Tissue and Circulating Biomarkers in Mesothelioma

  • Chapter
  • First Online:
Mesothelioma
  • 544 Accesses

Abstract

Malignant pleural mesothelioma is mostly diagnosed at an advanced stage when it is untreatable with the available therapeutic strategies. Tumor biomarkers can play an important role not only in the screening (for the early detection of disease), diagnosis, and prognosis, but also in the predictive and monitoring treatment response.

It is possible to categorize the diagnostic biomarkers as tissue biomarkers, such as the BRCA1 associated protein 1 (BAP-1) and the cyclin dependent kinase inhibitor 2A (CDKN2A) gene, and soluble biomarkers, such as mesothelin and fibulin-3.

Unfortunately, the available tissue and serological diagnostic and prognostic biomarkers are in general characterized by relatively poor sensitivity and specificity, limiting their use in clinical practice.

Recently, a list of new biomarkers, including signature based on microRNA and messenger RNA expression, DNA, molecular panels and classification algorithms, and antibody targets, are being proposed for malignant mesothelioma with promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Napolitano A, Antoine DJ, Pellegrini L, et al. HMGB1 and its hyperacetylated isoform are sensitive and specific serum biomarkers to detect asbestos exposure and to identify mesothelioma patients. Clin Cancer Res. 2016;22:3087–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Carbone M, Kanodia S, Chao A, et al. Consensus report of the 2015 Weinman International Conference on mesothelioma. J Thorac Oncol. 2016;11:1246–62.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rusch VW, Chansky K, Kindler HL, et al. The IASLC Mesothelioma Staging Project: Proposals for the M descriptors and for revision of the TNM stage grou**s in the forthcoming (eighth) edition of the TNM classification for mesothelioma. J Thorac Oncol. 2016;11:2112–9.

    Article  PubMed  Google Scholar 

  4. Nowak AK, Chansky K, Rice DC, et al. The IASLC Mesothelioma Staging Project: proposals for revisions of the T descriptors in the forthcoming eighth edition of the TNM classification for pleural mesothelioma. J Thorac Oncol. 2016;11:2089–99.

    Article  PubMed  Google Scholar 

  5. Micolucci L, Akhtar MM, Olivieri F, et al. Diagnostic value of microRNAs in asbestos exposure and malignant mesothelioma: systematic review and qualitative meta-analysis. Oncotarget. 2016;7:58606–37.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chang S, Oh MH, Ji SY, et al. Practical utility of insulin-like growth factor II mRNA-binding protein 3, glucose transporter 1, and epithelial membrane antigen for distinguishing malignant mesotheliomas from benign mesothelial proliferations: IMP3, GLUT-1, and EMA in mesothelioma. Pathol Int. 2014;64:607–12.

    CAS  PubMed  Google Scholar 

  7. Minato H, Kurose N, Fukushima M, et al. Comparative immunohistochemical analysis of IMP3, GLUT1, EMA, CD146, and desmin for distinguishing malignant mesothelioma from reactive mesothelial cells. Am J Clin Pathol. 2014;141:85–93.

    Article  PubMed  Google Scholar 

  8. Monaco SE, Shuai Y, Bansal M, et al. The diagnostic utility of p16 FISH and GLUT-1 immunohistochemical analysis in mesothelial proliferations. Am J Clin Pathol. 2011;135:619–27.

    Article  PubMed  Google Scholar 

  9. Lagana SM, Taub RN, Borczuk AC. Utility of glucose transporter 1 in the distinction of benign and malignant thoracic and abdominal mesothelial lesions. Arch Pathol Lab Med. 2012;136:804–9.

    Article  PubMed  Google Scholar 

  10. Kato Y, Tsuta K, Seki K, et al. Immunohistochemical detection of GLUT-1 can discriminate between reactive mesothelium and malignant mesothelioma. Mod Pathol. 2007;20:215–20.

    Article  CAS  PubMed  Google Scholar 

  11. Hasteh F, Lin GY, Weidner N, et al. The use of immunohistochemistry to distinguish reactive mesothelial cells from malignant mesothelioma in cytologic effusions. Cancer Cytopathol. 2010;118:90–6.

    Article  PubMed  Google Scholar 

  12. Churg A, Galateau-Salle F. The separation of benign and malignant mesothelial proliferations. Arch Pathol Lab Med. 2012;136:1217–26.

    PubMed  Google Scholar 

  13. Shi M, Fraire AE, Chu P, et al. Oncofetal protein IMP3, a new diagnostic biomarker to distinguish malignant mesothelioma from reactive mesothelial proliferation. Am J Surg Pathol. 2011;35:878–82.

    Article  PubMed  Google Scholar 

  14. Ikeda K, Tate G, Suzuki T, et al. IMP3/L523S, a novel immunocytochemical marker that distinguishes benign and malignant cells: the expression profiles of IMP3/L523S in effusion cytology. Hum Pathol. 2010;41:745–50.

    Article  CAS  PubMed  Google Scholar 

  15. Husain AN, Colby TV, Ordóñez NG, et al. Guidelines for pathologic diagnosis of malignant mesothelioma: 2017 update of the consensus statement from the International Mesothelioma Interest Group. Arch Pathol Lab Med. 2018;142:89–108.

    Article  CAS  PubMed  Google Scholar 

  16. Creaney J, Robinson BW. Malignant mesothelioma biomarkers. Chest. 2017;152:143–9.

    Article  PubMed  Google Scholar 

  17. Cui A, ** XG, Zhai K, et al. Diagnostic values of soluble mesothelin-related peptides for malignant pleural mesothelioma: updated meta-analysis. BMJ Open. 2014;4:e004145.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Blanquart C, Gueugnon F, Nguyen JM, et al. CCL2, galectin-3, and SMRP combination improves the diagnosis of mesothelioma in pleural effusions. J Thorac Oncol. 2012;7:883–9.

    Article  CAS  PubMed  Google Scholar 

  19. Mundt F, Nilsonne G, Arslan S, et al. Hyaluronan and N-ERC/mesothelin as key biomarkers in a specific two- step model to predict pleural malignant mesothelioma. PLoS One. 2013;8:e72030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pass HI, Levin SM, Harbut MR, et al. Fibulin-3 as a blood and effusion biomarker for pleural mesothelioma. N Engl J Med. 2012;367:1417–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Battolla E, Canessa PA, Ferro P, et al. Comparison of the diagnostic performance of fibulin-3 and mesothelin in patients with pleural effusions from malignant mesothelioma. Anticancer Res. 2017;37:1387–91.

    Article  CAS  PubMed  Google Scholar 

  22. Kirschner MB, Pulford E, Hoda MA, et al. Fibulin-3 levels in malignant pleural mesothelioma are associated with prognosis but not diagnosis. Br J Cancer. 2015;113:963–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Andersen M, Grauslund M, Ravn J, et al. Diagnostic potential of miR-126, miR-143, miR-145, and miR- 652 in malignant pleural mesothelioma. J Mol Diagn. 2014;16:418–30.

    Article  CAS  PubMed  Google Scholar 

  24. Ak G, Tomaszek SC, Kosari F, et al. MicroRNA and mRNA features of malignant pleural mesothelioma and benign asbestos-related pleural effusion. Biomed Res Int. 2015;2015:635748.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. De Rienzo A, Richards WG, Yeap BY, et al. Sequential binary gene ratio tests define a novel molecular diagnostic strategy for malignant pleural mesothelioma. Clin Cancer Res. 2013;19:2493–502.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Parodi S, Filiberti R, Marroni P, et al. Differential diagnosis of pleural mesothelioma using logic learning machine. BMC Bioinformatics. 2015;16(Suppl 9):S3.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tosun AB, Yergiyev O, Kolouri S, et al. Detection of malignant mesothelioma using nuclear structure of mesothelial cells in effusion cytology specimens. Cytometry A. 2015;87:326–33.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bruno R, Alì G, Giannini R, et al. Malignant pleural mesothelioma and mesothelial hyperplasia: a new molecular tool for the differential diagnosis. Oncotarget. 2017;8:2758–70.

    PubMed  Google Scholar 

  29. Gotzos V, Vogt P, Celio MR. The calcium binding protein calretinin is a selective marker for malignant pleural mesotheliomas of the epithelial type. Pathol Res Pract. 1996;192:137–47.

    Article  CAS  PubMed  Google Scholar 

  30. King JE, Thatcher N, Pickering CAC, Hasleton PS. Sensitivity and specificity of immunohistochemical markers used in the diagnosis of epithelioid mesothelioma: a detailed systematic analysis using published data. Histopathology. 2006;48:223–32.

    Article  CAS  PubMed  Google Scholar 

  31. Ordóñez NG. What are the current best immunohistochemical markers for the diagnosis of epithelioid mesothelioma? A review and update. Hum Pathol. 2007;38:1–16.

    Article  PubMed  CAS  Google Scholar 

  32. Shield PW, Koivurinne K. The value of calretinin and cytokeratin 5/6 as markers for mesothelioma in cell block preparations of serous effusions. Cytopathology. 2008;19:218–23.

    Article  CAS  PubMed  Google Scholar 

  33. Mohammad T, Garratt J, Torlakovic E, Gilks B, Churg A. Utility of a CEA, CD15, calretinin, and CK5/6 panel for distinguishing between mesotheliomas and pulmonary adenocarcinomas in clinical practice. Am J Surg Pathol. 2012;36:1503–8.

    Article  PubMed  Google Scholar 

  34. Pu RT, Pang Y, Michael CW. Utility of WT-1, p63, MOC31, mesothelin, and cytokeratin (K903 and CK5/6) immunostains in differentiating adenocarcinoma, squamous cell carcinoma, and malignant mesothelioma in effusions. Diagn Cytopathol. 2008;36:20–5.

    Article  PubMed  Google Scholar 

  35. Padgett DM, Cathro HP, Wick MR, Mills SE. Podoplanin is a better immunohistochemical marker for sarcomatoid mesothelioma than calretinin. Am J Surg Pathol. 2008;32:123–7.

    Article  PubMed  Google Scholar 

  36. Saad RS, Lindner JL, Lin X, Liu YL, Silverman JF. The diagnostic utility of D2–40 for malignant mesothelioma versus pulmonary carcinoma with pleural involvement. Diagn Cytopathol. 2006;34:801–6.

    Article  PubMed  Google Scholar 

  37. Deniz H, Kibar Y, Güldür ME, Bakir K. Is D2–40 a useful marker for distinguishing malignant mesothelioma from pulmonary adenocarcinoma and benign mesothelial proliferations? Pathol Res Pract. 2009;205:749–52.

    Article  CAS  PubMed  Google Scholar 

  38. Ordóñez NG. Podoplanin: a novel diagnostic immunohistochemical marker. Adv Anat Pathol. 2006;13:83–8.

    Article  PubMed  Google Scholar 

  39. Hinterberger M, Reineke T, Storz M, Weder W, Vogt P, Moch H. D2-40 and calretinin – a tissue microarray analysis of 341 malignant mesotheliomas with emphasis on sarcomatoid differentiation. Mod Pathol. 2007;20:248–55.

    Article  CAS  PubMed  Google Scholar 

  40. Ordóñez NG. D2-40 and podoplanin are highly specific and sensitive immunohistochemical markers of epithelioid malignant mesothelioma. Hum Pathol. 2005;36:372–80.

    Article  PubMed  CAS  Google Scholar 

  41. Oates J, Edwards C. HBME-1, MOC-31, WT1 and calretinin: an assessment of recently described markers for mesothelioma and adenocarcinoma. Histopathology. 2000;36:341–7.

    Article  CAS  PubMed  Google Scholar 

  42. Tsuta K, Kato Y, Tochigi N, Hoshino T, Takeda Y, Hosako M, et al. Comparison of different clones (WT49 versus 6F-H2) of WT-1 antibodies for immunohistochemical diagnosis of malignant pleural mesothelioma. Appl Immunohistochem Mol Morphol. 2009;17:126–30.

    Article  CAS  PubMed  Google Scholar 

  43. Amin KM, Litzky LA, Smythe WR, Mooney AM, Morris JM, Mews DJ, et al. Wilms’ tumor 1 susceptibility (WT1) gene products are selectively expressed in malignant mesothelioma. Am J Pathol. 1995;146:344–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Langerak AW, Williamson KA, Miyagawa K, Hagemeijer A, Versnel MA, Hastie ND. Expression of the Wilms’ tumor gene WT1 in human malignant mesothelioma cell lines and relationship to platelet-derived growth factor A and insulin-like growth factor 2 expression. Genes Chromosom Cancer. 1995;12:87–96.

    Article  CAS  PubMed  Google Scholar 

  45. Kumar-Singh S, Segers K, Rodeck U, Backhovens H, Bogers J, Weyler J, et al. WT1 mutation in malignant mesothelioma and WT1 immunoreactivity in relation to p53 and growth factor receptor expression, cell-type transition, and prognosis. J Pathol. 1997;181:67–74.

    Article  CAS  PubMed  Google Scholar 

  46. Kushitani K, Takeshima Y, Amatya VJ, Furonaka O, Sakatani A, Inai K. Differential diagnosis of sarcomatoid mesothelioma from true sarcoma and sarcomatoid carcinoma using immunohistochemistry. Pathol Int. 2008;58:75–83.

    Article  CAS  PubMed  Google Scholar 

  47. Scattone A, Serio G, Marzullo A, Nazzaro P, Corsi F, Cocca MP, et al. High Wilms’ tumour gene (WT1) expression and low mitotic count are independent predictors of survival in diffuse peritoneal mesothelioma. Histopathology. 2012;60:472–81.

    Article  PubMed  Google Scholar 

  48. Churg A, Sheffield BS, Galateau-Salle F. New markers for separating benign from malignant mesothelial proliferations: are we there yet? Arch Pathol Lab Med. 2016;140:318–21.

    Article  CAS  PubMed  Google Scholar 

  49. Chang S, Oh MH, Ji SY, et al. Practical utility of insulinlike growth factor II mRNA-binding protein 3, glucose transporter 1, and epithelial membrane antigen for distinguishing malignant mesotheliomas from benign mesothelial proliferations: IMP3, GLUT-1, and EMA in mesothelioma. Pathol Int. 2014;64:607–12.

    CAS  PubMed  Google Scholar 

  50. Sheffield BS, Hwang HC, Lee AF, et al. BAP1 immunohistochemistry and p16 FISH to separate benign from malignant mesothelial proliferations. Am J Surg Pathol. 2015;39:977–82.

    Article  PubMed  Google Scholar 

  51. Walts AE, Hiroshima K, McGregor SM, et al. BAP1 immunostain and CDKN2A (p16) FISH analysis: clinical applicability for the diagnosis of malignant mesothelioma in effusions. Diagn Cytopathol. 2016;44:599–606.

    Article  PubMed  Google Scholar 

  52. Nabeshima K, Matsumoto S, Hamasaki M, et al. Use of p16 FISH for differential diagnosis of mesothelioma in smear preparations. Diagn Cytopathol. 2016;44:774–80.

    Article  PubMed  Google Scholar 

  53. Hida T, Matsumoto S, Hamasaki M, et al. Deletion status of p16 in effusion smear preparation correlates with that of underlying malignant pleural mesothelioma tissue. Cancer Sci. 2015;106:1635–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hiroshima K, Wu D, Hasegawa M, et al. Cytologic differential diagnosis of malignant mesothelioma and reactive mesothelial cells with FISH analysis of p16. Diagn Cytopathol. 2016;44:591–8.

    Article  PubMed  Google Scholar 

  55. McGregor SM, McElherne J, Minor A, et al. BAP1 immunohistochemistry has limited prognostic utility as a complement of CDKN2A (p16) fluorescence in situ hybridization in malignant pleural mesothelioma. Hum Pathol. 2017;60:86–94.

    Article  PubMed  CAS  Google Scholar 

  56. Hwang HC, Sheffield BS, Rodriguez S, et al. Utility of BAP1 immunohistochemistry and p16 (CDKN2A) FISH in the diagnosis of malignant mesothelioma in effusion cytology specimens. Am J Surg Pathol. 2016;40:120–6.

    Article  PubMed  Google Scholar 

  57. Carbone M, Yang H, Pass HI, Krausz T, Testa JR, Gaudino G. BAP1 and cancer. Nat Rev Cancer. 2013;13:153–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bott M, Brevet M, Taylor BS, et al. The nuclear deubiquitinase BAP1 is commonly inactivated by somatic mutations and 3p21.1 losses in malignant pleural mesothelioma. Nat Genet. 2011;43:668–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cigognetti M, Lonardi S, Fisogni S, et al. BAP1 (BRCA1-associated protein 1) is a highly specific marker for differentiating mesothelioma from reactive mesothelial proliferations. Mod Pathol. 2015;28:1043–57.

    Article  CAS  PubMed  Google Scholar 

  60. Testa JR, Cheung M, Pei J, Below JE, Tan Y, Sementino E, et al. Germline BAP1 mutations predispose to malignant mesothelioma. Nat Genet. 2012;43:1022–5.

    Article  CAS  Google Scholar 

  61. Yoshikawa Y, Sato A, Tsujimura T, Emi M, Morinaga T, Fukuoka K, et al. Frequent inactivation of the BAP1 gene in epithelioid-type malignant mesothelioma. Cancer Sci. 2012;103:868–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. LaFave LM, Béguelin W, Koche R, et al. Loss of BAP1 function leads to EZH2-dependent transformation. Nat Med. 2015;21:1344–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kim KH, Roberts CW. Targeting EZH2 in cancer. Nat Med. 2016;22:128–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shinozaki-Ushiku A, Ushiku T, Morita S, et al. Diagnostic utility of BAP1 and EZH2 expression in malignant mesothelioma. Histopathology. 2017;70:722–33.

    Article  PubMed  Google Scholar 

  65. Prieve MG, Moon RT. Stromelysin-1 and mesothelin are differentially regulated by Wnt-5a and Wnt-1 in C57mg mouse mammary epithelial cells. BMC Dev Biol. 2003;3:2.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Hollevoet K, Mason-Osann E, Muller F, Pastan I. Methylation associated partial down-regulation of mesothelin causes resistance to anti-mesothelin immunotoxins in a pancreatic cancer cell line. PLoS One. 2015;10(3):e0122462.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Creaney J, Robinson BW. Malignant mesothelioma biomarkers from discovery to use in clinical practice for diagnosis, monitoring, screening, and treatment. Chest. 2017;152(1):143–9.

    Article  PubMed  Google Scholar 

  68. Hollevoet K, Reitsma JB, Creaney J, et al. Serum mesothelin for diagnosing malignant pleural mesothelioma: an individual patient data meta-analysis. J Clin Oncol. 2012;30(13):1541–9.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Pastan I, Hassan R. Discovery of mesothelin and exploiting it as a target for immunotherapy. Cancer Res. 2014;74(11):2907–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Røe OD, Anderssen E, Sandeck H, Christensen T, Larsson E, Lundgren S. Malignant pleural mesothelioma: genome-wide expression patterns reflectin general resistance mechanisms and a proposal of novel targets. Lung Cancer. 2010;67:57–68.

    Article  PubMed  Google Scholar 

  71. Nymark P, Lindholm PM, Korpela MV, Lahti L, Ruosaari S, Kaski S, et al. Gene expression profiles in asbestos-exposed epithelial and mesothelial lung cell lines. BMC Genomics. 2007;8:62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Kettunen E, Nicholson AG, Nagy B, Wikman H, Seppänen JK, Stjernvall T, et al. L1CAM, INP10, P-cadherin, tPA and ITGB4 over-expression in malignant pleural mesotheliomas revealed by combined use of cDNA and tissue microarray. Carcinogenesis. 2005;26:17–25.

    Article  CAS  PubMed  Google Scholar 

  73. Røe OD, Anderssen E, Helge E, Pettersen CH, Olsen KS, Sandeck H, et al. Genome-wide profile of pleural mesothelioma versus parietal and visceral pleura: the emerging gene portrait of the mesothelioma phenotype. PLoS One. 2009;4:e6554.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Gordon GJ, Rockwell GN, Jensen RV, Rheinwald JG, Glickman JN, Aronson JP, et al. Identification of novel candidate oncogenes and tumor suppressors in malignant pleural mesothelioma using large-scale transcriptional profiling. Am J Pathol. 2005;166:1827–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mohr S. Cell protection, resistance and invasiveness of two malignant mesotheliomas as assessed by 10K-microarray. Biochim Biophys Acta. 2004;1688:43–60.

    Article  CAS  PubMed  Google Scholar 

  76. López-Ríos F, Chuai S, Flores R, Shimizu S, Ohno T, Wakahara K, et al. Global gene expression profiling of pleural mesotheliomas: overexpression of aurora kinases and P16/CDKN2A deletion as prognostic factors and critical evaluation of microarray-based prognostic prediction. Cancer Res. 2006;66:2970–9.

    Article  PubMed  CAS  Google Scholar 

  77. Usami N, Fukui T, Kondo M, Taniguchi T, Yokoyama T, Mori S, et al. Establishment and characterization of four malignant pleural mesothelioma cell lines from Japanese patients. Cancer Sci. 2006;97:387–94.

    Article  CAS  PubMed  Google Scholar 

  78. De Reynie SA, Jaurand MC, Renier A, Couchy G, Hysi I, Elarouci N, et al. Molecular classification of malignant pleural mesothelioma: identification of a poor prognosis subgroup linked to the epithelial-to-mesenchymal transition. Clin Cancer Res. 2014;20:1323–34.

    Article  CAS  Google Scholar 

  79. Gordon GJ, Dong L, Yeap BY, Richards WG, Glickman JN, Edenfield H, et al. Four-gene expression ratio test for survival in patients undergoing surgery for mesothelioma. J Natl Cancer Inst. 2009;101:678–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gordon GJ, Jensen RV, Hsiao L, Gullans SR, Blumenstock JE, Richards WG, et al. Using gene expression ratios to predict outcome among patients with mesothelioma. J Natl Cancer Inst. 2003;95:598–605.

    Article  CAS  PubMed  Google Scholar 

  81. De Rienzo A, Dong L, Yeap BY, Jensen RV, Richards WG, Gordon GJ, et al. Fine needle aspiration biopsies for gene expression ratio-based diagnostic and prognostic tests in malignant pleural mesothelioma. Clin Cancer Res. 2011;17:310–6.

    Article  PubMed  Google Scholar 

  82. Bueno R, Stawiski EW, Goldstein LD, et al. Comprehensive genomic analysis of malignant pleural mesothelioma identifies recurrent mutations, gene fusions and splicing alterations. Nat Genet. 2016;48(4):407–16.

    Article  CAS  PubMed  Google Scholar 

  83. Galon J, Costes A, Sanchez-Cabo F, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 2006;313:1960–4.

    Article  CAS  PubMed  Google Scholar 

  84. Bograd AJ, Suzuki K, Vertes E, et al. Immune responses and immunotherapeutic interventions in malignant pleural mesothelioma. Cancer Immunol Immunother. 2011;60:1509–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pages F, Berger A, Camus M, et al. Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med. 2005;353:2654–66.

    Article  CAS  PubMed  Google Scholar 

  86. Zhang L, Conejo-Garcia JR, Katsaros D, et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med. 2003;348:203–13.

    Article  CAS  PubMed  Google Scholar 

  87. Mahmoud SM, Paish EC, Powe DG, et al. Tumor-infiltrating CD8C lymphocytes predict clinical outcome in breast cancer. J Clin Oncol. 2011;29:1949–55.

    Article  PubMed  Google Scholar 

  88. Ujiie H, et al. The tumoral and stromal immune microenvironment in malignant pleural mesothelioma: a comprehensive analysis reveals prognostic immune markers. Oncoimmunology. 2015;4:e1009285.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Cornelissen R, et al. Ratio of intratumoral macrophage phenotypes is a prognostic factor in epithelioid malignant pleural mesothelioma. PLoS One. 2014;9:e106742.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Anraku M, Cunningham KS, Yun Z, et al. Impact of tumor-infiltrating T cells on survival in patients with malignant pleural mesothelioma. J Thorac Cardiovasc Surg. 2008;135:823–9.

    Article  PubMed  Google Scholar 

  91. Yamada N, Oizumi S, Kikuchi E, et al. CD8C tumor-infiltrating lymphocytes predict favorable prognosis in malignant pleural mesothelioma after resection. Cancer Immunol Immunother. 2010;59:1543–9.

    Article  CAS  PubMed  Google Scholar 

  92. Suzuki K, Kadota K, Sima CS, et al. Chronic inflammation in tumor stroma is an independent predictor of prolonged survival in epithelioid malignant pleural mesothelioma patients. Cancer Immunol Immunother. 2011;60:1721–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lissbrant IF, Stattin P, Wikstrom P, Damber JE, Egevad L, Bergh A. Tumor associated macrophages in human prostate cancer: relation to clinicopathological variables and survival. Int J Oncol. 2000;17:445–51.

    CAS  PubMed  Google Scholar 

  94. Solinas G, Germano G, Mantovani A, Allavena P. Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol. 2009;86:1065–73.

    Article  CAS  PubMed  Google Scholar 

  95. Bingle L, Brown NJ, Lewis CE. The role of tumourassociated macrophages in tumour progression: implications for new anticancer therapies. J Pathol. 2002;196:254–65.

    Article  CAS  PubMed  Google Scholar 

  96. Sica A, Larghi P, Mancino A, et al. Macrophage polarization in tumour progression. Semin Cancer Biol. 2008;18:349–55.

    Article  CAS  PubMed  Google Scholar 

  97. Cedrés S, Ponce-Aix S, Zugazagoitia J, et al. Analysis of expression of programmed cell death 1 ligand 1 (pd-l1) in malignant pleural mesothelioma (MPM). PLoS One. 2015;10(3):e0121071.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Mansfield A, Roden A, Peikert T, et al. B7-H1 expression in malignant pleural mesothelioma is associated with sarcomatoid histology and poor prognosis. J Thorac Oncol. 2014;9:1036–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Combaz-Lair C, Galateau-Sallé F, McLeer-Florin A, et al. Immune biomarkers PD-1/PD-L1 and TLR3 in malignant pleural mesotheliomas. Hum Pathol. 2016;52:9–18.

    Article  CAS  PubMed  Google Scholar 

  100. Creaney J, Dick IM, Robinson BW. Discovery of new biomarkers for malignant mesothelioma. Curr Pulmonol Rep. 2015;4:15–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Cristaudo A, Bonotti A, Guglielmi G, Fallahi P, Foddis R. Serum mesothelin and other biomarkers: what have we learned in the last decade? J Thorac Dis. 2018;10(Suppl 2):S353–9.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Li ZQ, Verch T, Allard WJ. MESOMARK(®) in vitro diagnostic test for mesothelioma. Expert Opin Med Diagn. 2007;1(1):137–42.

    Article  PubMed  Google Scholar 

  103. Hassan R, Bera T, Pastan I. Mesothelin: a new target for immunotherapy. Clin Cancer Res. 2004;10:3937–42.

    Article  CAS  PubMed  Google Scholar 

  104. Tang Z, Qian M, Ho M. The role of mesothelin in tumor progression and targeted therapy. Anti Cancer Agents Med Chem. 2013;13:276–80.

    Article  CAS  Google Scholar 

  105. Robinson BW, Creaney J, Lake R, et al. Mesothelin family proteins and diagnosis of mesothelioma. Lancet. 2003;362:1612–6.

    Article  CAS  PubMed  Google Scholar 

  106. Robinson BW, Creaney J, Lake R, et al. Soluble mesothelin-related protein--a blood test for mesothelioma. Lung Cancer. 2005;49:S109–11.

    Article  PubMed  Google Scholar 

  107. Hassan R, Remaley AT, Sampson ML, et al. Detection and quantitation of serum mesothelin, a tumor marker for patients with mesothelioma and ovarian cancer. Clin Cancer Res. 2006;12:447–53.

    Article  CAS  PubMed  Google Scholar 

  108. Scherpereel A, Grigoriu B, Conti M, et al. Soluble mesothelin-related peptides in the diagnosis of malignant pleural mesothelioma. Am J Respir Crit Care Med. 2006;173:1155–60.

    Article  CAS  PubMed  Google Scholar 

  109. Cristaudo A, Foddis R, Vivaldi A, et al. Clinical significance of serum mesothelin in patients with mesothelioma and lung cancer. Clin Cancer Res. 2007;13:5076–81.

    Article  CAS  PubMed  Google Scholar 

  110. Grigoriu BD, Scherpereel A. Diagnostic value of soluble mesothelin in malignant mesothelioma. Thorax. 2008;63:87–8.

    CAS  PubMed  Google Scholar 

  111. Wheatley-Price P, Yang B, Patsios D, et al. Soluble mesothelin-related peptide and osteopontin as markers of response in malignant mesothelioma. J Clin Oncol. 2010;28:3316–22.

    Article  PubMed  Google Scholar 

  112. Hollevoet K, Nackaerts K, Gosselin R, et al. Soluble mesothelin, megakaryocyte potentiating factor, and osteopontin as markers of patient response and outcome in mesothelioma. J Thorac Oncol. 2011;6:1930–7.

    Article  PubMed  Google Scholar 

  113. Hollevoet K, Nackaerts K, Thas O, et al. The effect of clinical covariates on the diagnostic and prognostic value of soluble mesothelin and megakaryocyte potentiating factor. Chest. 2012;141:477–84.

    Article  CAS  PubMed  Google Scholar 

  114. Creaney J, Dick IM, Meniawy TM, et al. Comparison of fibulin-3 and mesothelin as markers in malignant mesothelioma. Thorax. 2014;69:895–902.

    Article  PubMed  Google Scholar 

  115. Grigoriu BD, Scherpereel A, Devos P, et al. Utility of osteopontin and serum mesothelin in malignant pleural mesothelioma diagnosis and prognosis assessment. Clin Cancer Res. 2007;13:2928–35.

    Article  CAS  PubMed  Google Scholar 

  116. Schneider J, Hoffmann H, Dienemann H, et al. Diagnostic and prognostic value of soluble mesothelin-related proteins in patients with malignant pleural mesothelioma in comparison with benign asbestosis and lung cancer. J Thorac Oncol. 2008;3:1317–24.

    Article  PubMed  Google Scholar 

  117. Linch M, Gennatas S, Kazikin S, et al. A serum mesothelin level is a prognostic indicator for patients with malignant mesothelioma in routine clinical practice. BMC Cancer. 2014;14:674.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Sun H, Vaynblat A, Pass H. Diagnosis and prognosis—review of biomarkers for mesothelioma. Ann Transl Med. 2017;5(11):244.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Franko A, Dolzan V, Kovac V, et al. Soluble mesothelin related peptides levels in patients with malignant mesothelioma. Dis Markers. 2012;32:123–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Van Zandwijk N, Clarke C, Henderson D, et al. Guidelines for the diagnosis and treatment of malignant pleural mesothelioma. J Thorac Dis. 2013;5:E254–307.

    PubMed  PubMed Central  Google Scholar 

  121. Chen RX, **a YH, Xue TC, et al. Osteopontin promotes hepatocellular carcinoma invasion by up-regulating MMP-2 and uPA expression. Mol Biol Rep. 2011;38:3671–7.

    Article  CAS  PubMed  Google Scholar 

  122. Ohashi R, Tajima K, Takahashi F, et al. Osteopontin modulates malignant pleural mesothelioma cell functions in vitro. Anticancer Res. 2009;29:2205–14.

    CAS  PubMed  Google Scholar 

  123. Sandhu H, Dehnen W, Roller M, et al. mRNA expression patterns in different stages of asbestos-induced carcinogenesis in rats. Carcinogenesis. 2000;21:1023–9.

    Article  CAS  PubMed  Google Scholar 

  124. Pass HI, Lott D, Lonardo F, et al. Asbestos exposure, pleural mesothelioma, and serum osteopontin levels. N Engl J Med. 2005;353:1564–73.

    Article  CAS  PubMed  Google Scholar 

  125. Cristaudo A, Bonotti A, Simonini S, et al. Combined serum mesothelin and plasma osteopontin measurements in malignant pleural mesothelioma. J Thorac Oncol. 2011;6:1587–93.

    Article  PubMed  Google Scholar 

  126. Cristaudo A, Foddis R, Bonotti A, et al. Comparison between plasma and serum osteopontin levels: usefulness in diagnosis of epithelial malignant pleural mesothelioma. Int J Biol Markers. 2010;25:164–70.

    Article  CAS  PubMed  Google Scholar 

  127. Rai AJ, Flores RM, Mathew A, et al. Soluble mesothelin related peptides (SMRP) and osteopontin as protein biomarkers for malignant mesothelioma: analytical validation of ELISA based assays and characterization at mRNA and protein levels. Clin Chem Lab Med. 2010;48:271–8.

    Article  CAS  PubMed  Google Scholar 

  128. Paleari L, Rotolo N, Imperatori A, et al. Osteopontin is not a specific marker in malignant pleural mesothelioma. Int J Biol Markers. 2009;24:112–7.

    Article  CAS  PubMed  Google Scholar 

  129. Cappia S, Righi L, Mirabelli D, et al. Prognostic role of osteopontin expression in malignant pleural mesothelioma. Am J Clin Pathol. 2008;130:58–64.

    Article  PubMed  Google Scholar 

  130. Pass HI, Goparaju C, Espin-Garcia O, et al. Plasma biomarker enrichment of clinical prognostic indices in malignant pleural mesothelioma. J Thorac Oncol. 2016;11:900–9.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Zhang Y, Marmorstein LY. Focus on molecules: fibulin-3 (EFEMP1). Exp Eye Res. 2010;90:374–5.

    Article  CAS  PubMed  Google Scholar 

  132. Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature. 2002;418:191–5.

    Article  CAS  PubMed  Google Scholar 

  133. Bianchi ME, Beltrame M, Paonessa G. Specific recognition of cruciform DNA by nuclear protein HMG1. Science. 1989;243:1056–9.

    Article  CAS  PubMed  Google Scholar 

  134. Jube S, Rivera ZS, Bianchi ME, et al. Cancer cell secretion of the DAMP protein HMGB1 supports progression in malignant mesothelioma. Cancer Res. 2012;72:3290–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Tabata C, Kanemura S, Tabata R, et al. Serum HMGB1 as a diagnostic marker for malignant peritoneal mesothelioma. J Clin Gastroenterol. 2013;47:684–8.

    Article  CAS  PubMed  Google Scholar 

  136. Ying S, Jiang Z, He X, et al. Serum HMGB1 as a potential biomarker for patients with asbestos-related diseases. Dis Markers. 2017;2017:5756102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Wu T, Zhang W, Yang G, et al. HMGB1 overexpression as a prognostic factor for survival in cancer: a meta-analysis and systematic review. Oncotarget. 2016;7:50417–27.

    PubMed  PubMed Central  Google Scholar 

  138. Di Leva G, Garofalo M, Croce CM. MicroRNAs in cancer. Annu Rev Pathol. 2014;9:287–314.

    Article  CAS  PubMed  Google Scholar 

  139. Lamberti M, Capasso R, Lombardi A, et al. Two different serum MiRNA signatures correlate with the clinical outcome and histological subtype in pleural malignant mesothelioma patients. PLoS One. 2015;10:e0135331.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Weber DG, Johnen G, Bryk O, et al. Identification of miRNA-103 in the cellular fraction of human peripheral blood as a potential biomarker for malignant mesothelioma--a pilot study. PLoS One. 2012;7:e30221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Kirschner MB, Cheng YY, Badrian B, et al. Increased circulating miR-625-3p: a potential biomarker for patients with malignant pleural mesothelioma. J Thorac Oncol. 2012;7:1184–91.

    Article  CAS  PubMed  Google Scholar 

  142. Busacca S, Germano S, De Cecco L, et al. MicroRNA signature of malignant mesothelioma with potential diagnostic and prognostic implications. Am J Respir Cell Mol Biol. 2010;42:312–9.

    Article  CAS  PubMed  Google Scholar 

  143. Guled M, Lahti L, Lindholm PM, et al. CDKN2A, NF2, and JUN are dysregulated among other genes by miRNAs in malignant mesothelioma -A miRNA microarray analysis. Genes Chromosom Cancer. 2009;48:615–23.

    Article  CAS  PubMed  Google Scholar 

  144. Xu Y, Zheng M, Merritt RE, et al. miR-1 induces growth arrest and apoptosis in malignant mesothelioma. Chest. 2013;144:1632–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Ivanov SV, Goparaju CM, Lopez P, et al. Pro-tumorigenic effects of miR-31 loss in mesothelioma. J Biol Chem. 2010;285:22809–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kirschner MB, Cheng YY, Armstrong NJ, et al. MiRscore: a novel 6-microRNA signature that predicts survival outcomes in patients with malignant pleural mesothelioma. Mol Oncol. 2015;9:715–26.

    Article  CAS  PubMed  Google Scholar 

  147. Bononi I, Comar M, Puozzo A, et al. Circulating microRNAs found dysregulated in ex-exposed asbestos workers and pleural mesothelioma patients as potential new biomarkers. Oncotarget. 2016;7:82700–11.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Borrebaeck CA. Precision diagnostics: moving towards protein biomarker signatures of clinical utility in cancer. Nat Rev Cancer. 2017;17:199–204.

    Article  CAS  PubMed  Google Scholar 

  149. Giusti L, Da Valle Y, Bonotti A, et al. Comparative proteomic analysis of malignant pleural mesothelioma evidences an altered expression of nuclear lamin and filament-related proteins. Proteomics Clin Appl. 2014;8:258–68.

    Article  CAS  PubMed  Google Scholar 

  150. Ostroff RM, Mehan MR, Stewart A, et al. Early detection of malignant pleural mesothelioma in asbestos-exposed individuals with a noninvasive proteomics-based surveillance tool. PLoS One. 2012;7:e46091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Gold L, Ayers D, Bertino J, et al. Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS One. 2010;5:e15004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Bonotti A, Foddis R, Landi S, et al. A novel panel of serum biomarkers for MPM diagnosis. Dis Markers. 2017;2017:3510984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Cerciello F, Choi M, Nicastri A, et al. Identification of a seven glycopeptide signature for malignant pleural mesothelioma in human serum by selected reaction monitoring. Clin Proteomics. 2013;10:16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Lagniau S, Lamote K, van Meerbeeck JP, Vermaelen KY. Biomarkers for early diagnosis of malignant mesothelioma: Do we need another moonshot? Oncotarget. 2017;8(32):53751–62.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Andrea Zucali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zucali, P.A. (2019). Tissue and Circulating Biomarkers in Mesothelioma. In: Ceresoli, G., Bombardieri, E., D'Incalci, M. (eds) Mesothelioma. Springer, Cham. https://doi.org/10.1007/978-3-030-16884-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16884-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16883-4

  • Online ISBN: 978-3-030-16884-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation