Topological Hyperbolic and Dirac Plasmons

  • Chapter
  • First Online:
Reviews in Plasmonics 2017

Part of the book series: Reviews in Plasmonics ((RIP,volume 2017))

Abstract

In this chapter, criteria for existence of propagating optical modes which are transversely bound at the interface of two materials are studied. In particular, quite general cases are considered, where the materials involved are assumed to be anisotropic, but also demonstrating magneto-electric effects. Moreover, surface states of two-dimensional materials like topological insulators and graphene are also modeled via consideration of a conductivity sheet existing at the interface. A characteristic equation for obtaining the propagation constant of generalized interface modes is presented. Furthermore, optical modes sustained by a thin film of anisotropic materials with magneto-electric effect and topological surface states are also investigated. It is shown that interface modes supported by such a system are hybrid in nature, and can be further decomposed into the well-known classes of transverse magnetic and electric modes, only at the absence of magneto-electric effect. Although the formulations driven here are mathematically abstract, they can be used to investigate polaritons in van der Waal materials, hyperbolic materials, and topological insulators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 106.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bajestani SMRZ, Shahabadi M, Talebi N (2011) Analysis of plasmon propagation along a chain of metal nanospheres using the generalized multipole technique. J Opt Soc Am B-Opt Phys 28:937–943

    Article  CAS  Google Scholar 

  2. Maier SA, Brongersma ML, Atwater HA (2001) Electromagnetic energy transport along arrays of closely spaced metal rods as an analogue to plasmonic devices. Appl Phys Lett 78:16–18

    Article  CAS  Google Scholar 

  3. Talebi N, Shahabdi M (2008) Analysis of the propagation of light along an array of nanorods using the generalized multipole techniques. J Comput Theor Nanosci 5:711–716

    Article  CAS  Google Scholar 

  4. Giannini V, Fernandez-Dominguez AI, Heck SC, Maier SA (2011) Plasmonic Nanoantennas: Fundamentals and Their Use in Controlling the Radiative Properties of Nanoemitters. Chem Rev 111:3888–3912

    Article  CAS  Google Scholar 

  5. Kreilkamp LE, Belotelov VI, Chin JY, Neutzner S, Dregely D, Wehlus T, et al, (2013) Waveguide-plasmon polaritons enhance transverse magneto-optical Kerr effect. Phys Rev X 3, 25 Nov 2013

    Google Scholar 

  6. Talebi N, Shahabadi M, Khunsin W, Vogelgesang R (2012) Plasmonic grating as a nonlinear converter-coupler. Opt Express 20:1392–1405

    Article  Google Scholar 

  7. de Waele R, Koenderink AF, Polman A (2007) Tunable nanoscale localization of energy on plasmon particle arrays. Nano Lett 7:2004–2008

    Article  Google Scholar 

  8. Ogut B, Talebi N, Vogelgesang R, Sigle W, van Aken PA (2012) Toroidal plasmonic eigenmodes in oligomer nanocavities for the visible. Nano Lett 12:5239–5244

    Article  Google Scholar 

  9. Dorfmuller J, Vogelgesang R, Weitz RT, Rockstuhl C, Etrich C, Pertsch T et al (2009) Fabry-perot resonances in one-dimensional plasmonic nanostructures. Nano Lett 9:2372–2377

    Article  Google Scholar 

  10. Ogut B, Vogelgesang R, Sigle W, Talebi N, Koch CT, van Aken PA (2011) Hybridized metal slit eigenmodes as an illustration of babinet’s principle. ACS Nano 5:6701–6706

    Article  CAS  Google Scholar 

  11. Holmgaard T, Chen Z, Bozhevolnyi SI, Markey L, Dereux A (2009) Dielectric-loaded plasmonic waveguide-ring resonators. Opt Express 17:2968–2975

    Article  CAS  Google Scholar 

  12. Talebi N, Mahjoubfar A, Shahabadi M (2008) Plasmonic ring resonator. J Opt Soc Am B-Opt Phys 25:2116–2122

    Article  CAS  Google Scholar 

  13. Talebi N, Sigle W, Vogelgesang R, Esmann M, Becker SF, Lienau C et al (2015) Excitation of mesoscopic plasmonic tapers by relativistic electrons: phase matching versus eigenmode resonances. ACS Nano 9:7641–7648

    Article  CAS  Google Scholar 

  14. Guo SR, Talebi N, Sigle W, Vogelgesang R, Richter G, Esmann M et al (2016) Reflection and phase matching in plasmonic gold tapers. Nano Lett 16:6137–6144

    Article  CAS  Google Scholar 

  15. Jahani S, Jacob Z (2016) All-dielectric metamaterials. Nat Nanotechnol 11:23–36

    Article  CAS  Google Scholar 

  16. Daykonov MI (1988) New type of electromagnetic wave propagating at an interface. Sov Phys JETP 67:714–716

    Google Scholar 

  17. Takayama O, Crasovan L-C, Johansen SK, Mihalache D, Artigas D, Torner L (2008) Dyakonov surface waves: a review. Electromagnetics 28:126–145, 14 Mar 2008

    Google Scholar 

  18. Artigas D, Torner L (2005) Dyakonov surface waves in photonic metamaterials. Phys Rev Lett 94, 14 Jan 2005

    Google Scholar 

  19. Jacob Z, Narimanov EE (2008) Optical hyperspace for plasmons: dyakonov states in metamaterials. Phys Rev Lett 93, 1 Dec 2008

    Google Scholar 

  20. Talebi N, Ozsoy-Keskinbora C, Benia HM, Kern K, Koch CT, van Aken PA (2016) Wedge dyakonov waves and dyakonov plasmons in topological insulator Bi2Se3 probed by electron beams. ACS Nano 10:6988–6994

    Article  CAS  Google Scholar 

  21. Poddubny A, Iorsh I, Belov P, Kivshar Y (2013) Hyperbolic metamaterials. Nat Photonics 7:948–957

    Article  CAS  Google Scholar 

  22. Kshetrimayum RS (2005) A brief intro to metamaterials. IEEE Potentials 23:44–46

    Article  Google Scholar 

  23. Jacob Z, Smolyaninov II, Narimanov EE (2012) Broadband purcell effect: radiative decay engineering with metamaterials. Appl Phys Lett 100, 30 Apr 2012

    Google Scholar 

  24. He YR, He SL, Yang XD (2012) Optical field enhancement in nanoscale slot waveguides of hyperbolic metamaterials. Opt Lett 37:2907–2909

    Article  CAS  Google Scholar 

  25. Narimanov EE, Kildishev AV (2015) Metamaterials naturally hyperbolic. Nat Photonics 9:214–216

    Article  CAS  Google Scholar 

  26. Esslinger M, Vogelgesang R, Talebi N, Khunsin W, Gehring P, de Zuani S et al (2014) Tetradymites as natural hyperbolic materials for the near-infrared to visible. Acs Photonics 1:1285–1289

    Article  CAS  Google Scholar 

  27. Wu JS, Basov DN, Fogler MM (2015) Topological insulators are tunable waveguides for hyperbolic polaritons. Phys Rev B 92, 30 Nov 2015

    Google Scholar 

  28. Basov DN, Fogler MM, de Abajo FJG (2016) Polaritons in van der waals materials. Science 354, 14 Oct 2016

    Google Scholar 

  29. Koppens FHL, Chang DE, de Abajo FJG (2011) Graphene plasmonics: a platform for strong light-matter interactions. Nano Lett 11:3370–3377

    Article  CAS  Google Scholar 

  30. Woessner A, Lundeberg MB, Gao Y, Principi A, Alonso-Gonzaolez P, Carrega M et al (2015) Highly confined low-loss plasmons in graphene-boron nitride heterostructures. Nat Mater 14:421–425

    Article  CAS  Google Scholar 

  31. Politano A, Silkin VM, Nechaev IA, Vitiello MS, Viti L, Aliev ZS, et al, (2015) Interplay of surface and dirac plasmons in topological insulators: the case of Bi2Se3. Phys Rev Lett 115, 18 Nov 2015

    Google Scholar 

  32. Dziom V, Shuvaev A, Pimenov A, Astakhov GV, Ames C, Bendias K, et al, (2017) Observation of the universal magnetoelectric effect in a 3D topological insulator. Nat Commun 8, 15 May 2017

    Google Scholar 

  33. Wang J, Lian B, Zhang SC (2016) Dynamical axion field in a magnetic topological insulator superlattice. Phys Rev B 93, 13 Jan 2016

    Google Scholar 

  34. Li RD, Wang J, Qi XL, Zhang SC (2010) Dynamical axion field in topological magnetic insulators. Nat Phys 6:284–288

    Article  CAS  Google Scholar 

  35. Wilczek F (1987) Two applications of axion electrodynamics. Phys Rev Lett 58:1799–1802, 5 Apr 1987

    Google Scholar 

  36. Okada Y, Madhavan V (2013) Topological insulators plasmons at the surface. Nat Nanotechnol 8:541–542

    Article  CAS  Google Scholar 

  37. Karch A (2011) Surface plasmons and topological insulators. Phys Rev B 83, 27 Jun 2011

    Google Scholar 

  38. Talebi N (2016) Optical modes in slab waveguides with magnetoelectric effect. J Opt 18

    Google Scholar 

  39. Palik ED (1998) Handbook of optical constants of solids. Academic, New York

    Google Scholar 

  40. Volkov VA, Mikhailov SA (1985) Quantization of the Faraday effect in systems with a quantum Hall effect. JETP Lett 41:476

    Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges the support from the Stuttgart Center for Electron Microscopy, especially Wilfried Sigle and Peter A. van Aken for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nahid Talebi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Talebi, N. (2019). Topological Hyperbolic and Dirac Plasmons. In: Geddes, C. (eds) Reviews in Plasmonics 2017. Reviews in Plasmonics, vol 2017. Springer, Cham. https://doi.org/10.1007/978-3-030-18834-4_7

Download citation

Publish with us

Policies and ethics

Navigation