Strontium Extraction from the Geo-environment

  • Chapter
  • First Online:
Strontium Contamination in the Environment

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 88))

Abstract

Strontium, a highly reactive alkaline earth metal, is very stable in natural occurrence minerals; however, the mobility of its isotope 90Sr produced from the nuclear fallout is one of the deadly fission products. Celestite, SrSO4, is the most important primary source of it following the exploitation via either the black ash or direct leach process. For which, the illustration of the thermal and aqueous chemistry of strontium is very crucial. In the case of 90Sr, its separation from the other radionuclide, most specifically over the 137Cs from the high-level waste (HLW) of fission products, is vital, converting the HLW to low-level waste (LLW). Liquid-liquid (solvent) extraction technology has been widely accepted for the efficient separation and recovery of strontium from the fission products, as the radionuclide already remains in its soluble form therein the waste solution. Interaction strategy between the metal ion and dipole from the donor atom of crown ether is prominently being used, whereas the poorly hydrated anions of dicarbollide, a boron cluster with a π-bonded trivalent cobalt ion, form ion-pair neutral compounds in the extraction process. In this chapter, the extraction processes of strontium from both natural mineral and synthetic source of the waste fission solution are being discussed, which includes the process technology, adopted techniques behind the technology, crucial points, and key parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 239.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 299.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 299.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pathak P, Singh DN, Pandit GG, Rakesh RR (2016a) Guidelines for quantification of geomaterial-contaminant interaction. J Hazard Toxic Radioact Waste 20:04015012

    Article  Google Scholar 

  2. Pathak P, Singh DN, Apte PR, Pandit GG (2016b) Statistical analysis for prediction of distribution coefficient (k d) of soil-contaminant system. J Environ Eng 142:1–11

    Article  CAS  Google Scholar 

  3. Mees F, Tursina TV (2010) Salt minerals in saline soils and salts crusts. In: Stoops G, Marcelino V, Mees F (eds) Interpretation of micromorphological features of soils and Regoliths. Elsevier, pp 441–469

    Google Scholar 

  4. Ober J (2014) Mineral resource of the month: strontium. Earth, American Geosciences Institute. Retrieved from https://www.earthmagazine.org/article/mineral-resource-month-strontium

  5. Collings RK, Andrew PRA (1988) Summary Report No. 2: Celestite. In: CANMET Rep. 88-3E

    Google Scholar 

  6. Stein DL (1973) Extraction of strontium values from celestite concentrate at the Kaiser plant in Nova Scotia. In: Gray TJ (ed) International Conference on Strontium Containing Compounds, Atlantic Industrial Research Inst, Halifax, Canada, pp 1–8

    Google Scholar 

  7. Sutarno, R Lake, RH, Bowman WS (1970) The extraction of strontium from the mineral celestite. Mineral Sciences Division, Department of Energy, Mines and Resources, Ottawa, Res Rep R-223, pp l–20

    Google Scholar 

  8. MacMillan JP, Park JW, Gerstenberg R, Wagner H, Köhler K, Wallbrecht P (2002) Strontium and strontium compounds. Ullmann’s Encyclopedia of industrial chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  9. Kemal M, Arslan V, Akar A, Canbazoglu M (1996) Production of SrCO3 by black ash process: determination of reductive roasting parameters. In: Kemal M, Arslan V, Canbazoglu M (eds) Changing scopes mineral processing. CRC press, Boca Raton, p 401

    Google Scholar 

  10. Erdemoglua M, Canbazoglub M (1998) The leaching of SrS with water and the precipitation of SrCO3 from leach solution by different carbonating agents. Hydrometallurgy 49:135–150

    Article  Google Scholar 

  11. Carrillo FR, Uribe A, Castillejos AH (1995) A laboratory study of the leaching of celestite in a Pachuca tank. Miner Eng 8:495–509

    Article  Google Scholar 

  12. Trew LJ (1973) Purification of strontium carbonate. US Patent 3741691

    Google Scholar 

  13. Grover AK, Joshi MN (1983) Aluminothermic preparation of strontium metal. In: Bose DK, Krishnamurthy N, Mehta OK (eds) Proceedings of the symposium on metallothermic processes in metal and alloy extraction, Nagpur, India, pp 65–78

    Google Scholar 

  14. Bard AJ (1966) Chemical equilibrium. Harper and Row, New York

    Google Scholar 

  15. Iwai M, Toguri JM (1989) The leaching of celestite in sodium carbonate solutions. Hydrometallurgy 22:87–100

    Article  CAS  Google Scholar 

  16. Castillejos AHE, Cruz del FPB, Uribe AS (1996) The direct conversion of celestite to strontium carbonate in sodium carbonate aqueous media. Hydrometallurgy 40:207–222

    Article  Google Scholar 

  17. Habashi F (1969) Extractive metallurgy, general principles, vol 1. Science Publishers, Paris

    Google Scholar 

  18. Aydogan S, Erdemoğlu M, Aras A, Uçar G, Özkan A (2006) Dissolution kinetics of celestite (SrSO4) in HCl solution with BaCl2. Hydrometallurgy 84:239–246

    Article  CAS  Google Scholar 

  19. Dogan H, Koral M, Kocakusak S (2004) Acid leaching of Turkish celestite concentrate. Hydrometallurgy 71:379–383

    Article  CAS  Google Scholar 

  20. Setoudeh N, Welham NJ, Azami SM (2010) Dry mechanochemical conversion of SrSO4 to SrCO3. J Alloy Compd 492:389–391

    Article  CAS  Google Scholar 

  21. Bingol D, Aydoğan S, Bozbaş SK (2012) Production of SrCO3 and (NH4)2SO4 by the dry mechanochemical processing of celestite. J Ind Eng Chem 18:834–838

    Article  CAS  Google Scholar 

  22. Pathak P, Sharma S (2018) Sorption isotherms, kinetics, and thermodynamics of contaminants in Indian soils. J Environ Eng 10:1–9

    Google Scholar 

  23. Dozol JF, Dozol M, Macias RM (2000) Extraction of strontium and cesium by dicarbollides, crown ethers and functionalized calixarenes. J Incl Phenom Macrocycl Chem 38:1–22

    Article  CAS  Google Scholar 

  24. Pathak P (2017) An assessment of strontium sorption onto bentonite buffer material in waste repository. Environ Sci Pollut Res 24:8825–8836

    Article  CAS  Google Scholar 

  25. Todd TA, Batcheller TA, Law JD, Herbst RS (2004) Cesium and strontium separation technologies: literature review, INEEL/EXT-04-01895. Idaho National Engineering and Environmental Laboratory, Idaho Falls

    Google Scholar 

  26. Fukushima S, Inoue T, Ozeki S (1999) Postoperative irradiation of pterygium with Sr-90 eye applicator. Int J Radiat Oncol Biol Phys 43:597–600

    Article  CAS  Google Scholar 

  27. Gemmill WJ (1971) Miniaturized radioisotope generator. US Patent No. 3566124

    Google Scholar 

  28. IAEA-International Atomic Energy Agency (1993) Feasibility of separation and utilization of cesium and strontium from high level liquid waste. Technical Report Series No. 356, Vienna

    Google Scholar 

  29. Schulz WW, Bray LA (1987) Solvent extraction recovery of by product 137Cs and 90Sr from HNO3 solutions. Sep Sci Technol 22:191–214

    Article  CAS  Google Scholar 

  30. Xu C, Wang J, Chen J (2012) Solvent extraction of strontium and cesium: a review of recent progress. Solvent Extr Ion Exch 30:623–650

    Article  CAS  Google Scholar 

  31. Rahman ROA, Ibrahium HA, Hung YT (2011) Liquid radioactive wastes treatment: a review. Water 3:551–565

    Article  Google Scholar 

  32. Rana D, Matsuura T, Kassim MA, Ismail AF (2013) Radioactive decontamination of water by membrane processes — a review. Desalination 321:77–92

    Article  CAS  Google Scholar 

  33. Tachimori S (2010) Overview of solvent extraction chemistry for reprocessing. In: Moyer BA (ed) Ion exchange and solvent extraction, vol 19. CRC Press, Boca Raton, pp 1–63

    Google Scholar 

  34. Pannell KH, Yee W, Lewandos GS, Hambrich DC (1977) Electronic substituent effects upon the selectivity of synthetic ionophores. J Am Chem Soc 99:1457–1461

    Article  CAS  Google Scholar 

  35. McDowell WJ, Moyer BA, Case GN, Case FI (1986) Metal ions by organic cation exchangers synergized by macrocycles: factors relating to macrocycle size and structure. Solvent Extr Ion Exch 4:217–236

    Article  CAS  Google Scholar 

  36. Bryan JC, Sachleben RA, Lavis JM, Davis MC, Burns JH, Hay BP (1998) Structural aspects of rubidium ion selectivity by tribenzo-21-crown-71a. Inorg Chem 37:2749–2755

    Article  CAS  Google Scholar 

  37. Gerow IH, Davis MW (1979) The use of 24-crown-8’s in the solvent extraction of CsNO3 and Sr(NO3)2. Sep Sci Technol 14:395–414

    Article  CAS  Google Scholar 

  38. Gerow IH, Smith JE, Davis MW (1981) Extraction of Cs+ and Sr2+ from HNO3 solution using macrocyclic polyethers. Sep Sci Technol 16:519–548

    Article  CAS  Google Scholar 

  39. Shuler RG, Bowers CB, Smith Jr JE, Van Brunt V, Davis Jr MW (1985) The extraction of cesium and strontium from acidic high activity nuclear waste using a PUREX process compatible organic extractant. Solvent Extr Ion Exch 3:567–604

    Article  CAS  Google Scholar 

  40. Dietz ML, Horwitz EP, Jensen MP, Rhoads S, Bartsch RA, Palka A, Krzykewski J (1996b) Substitution effects in the extraction of cesium from acidic nitrate media using macrocyclic polyethers. Solvent Extr Ion Exch 14:357–384

    Article  CAS  Google Scholar 

  41. Dietz ML, Horwitz EP, Rhoads S, Bartsch RA, Krzykewski J (1996a) Extraction of cesium from acidic nitrate media using macrocyclic polyethers: the role of organic phase water. Solvent Extr Ion Exch 14:1–12

    Article  CAS  Google Scholar 

  42. Shehata FA (1994) Extraction of strontium from nitric acid solutions by selected crown ethers. J Radioanal Nucl Chem 185:411–417

    Article  CAS  Google Scholar 

  43. Horwitz EP, Dietz ML, Fisher DE (1990a) Extraction of strontium from nitric acid solutions using dicyclohexano-18-crown-5 and its derivatives. Solvent Extr Ion Exch 8:557–572

    Article  CAS  Google Scholar 

  44. Horwitz EP, Dietz ML, Fisher DE (1990b) Correlation of the extraction of strontium nitrate by a crown ether with the water content of the organic phase. Sol Extr Ion Exch 8:199–208

    Article  CAS  Google Scholar 

  45. Horwitz EP, Dietz ML, Fisher DE (1991) SREX: a new process for the extraction and recovery of strontium from acidic nuclear waste streams. Sol Extr Ion Exch 9:1–25

    Article  CAS  Google Scholar 

  46. Horwitz EP, Dietz ML, Leonard RA (1997) Advanced integrated solvent extraction systems. In: Gephart JM (ed) Efficient separations and processing (ESP) crosscutting program FY 1991 technical exchange meeting, Gaithersburg, MD, USA

    Google Scholar 

  47. Lumetta GJ, Wagner MJ, Carlson CD (1996) Actinide, strontium, and cesium removal from Hanford radioactive tank sludge. Solvent Extr Ion Exch 14:35–60

    Article  CAS  Google Scholar 

  48. Lumetta GJ, Wagner MJ, Jones EO (1995) Separation of strontium-90 from Hanford high-level radioactive waste. Sep Sci Technol 30:1087–1101

    Article  CAS  Google Scholar 

  49. Kumar A, Mohapatra PK, Pathak PN, Manchanda VK (1997) Dicyclohexano 18 crown 6 in butanol-octanol mixture: a promising extractant of Sr(II) from nitric acid medium. Talanta 45:387–395

    Article  CAS  Google Scholar 

  50. Kumar A, Mohapatra PK, Manchanda VK (1998) Extraction of cesium-137 from nitric acid medium in the presence of macrocyclic polyethers. J Radioanal Nucl Chem 229:169–172

    Article  CAS  Google Scholar 

  51. Novy P, Vanura P, Makrlik E (1998) Extraction of 85Sr by the nitrobenzene solution of bis-1,2-dicarbollylcobaltate in the presence of dibenzo-18-crown-6. J Radioanal Nucl Chem 231:65–68

    Article  CAS  Google Scholar 

  52. Valentova Z, Vanura P, Makrlik E (1997) Extraction of microamounts of strontium by a nitrobenzene solution of bis-1,2-dicarbollylcobaltate in the presence of 15-crown-5. J Radioanal Nucl Chem 224:45–48

    Article  CAS  Google Scholar 

  53. Ritcey GM, Ashbrook AW (1984) Solvent extraction part I. Elsevier, Amsterdam

    Google Scholar 

  54. Mohapatra PK, Lakshmi DS, Manchanda VK (2006) Diluent effect on Sr(II) extraction using di-tert-butyl cyclohexano 18 crown 6 as the extractant and its correlation with transport data obtained from supported liquid membrane studies. Desalination 198:166–172

    Article  CAS  Google Scholar 

  55. Gupta KK, Achuthan PV, Ramanujam A, Mathur JN (2003) Effect of diluents on the extraction of Sr2+ from HNO3 solutions with dicyclohexano-18-crown-6. Solvent Extr Ion Exch 21:53–71

    Article  CAS  Google Scholar 

  56. Lamb JD, Nazarenko AY, Hansen RJ (1999) Novel solvent system for metal ion separation: improved solvent extraction of strontium(II) and lead(II) as dicyclohexano-18-crown-6 complexes. Sep Sci Technol 34:2583–2599

    Article  CAS  Google Scholar 

  57. Mincher BJ, Modolo G, Mezyk SP (2009) Review article: the effects of radiation chemistry on solvent extraction: 2. A review of fission-product extraction. Solvent Extr Ion Exch 27:331–353

    Article  CAS  Google Scholar 

  58. Takagi N, Izumi Y, Ema K, Yamamoto T, Nishizawa K (1999) Radiolytic degradation of a crown ether for extractability of strontium. Solvent Extr Ion Exch 17:1461–1471

    Article  CAS  Google Scholar 

  59. Mincher BJ, Herbst RS, Tillotson RD, Mezyk SP (2007) Gamma-radiation effects on the performance of HCCD–PEG for Cs and Sr extraction. Solvent Extr Ion Exch 25:747–755

    Article  CAS  Google Scholar 

  60. Raut DR, Mohapatra PK, Manchanda VK (2010) Extraction of radio-strontium from nitric acid medium using di-tert-butyl cyclohexano18-Crown-6 (DTBCH18C6) in toluene-1-octanol diluent mixture. Sep Sci Technol 45:204–211

    Article  CAS  Google Scholar 

  61. Yuan LY, Peng J, Xu L, Zhai ML, Li JQ, Wei GS (2008) Influence of gamma-radiation on the ionic liquid [C(4)mim][PF6] during extraction of strontium ions. Dalton Trans 45:6358–6360

    Article  Google Scholar 

  62. Yuan LY, Peng J, Xu L, Zhai ML, Li JQ, Wei GS (2009a) Radiation effects on hydrophobic ionic liquid [C(4)mim][NTf2] during extraction of strontium ions. J Phys Chem B 113:8948–8952

    Article  CAS  Google Scholar 

  63. Yuan LY, Xu C, Peng J, Xu L, Zhai ML, Li JQ, Wei GS, Shen XH (2009b) Identification of the radiolytic product of hydrophonic ionic liquid [C(4)mim][NTf2] during removal of Sr2+ from aqueous solution. Dalton Trans 38:7873–7875

    Article  Google Scholar 

  64. Chiarizia R, Urban V, Thiyagarajan P, Bond AH, Dietz ML (2000) Small angle neutron scattering investigation of the species formed in the extraction of Sr(II) by mixtures of di-n-octylphosphoric acid and dicyclohexano-18-crown-6. Solvent Extr Ion Exch 18:451–478

    Article  CAS  Google Scholar 

  65. Thiyagarajan P, Diamond H, Danesi PR, Horwitz EP (1987) Small-angle neutron-scattering studies of cobalt(II) organophosphorus polymers in deuteriobenzene. Inorg Chem 26:4209–4212

    Article  CAS  Google Scholar 

  66. Burns JH, Kessler RM (1986) Structural and molecular mechanics studies of bis(dibutylphosphato)aquastrontuim-18crown-6 and analogous alkaline-earth-metal complexes. Inorg Chem 26:1370–1375

    Article  Google Scholar 

  67. Burns JH, Bryan SA (1988) Complexes of strontium and barium dimethylpropanoates with dicyclohexano-18-crown-6(A) ether. Acta Cryst C 44:1742–1749

    Article  Google Scholar 

  68. Romanovsky VN (2002) Management of accumulated high level waste at the Mayak Production Association in the Russian Federation. In: Issues and trends in radioactive waste management, Proceedings of an International Conference, International Atomic Energy Agency, Vienna, pp 359–372

    Google Scholar 

  69. Miller RL, Pinkerton AB, Abney KD, Kinkead SA (1997) US Patent No 5603074

    Google Scholar 

  70. Miller RL, Pinkerton AB, Hurlburt PK, Abney KD (1995a) Extraction of cesium and strontium into hydrocarbon solvents using tetra-C-alkyl cobalt dicarbollide. Solvent Extr Ion Exch 13:813–827

    Article  CAS  Google Scholar 

  71. Miller RL, Pinkerton AB, Hurlburt PK (1995b) 209th ACS national meeting. American Chemical Society, Washington, DC, 2088, p 823

    Google Scholar 

  72. Galkin BY, Esimantovskii VM, Lazarev LN, Lyubtsev RI, Romanovskii VN, Shishkin L, Kyrsh KM, Rais I, Selucky P (1998) Abstract in International Solvent Extraction Conference (ISEC 88) Moscow, USSR

    Google Scholar 

  73. Esimantovski VM, Galkin BY, Lazarev LN, Lyubtsev RI, Romanovskii VN, Shishkin DN, Dzekun EG (1992) Technological tests of HAW partitioning with the use of chlorinated cobalt dicarbolyde (CHCODIC). Management of Secondary Wastes. In: Proceedings of the International Symposium on Waste Management—92, Tucson, AZ, pp 801–804

    Google Scholar 

  74. Herbst RS, Law JD, Todd TA, Romanovskiy VN, Smirnov IV, Babain VA, Esimantovskiy VN, Zaitsev BN (2003) Development of the universal extraction (UNEX) process for the simultaneous recovery of Cs, Sr, and actinides from acidic radioactive wastes. Sep Sci Technol 38:2685–2708

    Article  CAS  Google Scholar 

  75. Luther TA, Herbst RS, Peterman DR, Tillotson RD, Garn TG, Babain VA, Smirnov IV, Stoyanov ES, Antonov NG (2006) Some aspects of fundamental chemistry of the universal extraction (UNEX) process for the simultaneous separation of major radionuclides (cesium, strontium, actinides, and lanthanides) from radioactive wastes. J Radioanal Nucl Chem 267:603–613

    Article  CAS  Google Scholar 

  76. Romanovskiy VN, Smirnov IV, Babain VA, Todd TA, Herbst RS, Law JD, Brewer KN (2001) The universal solvent extraction (UNEX) process. I. Development of the UNEX process solvent for the separation of cesium, strontium, and the actinides from acidic radioactive waste. Solvent Extr Ion Exch 19:1–21

    Article  CAS  Google Scholar 

  77. Law JD, Herbst RS, Todd TA, Romanovskiy VN, Babain VA, Esimantovskiy VM, Smirnov IV, Zaitsev BN (2001) The universal solvent extraction (UNEX) process. II. Flowsheet development and demonstration of the UNEX process for the separation of cesium, strontium, and actinides from actual acidic radioactive waste. Solvent Extr Ion Exch 19:23–36

    Article  CAS  Google Scholar 

  78. Herbst RS, Law JD, Todd TA, Romanovskii VN, Babain VA, Esimantovski VM, Zaitsev BN, Smirnov IV (2002) Development and testing of a cobalt dicarbollide based solvent extraction process for the separation of cesium and strontium from acidic tank waste. Sep Sci Technol 37:1807–1831

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rajiv Ranjan Srivastava or Sadia Ilyas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srivastava, R.R., Ilyas, S. (2020). Strontium Extraction from the Geo-environment. In: Pathak, P., Gupta, D. (eds) Strontium Contamination in the Environment. The Handbook of Environmental Chemistry, vol 88. Springer, Cham. https://doi.org/10.1007/978-3-030-15314-4_3

Download citation

Publish with us

Policies and ethics

Navigation