for MXenes. In: Anasori, B., Gogotsi, Y. (eds) 2D Metal Carbides and Nitrides (MXenes). Springer, Cham. https://doi.org/10.1007/978-3-030-19026-2_4

Download citation

Publish with us

Policies and ethics

Navigation