Metatranscriptomics and Metaproteomics for Microbial Communities Profiling

  • Chapter
  • First Online:
Unravelling the Soil Microbiome

Abstract

Metatranscriptomics and metaproteomics are major breakthroughs of the next-generation sequencing technologies. Metatranscriptomics and metaproteomics not only provide information about the taxonomic structure of the microorganisms in soil but also provide information about their functional attributes and diversity. Gene expression under varying environmental conditions can be analysed by polymerase chain reactions and microarray. Similarly, techniques such as metatranscriptomics can be used for genome-wide gene expression analysis, providing novel insights about the ecology of the microorganism-mediated processes. In the present chapter we have highlighted the importance, benefits, challenges, process, and procedures of metatranscriptomics and metaproteomics for analysing microbial communities from diverse environments. Metatranscriptomics and metaproteomics have carried out significant revolutions in the field of microbial ecology via exploring the plant–microbe and microbe–microbe interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abubucker S, Segata N, Goll J, Schubert AM, Izard J, Cantarel BL et al (2012) Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLoS Comput Biol 8:e1002358

    Article  CAS  Google Scholar 

  • Aguiar-Pulido V, Huang W, Suarez-Ulloa V, Cickovski T, Mathee K, Narasimhan G (2016) Metagenomics, metatranscriptomics, and metabolomics approaches for microbiome analysis: supplementary issue: bioinformatics methods and applications for big metagenomics data. Evol Bioinform 12:EBO-S36436

    Google Scholar 

  • Anderson LB, Maderia M, Ouellette AJA, Putman-Evans C, Higgins L, Krick T, MacCoss MJ, Lim H, Yates JR, Barry BA (2002) Post translational modifications in the CP43 subunit of photosystem II. Proc Natl Acad Sci U S A 23:14676–14681

    Article  Google Scholar 

  • Bashiardes S, Shapiro H, Rozin S, Shibolet O, Elinav E (2016a) Non-alcoholic fatty liver and the gut microbiota. Mol Metab 5:782–794

    Article  CAS  Google Scholar 

  • Bashiardes S, Zilberman-Schapira G, Elinav E (2016b) Use of metatranscriptomics in microbiome research. Bioinform Biol Insights 10:BBI-S34610. https://doi.org/10.4137/BBI.S34610. eCollection 2016

    Article  Google Scholar 

  • Bastida F, Moreno JL, Nicolas C, Hernandez T, Garcia C (2009) Soil metaproteomics: a review of an emerging environmental science. significance, methodology and perspectives. Eur J Soil Sci 60:845–859

    Article  CAS  Google Scholar 

  • Benndorf D, Balcke GU, Harms H, von Bergen M (2007) Functional metaproteome analysis of protein extracts from contaminated soil and groundwater. ISME J 1:224–234

    Article  CAS  Google Scholar 

  • Beverley SM et al (2002) Putting the Leishmania genome to work: functional genomics by transposon trap** and expression profiling. Philos Trans R Soc Lond B 357:47–53

    Article  CAS  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  Google Scholar 

  • Carvalhais LC, Dennis PG, Tyson GW, Schenk PM (2012) Application of metatranscriptomics to soil environments. J Microbiol Methods 91:246–251

    Article  CAS  Google Scholar 

  • Chauhan A, Smartt A, Wang J, Utturkar S, Frank A, Bi M, Arreaza A (2014) Integrated metagenomics and metatranscriptomics analyses of root-associated soil from transgenic switchgrass. Genome Announc 2(4):e00777–e00714. https://doi.org/10.1128/genomeA.00777-14

    Article  Google Scholar 

  • Chen LX, Hu M, Huang LN, Hua ZS, Kuang JL, Li SJ, Shu WS (2015) Comparative metagenomic and metatranscriptomic analyses of microbial communities in acid mine drainage. ISME J 9(7):1579–1592

    Article  Google Scholar 

  • Choksawangkarn W, Edwards N, Wang Y, Gutierrez P, Fenselau C (2012) Comparative study of workflows optimized for in-gel, in-solution, and on-filter proteolysis in the analysis of plasma membrane proteins. J Proteome Res 11:3030–3034

    Article  CAS  Google Scholar 

  • Chourey K, Jansson J, VerBerkmoes N, Shah M, Chavarria KL, Tom LM, Brodie EL, Hettich RL (2010) Direct cellular lysis/protein extraction protocol for soil metaproteomics. J Proteome Res 9:6615–6622

    Article  CAS  Google Scholar 

  • Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  CAS  Google Scholar 

  • Damon C, Lehembre F, Oger-Desfeux C, Luis P, Ranger J, Fraissinet-Tachet L, Marmeisse R (2012) Metatranscriptomics reveals the diversity of genes expressed by eukaryotes in forest soils. PLoS One 7(1):e28967. https://doi.org/10.1371/journal.pone.0028967

    Article  CAS  Google Scholar 

  • Delahunty CM, Yates JR (2007) MudPIT: multidimensional protein identification technology. BioTechniques 43:563–567

    CAS  Google Scholar 

  • Dumont MG, Murrell JC (2005) Stable isotope probing-linking microbial identity to function. Nat Rev Microbiol 3:499–504

    CAS  Google Scholar 

  • Ferrer M, Ruiz A, Lanza F, Haange SB, Oberbach A, Till H, Bargiela R, Campoy C, Segura MT, Richter M, von Bergen M, Seifert J, Suarez A (2013) Microbiota from the distal guts of lean and obese adolescents exhibit partial functional redundancy besides clear differences in community structure. Environ Microbiol 15:211–226

    Article  CAS  Google Scholar 

  • Fic E, Kedracka-Krok S, Jankowska U, Pirog A, Dziedzicka-Wasylewska M (2010) Comparison of protein precipitation methods for various rat brain structures prior to proteomic analysis. Electrophoresis 31:3573–3579

    Article  CAS  Google Scholar 

  • Franzosa EA, Morgan XC, Segata N, Waldron L, Reyes J, Earl AM, Izard J (2014) Relating the metatranscriptome and metagenome of the human gut. Proc Natl Acad Sci 111:E2329–E2338. https://doi.org/10.1073/pnas.1319284111

    Article  CAS  Google Scholar 

  • Ghosh S, Chan CKK (2016) Analysis of RNA-Seq data using TopHat and Cufflinks. In: Plant bioinformatics. Humana Press, New York, pp 339–361

    Chapter  Google Scholar 

  • Giagnoni L, Magherini F, Landi L, Taghavi S, van der Lelie D, Puglia M, Bianchi L, Bini L, Nannipieri P, Renella G, Modesti A (2012) Soil solid phases effects on the proteomic analysis of Cupriavidus metallidurans CH34. Biol Fertil Soils 48:425–433

    Article  CAS  Google Scholar 

  • Glass EM, Wilkening J, Wilke A, Antonopoulos D, Meyer F (2010) Using the metagenomics RAST server (MG-RAST) for analyzing shotgun metagenomes. Cold Spring Harb Protoc. https://doi.org/10.1101/pdb.prot5368

    Article  Google Scholar 

  • Gosalbes MJ, Durbán A, Pignatelli M, Abellan JJ, Jiménez-Hernández N, Pérez-Cobas AE, Moya A (2011) Metatranscriptomic approach to analyze the functional human gut microbiota. PLoS One 6:e17447. https://doi.org/10.1371/journal.pone.0017447

    Article  CAS  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Chen Z (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652

    Article  CAS  Google Scholar 

  • Gygi SP, Corthals GL, Zhang Y, Rochon Y, Aebersol R (2000) Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proc Natl Acad Sci U S A 97:9390–9395

    Article  CAS  Google Scholar 

  • Hettich RL, Chourey K, Jansson J, VerBerkmoes N, Shah M, Chavarria KL, Tom LM, Brodie EL (2010) Direct cellular Lysis/protein extraction protocol for soil metaproteomics. J Proteome Res 9:6615–6622

    Article  Google Scholar 

  • Hettich RL, Pan C, Chourey K, Giannone RJ (2013) Metaproteomics: harnessing the power of high performance mass spectrometry to identify the suite of proteins that control metabolic activities in microbial communities. Anal Chem 85:4203–4214

    Article  CAS  Google Scholar 

  • Jiang L, He L, Fountoulakis M (2004) Comparison of protein precipitation methods for sample preparation prior to proteomic analysis. J Chromatogr A 1023:317–320

    Article  CAS  Google Scholar 

  • Kan J, Hanson TE, Ginter JM, Wang K, Chen F (2005) Metaproteomic analysis of Chesapeake Bay microbial communities. Saline Syst 1:7–10

    Article  Google Scholar 

  • Keiblinger KM, Wilhartitz IC, Schneider T, Roschitzki B, Schmid E, Eberl L, Riedel K, Zechmeister-Boltenstern S (2012) Soil metaproteomicse comparative evaluation of protein extraction protocols. Soil Biol Biochem 54:14–24

    Article  CAS  Google Scholar 

  • Klose J (1975) Protein map** by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik 26:231–243

    CAS  Google Scholar 

  • Köcher T, Pichler P, Swart R, Mechtler K (2012) Analysis of protein mixtures from whole-cell extracts by single-run nanoLC-MS/MS using ultralong gradients. Nat Protoc 7:882–890

    Article  Google Scholar 

  • Kolmeder CA, de Been M, Nikkilä J, Ritamo I, Mättö J, Valmu L, Salojärvi J, Palva A, Salonen A, de Vos WM (2012) Comparative metaproteomics and diversity analysis of human intestinal microbiota testifies for its temporal stability and expression of core functions. PLoS One 7:e29913–e29910

    Article  CAS  Google Scholar 

  • Korf BR, Rehm HL (2013) New approaches to molecular diagnosis. JAMA 309:1511–1521

    Article  CAS  Google Scholar 

  • Lacerda CMR, Choe LH, Reardon KF (2007) Metaproteomic analysis of a bacterial community response to cadmium exposure. J Proteome Res 6:1145–1152

    Article  CAS  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie2. Nat Methods 9:357–359

    Article  CAS  Google Scholar 

  • Leary DH, Hervey WJ, Li RW, Deschamps JR, Kusterbeck AW, Vora GJ (2012) Method development for metaproteomic analyses of marine biofilms. Anal Chem 84:4006–4013

    Article  CAS  Google Scholar 

  • Lee KH (2001) Proteomics: a technology-driven and technology-limited discovery science. Trends Biotechnol 19:217–222

    Article  CAS  Google Scholar 

  • Lehninger AL (1965) Bioenergetics: The molecular basis of biological energy transformations. W. A. Benjamin, New York. pp xv, 258

    Google Scholar 

  • Mann M, Pandey A (2001) Use of mass spectrometry-derived data to annotate nucleotide and protein sequence databases. Trends Biochem Sei 26:54–61. https://doi.org/10.1016/S0968-0004(00)01726-6

    Article  CAS  Google Scholar 

  • Marco-Sola S, Sammeth M, Guigó R, Ribeca P (2012) The GEM mapper: fast, accurate and versatile alignment by filtration. Nat Methods 9:1185–1188

    Article  CAS  Google Scholar 

  • Maron PA, Ranjard L, Mougel C, Lemanceau P (2007) Metaproteomics: a new approach for studying functional microbial ecology. Microb Ecol 53:486–493

    Article  CAS  Google Scholar 

  • Martin HG, Ivanova N, Kunin V, Warnecke F, Barry KW, McHardy AC, Yeates C, He SM, Salamov AA, Szeto E, Dalin E, Putnam NH, Shapiro HJ, Pangilinan JL, Rigoutsos I, Kyrpides NC, Blackall LL, McMahon KD, Hugenholtz P (2006) Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities. Nat Biotechnol 24:1263–1269

    Article  CAS  Google Scholar 

  • Mocali S, Benedetti A (2010) Exploring research frontiers in microbiology: the challenge of metagenomics in soil microbiology. Res Microbiol 161:497–505

    Article  Google Scholar 

  • Molina LG, Cordenonsi da Fonseca G, Morais GLD, de Oliveira LFV, Carvalho JBD, Kulcheski FR, Margis R (2012) Metatranscriptomic analysis of small RNAs present in soybean deep sequencing libraries. Genet Mol Biol 35:292–303

    Article  CAS  Google Scholar 

  • Moran MA (2009) Metatranscriptomics: eavesdrop** on complex microbial communities. Microbe 4:329–335

    Google Scholar 

  • Morgan XC, Huttenhower C (2014) Meta-omic analytic techniques for studying the intestinal microbiome. Gastroenterology 146:1437–1448

    Article  CAS  Google Scholar 

  • Nannipieri P, Smalla K (2006) Role of stabilised enzymes in microbial ecology and enzyme extraction from soil with potential applications in soil proteomics nucleic acids and proteins in soil. Springer, Berlin/Heidelberg, pp 75–94

    Google Scholar 

  • O’Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021

    Google Scholar 

  • Ogunseitan OA (1993) Direct extraction of proteins from environmental samples. J Microbiol Methods 17:273–281

    Article  CAS  Google Scholar 

  • Ogunseitan OA (1996) Protein profile in cultivated and native freshwater microorganisms exposed to chemical environmental pollutants. Microb Ecol 31:291–304

    Article  CAS  Google Scholar 

  • Ogunseitan OA (1997) Direct extraction of catalytic proteins from natural microbial communities. J Microbiol Methods 28:55–63

    Article  CAS  Google Scholar 

  • Ogunseitan O (2005) Microbial diversity: form and function in prokaryotes. Blackwell Science Ltd, Malden, p 142

    Google Scholar 

  • Pandey A, Lewitter F (1999) Nucleotide sequence databases: a gold mine for biologists. Trends Biochem Sci 24:276–280

    Article  CAS  Google Scholar 

  • Pandey A, Mann M (2000) Proteomics to study genes and genomes. Nature 405:837–846

    Article  CAS  Google Scholar 

  • Peano C, Pietrelli A, Consolandi C, Rossi E, Petiti L, Tagliabue L, Landini P (2013) An efficient rRNA removal method for RNA sequencing in GC-rich bacteria. Microb Inform Exp 3:1. https://doi.org/10.1186/2042-5783-3-1

    Article  CAS  Google Scholar 

  • Pedersen S, Bloch PL, Reeh S, Neidhardt FC (1978) Patterns of protein synthesis in E. coli: a catalog of the amount of 140 individual proteins at different growth rates. Cell 14:179–190

    Article  CAS  Google Scholar 

  • Peng J, Elias JE, Thoreen CC, Licklider LJ, Gygi SP (2003) Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC−MS/MS) for large-scale protein analysis: the yeast proteome. J Proteome Res 2:43–45

    Article  CAS  Google Scholar 

  • Perez-Cobas AE, Gosalbes MJ, Friedrichs A, Knecht H, Artacho A, Eismann K, Otto W, Rojo D, Bargiela R, von Bergen M, Neulinger SC, Däumer C, Heinsen FA, Latorre A, Barbas C, Seifert J, dos Santos VM, Ott SJ, Ferrer M, Moya A (2013) Gut microbiota disturbance during antibiotic therapy: a multi-omic approach. Gut 62:1591–1601

    Article  CAS  Google Scholar 

  • Poretsky RS, Bano N, Buchan A, LeCleir G, Kleikemper J, Pickering M, Hollibaugh JT (2005) Analysis of microbial gene transcripts in environmental samples. Appl Environ Microbiol 71:4121–4126

    Article  CAS  Google Scholar 

  • Ram RJ, VerBerkmoes NC, Thelen MP, Tyson GW, Baker BJ, Blake RC II, Shah M, Hettich RL, Banfield JF (2005) Community proteomics of a natural microbial biofilm. Science 308:1915–1920

    Article  CAS  Google Scholar 

  • Ramachandran N, Hainsworth E, Bhullar B, Eisenstein S, Rosen B, Lau AY, Walter JC, LaBaer J (2004) Self-assembling protein microarrays. Science 305:86–90

    Article  CAS  Google Scholar 

  • Schneider T, Keiblinger KM, Schmid E, Sterflinger-Gleixner K, Ellersdorfer G, Roschitzki B, Richter A, Eberl L, Zechmeister-Boltenstern S, Riedel K (2012) Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions. ISME J 6:1749–1762

    Article  CAS  Google Scholar 

  • Schulze WX, Gleixner G, Kaiser K, Guggenberger G, Mann M, Schulze ED (2004) A proteomic fingerprint of dissolved organic carbon and of soil particles. Oecologia 142:335–343

    Article  Google Scholar 

  • Sharkey FH, Banat IM, Marchant R (2004) Detection and quantification of gene expression in environmental bacteriology. Appl Environ Microbiol 70:3795–3806

    Article  CAS  Google Scholar 

  • Sharma CM, Hoffmann S, Darfeuille F, Reignier J, Findeiß S, Sittka A, Stadler PF (2010) The primary transcriptome of the major human pathogenHelicobacter pylori. Nature, 464:250–255. https://doi.org/10.1038/nature08756

    Article  CAS  Google Scholar 

  • Singleton I, Merringto G, Colvan S, Delahunty JS (2003) The potential of soil protein-based methods to indicate metal contamination. Appl Soil Ecol 654:1–8

    Google Scholar 

  • Sultan M, Amstislavskiy V, Risch T, Schuette M, Dökel S, Ralser M, Balzereit D, Lehrach H, Yaspo ML (2014) Influence of RNA extraction methods and library selection schemes on RNA-seq data. BMC Genomics 15(1):675. https://doi.org/10.1186/1471-2164-15-675

    Article  Google Scholar 

  • Tanca A, Palomba A, Pisanu S, Deligios M, Fraumene C, Manghina V, Pagnozzi D, Addis MF, Uzzau S (2014) A straightforward and efficient analytical pipeline for metaproteome characterization. Microbiome 10:49

    Article  Google Scholar 

  • Tang Y, Underwood A, Gielbert A, Woodward MJ, Petrovska L (2014) Metaproteomics analysis reveals the adaptation process for the chicken gut microbiota. Appl Environ Microbiol 80:478–485

    Article  Google Scholar 

  • Tveit AT, Urich T, Svenning MM (2014) Metatranscriptomic analysis of arctic peat soil microbiota. Appl Environ Microbiol 80:5761–5772

    Article  CAS  Google Scholar 

  • Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, Solovyev VV, Rubin EM, Rokhsar DS, Banfield JF (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428:37–43

    Article  CAS  Google Scholar 

  • Unlu M, Morgan ME, Minden JS (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18:2071–2077

    Article  CAS  Google Scholar 

  • Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu DY, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers YH, Smith HO (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74

    Article  CAS  Google Scholar 

  • Verberkmoes NC, Russell AL, Shah M, Godzik A, Rosenquist M, Halfvarson J, Lefsrud MG, Apajalahti J, Tysk C, Hettich RL, Jansson JK (2009) Shotgun metaproteomics of the human distal gut microbiota. ISME J 3:179–189

    Article  CAS  Google Scholar 

  • Wang W, Vignani R, Scali M, Cresti M (2006) A universal and rapid protocol for protein extraction from recalcitrant plant tissues for proteomic analysis. Electrophoresis 27:2782–2786

    Article  CAS  Google Scholar 

  • Wang L, Feng Z, Wang X, Wang X, Zhang X (2009) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26:136–138

    Article  CAS  Google Scholar 

  • Wilkins MR, Sanchez JC, Gooley AA, Appel RD, Humphery-Smith I, Hochstrasser DF, Williams KL (1995) Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev 13:19–50

    Article  Google Scholar 

  • Williams MA, Taylor EB (2010) Microbial protein in soil: influence of extraction method and C amendment on extraction and recovery. Microb Ecol 59:390–399

    Article  Google Scholar 

  • Wilmes P, Bond PL (2004) The application of two-dimensional polyacrylamide gel electrophoresis and downstream analyses to a mixed community of prokaryotic microorganisms. Environ Microbiol 6:911–920

    Article  CAS  Google Scholar 

  • WiÅ›niewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6:359–362

    Article  Google Scholar 

  • Yates JR (2004) Mass spectral analysis in proteomics. Annu Rev Biophys Biomol Struct 33:297–316

    Article  CAS  Google Scholar 

  • Yates JR, Speicher S, Griffin PR, Hunkapiller T (1993) Peptide mass maps: a highly informative approach to protein identification. Anal Biochem 214:397–408

    Article  CAS  Google Scholar 

  • Yu K, Zhang T (2012) Metagenomic and metatranscriptomic analysis of microbial community structure and gene expression of activated sludge. PLoS One 7(5):e38183. https://doi.org/10.1371/journal.pone.0038183

    Article  CAS  Google Scholar 

  • Yu Y, Suh MJ, Sikorski P, Kwon K, Nelson KE, Pieper R (2014) Urine sample preparation in 96-well filter plates for quantitative clinical proteomics. Anal Chem 86:5470–5477

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dubey, R.K. et al. (2020). Metatranscriptomics and Metaproteomics for Microbial Communities Profiling. In: Unravelling the Soil Microbiome. SpringerBriefs in Environmental Science. Springer, Cham. https://doi.org/10.1007/978-3-030-15516-2_5

Download citation

Publish with us

Policies and ethics

Navigation