Calcium in Cell-Extracellular Matrix Interactions

  • Chapter
  • First Online:
Calcium Signaling

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1131))

Abstract

In multicellular organisms, the cells are surrounded by persistent, dynamic extracellular matrix (ECM), the largest calcium reservoir in animals. ECM regulates several aspects of cell behavior including cell migration and adhesion, survival, gene expression and differentiation, thus playing a significant role in health and disease. Calcium is reported to be important in the assembly of ECM, where it binds to many ECM proteins. While serving as a calcium reservoir, ECM macromolecules can directly interact with cell surface receptors resulting in calcium transport across the membrane. This chapter mainly focusses on the role of cell-ECM interactions in cellular calcium regulation and how calcium itself mediates these interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 245.03
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 320.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 320.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Janson IA, Putnam AJ (2015) Extracellular matrix elasticity and topography: material-based cues that affect cell function via conserved mechanisms. J Biomed Mater Res A 103(3):1246–1258

    Article  PubMed  CAS  Google Scholar 

  2. Carafoli E, Krebs J (2016) Why calcium? How calcium became the best communicator. J Biol Chem 291(40):20849–20857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Avila-Medina J, Mayoral-Gonzalez I, Dominguez-Rodriguez A, Gallardo-Castillo I, Ribas J, Ordonez A et al (2018) The complex role of store operated calcium entry pathways and related proteins in the function of cardiac, skeletal and vascular smooth muscle cells. Front Physiol 9:257

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zhang AH, Sharma G, Undheim EAB, Jia X, Mobli M (2018) A complicated complex: ion channels, voltage sensing, cell membranes and peptide inhibitors. Neurosci Lett

    Google Scholar 

  5. Kobayashi T, Sokabe M (2010) Sensing substrate rigidity by mechanosensitive ion channels with stress fibers and focal adhesions. Curr Opin Cell Biol 22(5):669–676

    Article  CAS  PubMed  Google Scholar 

  6. Whitaker M (2006) Calcium at fertilization and in early development. Physiol Rev 86(1):25–88

    Article  CAS  PubMed  Google Scholar 

  7. Mattson MP, Chan SL (2003) Calcium orchestrates apoptosis. Nat Cell Biol 5(12):1041–1043

    Article  CAS  PubMed  Google Scholar 

  8. Orr AW, Helmke BP, Blackman BR, Schwartz MA (2006) Mechanisms of mechanotransduction. Dev Cell 10(1):11–20

    Article  CAS  PubMed  Google Scholar 

  9. Vogel V, Sheetz M (2006) Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol 7(4):265–275

    Article  CAS  PubMed  Google Scholar 

  10. Ringer P, Colo G, Fassler R, Grashoff C (2017) Sensing the mechano-chemical properties of the extracellular matrix. Matrix Biol 64:6–16

    Article  CAS  PubMed  Google Scholar 

  11. Giannone G, Ronde P, Gaire M, Beaudouin J, Haiech J, Ellenberg J et al (2004) Calcium rises locally trigger focal adhesion disassembly and enhance residency of focal adhesion kinase at focal adhesions. J Biol Chem 279(27):28715–28723

    Article  CAS  PubMed  Google Scholar 

  12. Wu X, Davis GE, Meininger GA, Wilson E, Davis MJ (2001) Regulation of the L-type calcium channel by alpha 5beta 1 integrin requires signaling between focal adhesion proteins. J Biol Chem 276(32):30285–30292

    Article  CAS  PubMed  Google Scholar 

  13. Ciobanasu C, Faivre B, Le Clainche C (2014) Actomyosin-dependent formation of the mechanosensitive talin-vinculin complex reinforces actin anchoring. Nat Commun 5:3095

    Article  PubMed  CAS  Google Scholar 

  14. Drmota Prebil S, Slapsak U, Pavsic M, Ilc G, Puz V, de Almeida RE et al (2016) Structure and calcium-binding studies of calmodulin-like domain of human non-muscle alpha-actinin-1. Sci Rep 6:27383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Naba A, Clauser KR, Hoersch S, Liu H, Carr SA, Hynes RO (2012) The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Mol Cell Proteomics 11(4):M111.014647

    Article  PubMed  CAS  Google Scholar 

  16. Carbajal ME, Manning-Cela R, Pina A, Franco E, Meza I (1996) Fibronectin-induced intracellular calcium rise in Entamoeba histolytica trophozoites: effect on adhesion and the actin cytoskeleton. Exp Parasitol 82(1):11–20

    Article  CAS  PubMed  Google Scholar 

  17. Nebe B, Rychly J, Knopp A, Bohn W (1995) Mechanical induction of beta 1-integrin-mediated calcium signaling in a hepatocyte cell line. Exp Cell Res 218(2):479–484

    Article  CAS  PubMed  Google Scholar 

  18. Lee HS, Millward-Sadler SJ, Wright MO, Nuki G, Salter DM (2000) Integrin and mechanosensitive ion channel-dependent tyrosine phosphorylation of focal adhesion proteins and beta-catenin in human articular chondrocytes after mechanical stimulation. J Bone Miner Res 15(8):1501–1509

    Article  CAS  PubMed  Google Scholar 

  19. Ishise H, Larson B, Hirata Y, Fujiwara T, Nishimoto S, Kubo T et al (2015) Hypertrophic scar contracture is mediated by the TRPC3 mechanical force transducer via NFkB activation. Sci Rep 5:11620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gopal S, Sogaard P, Multhaupt HA, Pataki C, Okina E, **an X et al (2015) Transmembrane proteoglycans control stretch-activated channels to set cytosolic calcium levels. J Cell Biol 210(7):1199–1211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gopal S, Bober A, Whiteford JR, Multhaupt HA, Yoneda A, Couchman JR (2010) Heparan sulfate chain valency controls syndecan-4 function in cell adhesion. J Biol Chem 285(19):14247–14258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. **an X, Gopal S, Couchman JR (2010) Syndecans as receptors and organizers of the extracellular matrix. Cell Tissue Res 339(1):31–46

    Article  CAS  PubMed  Google Scholar 

  23. Yurchenco PD, Cheng YS (1993) Self-assembly and calcium-binding sites in laminin. A three-arm interaction model. J Biol Chem 268(23):17286–17299

    CAS  PubMed  Google Scholar 

  24. Cheng YS, Champliaud MF, Burgeson RE, Marinkovich MP, Yurchenco PD (1997) Self-assembly of laminin isoforms. J Biol Chem 272(50):31525–31532

    Article  CAS  PubMed  Google Scholar 

  25. Kalb E, Engel J (1991) Binding and calcium-induced aggregation of laminin onto lipid bilayers. J Biol Chem 266(28):19047–19052

    CAS  PubMed  Google Scholar 

  26. Colucci S, Giannelli G, Grano M, Faccio R, Quaranta V, Zallone AZ (1996) Human osteoclast-like cells selectively recognize laminin isoforms, an event that induces migration and activates Ca2+ mediated signals. J Cell Sci 109(Pt 6):1527–1535

    CAS  PubMed  Google Scholar 

  27. Nishimune H (2012) Molecular mechanism of active zone organization at vertebrate neuromuscular junctions. Mol Neurobiol 45(1):1–16

    Article  CAS  PubMed  Google Scholar 

  28. Nishimune H, Sanes JR, Carlson SS (2004) A synaptic laminin-calcium channel interaction organizes active zones in motor nerve terminals. Nature 432(7017):580–587

    Article  CAS  PubMed  Google Scholar 

  29. Sunderland WJ, Son YJ, Miner JH, Sanes JR, Carlson SS (2000) The presynaptic calcium channel is part of a transmembrane complex linking a synaptic laminin (alpha4beta2gamma1) with non-erythroid spectrin. J Neurosci 20(3):1009–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chand KK, Lee KM, Schenning MP, Lavidis NA, Noakes PG (2015) Loss of beta2-laminin alters calcium sensitivity and voltage-gated calcium channel maturation of neurotransmission at the neuromuscular junction. J Physiol 593(1):245–265

    Article  CAS  PubMed  Google Scholar 

  31. Carlson SS, Valdez G, Sanes JR (2010) Presynaptic calcium channels and alpha3-integrins are complexed with synaptic cleft laminins, cytoskeletal elements and active zone components. J Neurochem 115(3):654–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cali T, Lopreiato R, Shimony J, Vineyard M, Frizzarin M, Zanni G et al (2015) A novel mutation in isoform 3 of the plasma membrane Ca2+ pump impairs cellular Ca2+ homeostasis in a patient with cerebellar ataxia and laminin subunit 1alpha mutations. J Biol Chem 290(26):16132–16141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dietz HC, Pyeritz RE (1995) Mutations in the human gene for fibrillin-1 (FBN1) in the Marfan syndrome and related disorders. Hum Mol Genet 4 Spec No:1799–1809

    Article  CAS  PubMed  Google Scholar 

  34. Handford PA (2000) Fibrillin-1, a calcium binding protein of extracellular matrix. Biochim Biophys Acta 1498(2–3):84–90

    Article  CAS  PubMed  Google Scholar 

  35. Kielty CM, Shuttleworth CA (1993) The role of calcium in the organization of fibrillin microfibrils. FEBS Lett 336(2):323–326

    Article  CAS  PubMed  Google Scholar 

  36. Sakai LY, Keene DR, Engvall E (1986) Fibrillin, a new 350-kD glycoprotein, is a component of extracellular microfibrils. J Cell Biol 103(6 Pt 1):2499–2509

    Article  CAS  PubMed  Google Scholar 

  37. Reinhardt DP, Mechling DE, Boswell BA, Keene DR, Sakai LY, Bachinger HP (1997) Calcium determines the shape of fibrillin. J Biol Chem 272(11):7368–7373

    Article  CAS  PubMed  Google Scholar 

  38. Corson GM, Chalberg SC, Dietz HC, Charbonneau NL, Sakai LY (1993) Fibrillin binds calcium and is coded by cDNAs that reveal a multidomain structure and alternatively spliced exons at the 5′ end. Genomics 17(2):476–484

    Article  CAS  PubMed  Google Scholar 

  39. Jensen SA, Corbett AR, Knott V, Redfield C, Handford PA (2005) Ca2+−dependent interface formation in fibrillin-1. J Biol Chem 280(14):14076–14084

    Article  CAS  PubMed  Google Scholar 

  40. Smallridge RS, Whiteman P, Werner JM, Campbell ID, Handford PA, Downing AK (2003) Solution structure and dynamics of a calcium binding epidermal growth factor-like domain pair from the neonatal region of human fibrillin-1. J Biol Chem 278(14):12199–12206

    Article  CAS  PubMed  Google Scholar 

  41. Lin G, Tiedemann K, Vollbrandt T, Peters H, Batge B, Brinckmann J et al (2002) Homo- and heterotypic fibrillin-1 and -2 interactions constitute the basis for the assembly of microfibrils. J Biol Chem 277(52):50795–50804

    Article  CAS  PubMed  Google Scholar 

  42. Marson A, Rock MJ, Cain SA, Freeman LJ, Morgan A, Mellody K et al (2005) Homotypic fibrillin-1 interactions in microfibril assembly. J Biol Chem 280(6):5013–5021

    Article  CAS  PubMed  Google Scholar 

  43. Cain SA, Baldock C, Gallagher J, Morgan A, Bax DV, Weiss AS et al (2005) Fibrillin-1 interactions with heparin. Implications for microfibril and elastic fiber assembly. J Biol Chem 280(34):30526–30537

    Article  CAS  PubMed  Google Scholar 

  44. Tiedemann K, Batge B, Muller PK, Reinhardt DP (2001) Interactions of fibrillin-1 with heparin/heparan sulfate, implications for microfibrillar assembly. J Biol Chem 276(38):36035–36042

    Article  CAS  PubMed  Google Scholar 

  45. Isogai Z, Aspberg A, Keene DR, Ono RN, Reinhardt DP, Sakai LY (2002) Versican interacts with fibrillin-1 and links extracellular microfibrils to other connective tissue networks. J Biol Chem 277(6):4565–4572

    Article  CAS  PubMed  Google Scholar 

  46. El-Hallous E, Sasaki T, Hubmacher D, Getie M, Tiedemann K, Brinckmann J et al (2007) Fibrillin-1 interactions with fibulins depend on the first hybrid domain and provide an adaptor function to tropoelastin. J Biol Chem 282(12):8935–8946

    Article  CAS  PubMed  Google Scholar 

  47. Reinhardt DP, Ono RN, Sakai LY (1997) Calcium stabilizes fibrillin-1 against proteolytic degradation. J Biol Chem 272(2):1231–1236

    Article  CAS  PubMed  Google Scholar 

  48. Ashworth JL, Murphy G, Rock MJ, Sherratt MJ, Shapiro SD, Shuttleworth CA et al (1999) Fibrillin degradation by matrix metalloproteinases: implications for connective tissue remodelling. Biochem J 340(Pt 1):171–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mariko B, Ghandour Z, Raveaud S, Quentin M, Usson Y, Verdetti J et al (2010) Microfibrils and fibrillin-1 induce integrin-mediated signaling, proliferation and migration in human endothelial cells. Am J Physiol Cell Physiol 299(5):C977–C987

    Article  CAS  PubMed  Google Scholar 

  50. Massam-Wu T, Chiu M, Choudhury R, Chaudhry SS, Baldwin AK, McGovern A et al (2010) Assembly of fibrillin microfibrils governs extracellular deposition of latent TGF beta. J Cell Sci 123(Pt 17):3006–3018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Poole AW, Watson SP (1995) Regulation of cytosolic calcium by collagen in single human platelets. Br J Pharmacol 115(1):101–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shiraishi M, Ikeda M, Ogawa H, Tu CH, Ito K (1998) Impaired cytosolic calcium mobilization and aggregation in response to collagen in platelets from Japanese black cattle with Chediak-Higashi syndrome. Am J Vet Res 59(6):744–749

    CAS  PubMed  Google Scholar 

  53. Roberts DE, McNicol A, Bose R (2004) Mechanism of collagen activation in human platelets. J Biol Chem 279(19):19421–19430

    Article  CAS  PubMed  Google Scholar 

  54. Nesbitt WS, Giuliano S, Kulkarni S, Dopheide SM, Harper IS, Jackson SP (2003) Intercellular calcium communication regulates platelet aggregation and thrombus growth. J Cell Biol 160(7):1151–1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shih YR, Tseng KF, Lai HY, Lin CH, Lee OK (2011) Matrix stiffness regulation of integrin-mediated mechanotransduction during osteogenic differentiation of human mesenchymal stem cells. J Bone Miner Res 26(4):730–738

    Article  CAS  PubMed  Google Scholar 

  56. Horton ER, Byron A, Askari JA, DHJ N, Millon-Fremillon A, Robertson J et al (2015) Definition of a consensus integrin adhesome and its dynamics during adhesion complex assembly and disassembly. Nat Cell Biol 17(12):1577–1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Byron A, Humphries JD, Craig SE, Knight D, Humphries MJ (2012) Proteomic analysis of alpha4beta1 integrin adhesion complexes reveals alpha-subunit-dependent protein recruitment. Proteomics 12(13):2107–2114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Carisey A, Tsang R, Greiner AM, Nijenhuis N, Heath N, Nazgiewicz A et al (2013) Vinculin regulates the recruitment and release of core focal adhesion proteins in a force-dependent manner. Curr Biol 23(4):271–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Morgan MR, Humphries MJ, Bass MD (2007) Synergistic control of cell adhesion by integrins and syndecans. Nat Rev Mol Cell Biol 8(12):957–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Roper JA, Williamson RC, Bass MD (2012) Syndecan and integrin interactomes: large complexes in small spaces. Curr Opin Struct Biol 22(5):583–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zobel CR, Woods A (1983) Effect of calcium on the morphology of human platelets spread on glass substrates. Eur J Cell Biol 30(1):83–92

    CAS  PubMed  Google Scholar 

  62. Laterra J, Norton EK, Izzard CS, Culp LA (1983) Contact formation by fibroblasts adhering to heparan sulfate-binding substrata (fibronectin or platelet factor 4). Exp Cell Res 146(1):15–27

    Article  CAS  PubMed  Google Scholar 

  63. Hamawy MM, Mergenhagen SE, Siraganian RP (1993) Tyrosine phosphorylation of pp125FAK by the aggregation of high affinity immunoglobulin E receptors requires cell adherence. J Biol Chem 268(10):6851–6854

    CAS  PubMed  Google Scholar 

  64. Schaller MD, Borgman CA, Cobb BS, Vines RR, Reynolds AB, Parsons JT (1992) pp125FAK a structurally distinctive protein-tyrosine kinase associated with focal adhesions. Proc Natl Acad Sci USA 89(11):5192–5196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shattil SJ, Haimovich B, Cunningham M, Lipfert L, Parsons JT, Ginsberg MH et al (1994) Tyrosine phosphorylation of pp125FAK in platelets requires coordinated signaling through integrin and agonist receptors. J Biol Chem 269(20):14738–14745

    CAS  PubMed  Google Scholar 

  66. Zachary I, Sinnett-Smith J, Turner CE, Rozengurt E (1993) Bombesin, vasopressin, and endothelin rapidly stimulate tyrosine phosphorylation of the focal adhesion-associated protein paxillin in Swiss 3T3 cells. J Biol Chem 268(29):22060–22065

    CAS  PubMed  Google Scholar 

  67. Turner CE (2000) Paxillin and focal adhesion signalling. Nat Cell Biol 2(12):E231–E236

    Article  CAS  PubMed  Google Scholar 

  68. Gopal S, Multhaupt HA, Pocock R, Couchman JR (2016) Cell-extracellular matrix and cell-cell adhesion are linked by syndecan-4. Matrix Biol

    Google Scholar 

  69. Sachs F (2010) Stretch-activated ion channels: what are they? Physiology (Bethesda) 25(1):50–56

    CAS  Google Scholar 

  70. Mitsou I, Multhaupt HAB, Couchman JR (2017) Proteoglycans, ion channels and cell-matrix adhesion. Biochem J 474(12):1965–1979

    Article  CAS  PubMed  Google Scholar 

  71. Caceres M, Ortiz L, Recabarren T, Romero A, Colombo A, Leiva-Salcedo E et al (2015) TRPM4 Is a novel component of the adhesome required for focal adhesion disassembly, migration and contractility. PloS One 10(6):e0130540

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Tang DD, Gerlach BD (2017) The roles and regulation of the actin cytoskeleton, intermediate filaments and microtubules in smooth muscle cell migration. Respir Res 18(1):54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Oishi T, Kimura K, Hanada M, Samejima M (1982) Assistance extended to patients with poor prognosis and their families – a lesson in role playing. Kango Gijutsu 28(16):2183–2188

    CAS  PubMed  Google Scholar 

  74. Hayakawa K, Tatsumi H, Sokabe M (2011) Actin filaments function as a tension sensor by tension-dependent binding of cofilin to the filament. J Cell Biol 195(5):721–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hampton CM, Taylor DW, Taylor KA (2007) Novel structures for alpha-actinin:F-actin interactions and their implications for actin-membrane attachment and tension sensing in the cytoskeleton. J Mol Biol 368(1):92–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Meyer RK, Aebi U (1990) Bundling of actin filaments by alpha-actinin depends on its molecular length. J Cell Biol 110(6):2013–2024

    Article  CAS  PubMed  Google Scholar 

  77. Sharp WW, Simpson DG, Borg TK, Samarel AM, Terracio L (1997) Mechanical forces regulate focal adhesion and costamere assembly in cardiac myocytes. Am J Phys 273(2 Pt 2):H546–H556

    CAS  Google Scholar 

  78. Brown SS, Yamamoto K, Spudich JA (1982) A 40,000-dalton protein from Dictyostelium discoideum affects assembly properties of actin in a Ca2+−dependent manner. J Cell Biol 93(1):205–210

    Article  CAS  PubMed  Google Scholar 

  79. Fechheimer M, Taylor DL (1984) Isolation and characterization of a 30,000-dalton calcium-sensitive actin cross-linking protein from Dictyostelium discoideum. J Biol Chem 259(7):4514–4520

    CAS  PubMed  Google Scholar 

  80. Rivero F, Furukawa R, Fechheimer M, Noegel AA (1999) Three actin cross-linking proteins, the 34 kDa actin-bundling protein, alpha-actinin and gelation factor (ABP-120), have both unique and redundant roles in the growth and development of Dictyostelium. J Cell Sci 112(Pt 16):2737–2751

    CAS  PubMed  Google Scholar 

  81. Witke W, Hofmann A, Koppel B, Schleicher M, Noegel AA (1993) The Ca2+-binding domains in non-muscle type alpha-actinin: biochemical and genetic analysis. J Cell Biol 121(3):599–606

    Article  CAS  PubMed  Google Scholar 

  82. Furukawa R, Maselli A, Thomson SA, Lim RW, Stokes JV, Fechheimer M (2003) Calcium regulation of actin crosslinking is important for function of the actin cytoskeleton in Dictyostelium. J Cell Sci 116(Pt 1):187–196

    Article  CAS  PubMed  Google Scholar 

  83. Edwards HC, Booth AG (1987) Calcium-sensitive, lipid-binding cytoskeletal proteins of the human placental microvillar region. J Cell Biol 105(1):303–311

    Article  CAS  PubMed  Google Scholar 

  84. Badalamente MA, Hurst LC, Stracher A (1986) Calcium-induced degeneration of the cytoskeleton in monkey and human peripheral nerves. J Hand Surg (Br) 11(3):337–340

    Article  CAS  Google Scholar 

  85. Lomri A, Marie PJ (1990) Distinct effects of calcium- and cyclic AMP-enhancing factors on cytoskeletal synthesis and assembly in mouse osteoblastic cells. Biochim Biophys Acta 1052(1):179–186

    Article  CAS  PubMed  Google Scholar 

  86. Glogauer M, Arora P, Yao G, Sokholov I, Ferrier J, McCulloch CA (1997) Calcium ions and tyrosine phosphorylation interact coordinately with actin to regulate cytoprotective responses to stretching. J Cell Sci 110(Pt 1):11–21

    CAS  PubMed  Google Scholar 

  87. Veksler A, Gov NS (2009) Calcium-actin waves and oscillations of cellular membranes. Biophys J 97(6):1558–1568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Stevens FC (1983) Calmodulin: an introduction. Can J Biochem Cell Biol 61(8):906–910

    Article  CAS  PubMed  Google Scholar 

  89. Chin D, Means AR (2000) Calmodulin: a prototypical calcium sensor. Trends Cell Biol 10(8):322–328

    Article  CAS  PubMed  Google Scholar 

  90. Chou JJ, Li S, Klee CB, Bax A (2001) Solution structure of Ca2+-calmodulin reveals flexible hand-like properties of its domains. Nat Struct Biol 8(11):990–997

    Article  CAS  PubMed  Google Scholar 

  91. Easley CA, Faison MO, Kirsch TL, Lee JA, Seward ME, Tombes RM (2006) Laminin activates CaMK-II to stabilize nascent embryonic axons. Brain Res 1092(1):59–68

    Article  CAS  PubMed  Google Scholar 

  92. Shen K, Teruel MN, Subramanian K, Meyer T (1998) CaMKIIbeta functions as an F-actin targeting module that localizes CaMKIIalpha/beta heterooligomers to dendritic spines. Neuron 21(3):593–606

    Article  CAS  PubMed  Google Scholar 

  93. Lin YC, Redmond L (2008) CaMKIIbeta binding to stable F-actin in vivo regulates F-actin filament stability. Proc Natl Acad Sci USA 105(41):15791–15796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Okamoto K, Narayanan R, Lee SH, Murata K, Hayashi Y (2007) The role of CaMKII as an F-actin-bundling protein crucial for maintenance of dendritic spine structure. Proc Natl Acad Sci USA 104(15):6418–6423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sanabria H, Swulius MT, Kolodziej SJ, Liu J, Waxham MN (2009) {beta}CaMKII regulates actin assembly and structure. J Biol Chem 284(15):9770–9780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. O’Leary H, Lasda E, Bayer KU (2006) CaMKIIbeta association with the actin cytoskeleton is regulated by alternative splicing. Mol Biol Cell 17(11):4656–4665

    Article  PubMed  PubMed Central  Google Scholar 

  97. Psatha MI, Razi M, Koffer A, Moss SE, Sacks DB, Bolsover SR (2007) Targeting of calcium:calmodulin signals to the cytoskeleton by IQGAP1. Cell Calcium 41(6):593–605

    Article  CAS  PubMed  Google Scholar 

  98. Sellers JR (2000) Myosins: a diverse superfamily. Biochim Biophys Acta 1496(1):3–22

    Article  CAS  PubMed  Google Scholar 

  99. Hartman MA, Spudich JA (2012) The myosin superfamily at a glance. J Cell Sci 125(Pt 7):1627–1632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Syamaladevi DP, Spudich JA, Sowdhamini R (2012) Structural and functional insights on the Myosin superfamily. Bioinf Biol Insights 6:11–21

    CAS  Google Scholar 

  101. Preller M, Manstein DJ (2013) Myosin structure, allostery, and mechano-chemistry. Structure 21(11):1911–1922

    Article  CAS  PubMed  Google Scholar 

  102. Foth BJ, Goedecke MC, Soldati D (2006) New insights into myosin evolution and classification. Proc Natl Acad Sci USA 103(10):3681–3686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wang F, Thirumurugan K, Stafford WF, Hammer JA 3rd, Knight PJ, Sellers JR (2004) Regulated conformation of myosin V. J Biol Chem 279(4):2333–2336

    Article  CAS  PubMed  Google Scholar 

  104. Lu H, Krementsova EB, Trybus KM (2006) Regulation of myosin V processivity by calcium at the single molecule level. J Biol Chem 281(42):31987–31994

    Article  CAS  PubMed  Google Scholar 

  105. Jung HS, Komatsu S, Ikebe M, Craig R (2008) Head-head and head-tail interaction: a general mechanism for switching off myosin II activity in cells. Mol Biol Cell 19(8):3234–3242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Li MX, Saude EJ, Wang X, Pearlstone JR, Smillie LB, Sykes BD (2002) Kinetic studies of calcium and cardiac troponin I peptide binding to human cardiac troponin C using NMR spectroscopy. Eur Biophys J 31(4):245–256

    Article  CAS  PubMed  Google Scholar 

  107. Herzberg O, Moult J, James MN (1986) Calcium binding to skeletal muscle troponin C and the regulation of muscle contraction. Ciba Found Symp 122:120–144

    CAS  PubMed  Google Scholar 

  108. Murakami K, Yumoto F, Ohki SY, Yasunaga T, Tanokura M, Wakabayashi T (2005) Structural basis for Ca2+−regulated muscle relaxation at interaction sites of troponin with actin and tropomyosin. J Mol Biol 352(1):178–201

    Article  CAS  PubMed  Google Scholar 

  109. Lehman W, Hatch V, Korman V, Rosol M, Thomas L, Maytum R et al (2000) Tropomyosin and actin isoforms modulate the localization of tropomyosin strands on actin filaments. J Mol Biol 302(3):593–606

    Article  CAS  PubMed  Google Scholar 

  110. McKillop DF, Geeves MA (1993) Regulation of the interaction between actin and myosin subfragment 1: evidence for three states of the thin filament. Biophys J 65(2):693–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sequeira V, Nijenkamp LL, Regan JA, van der Velden J (2014) The physiological role of cardiac cytoskeleton and its alterations in heart failure. Biochim Biophys Acta 1838(2):700–722

    Article  CAS  PubMed  Google Scholar 

  112. Engert F, Bonhoeffer T (1999) Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 399(6731):66–70

    Article  CAS  PubMed  Google Scholar 

  113. Toni N, Buchs PA, Nikonenko I, Bron CR, Muller D (1999) LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature 402(6760):421–425

    Article  CAS  PubMed  Google Scholar 

  114. Oertner TG, Matus A (2005) Calcium regulation of actin dynamics in dendritic spines. Cell Calcium 37(5):477–482

    Article  CAS  PubMed  Google Scholar 

  115. Nusco GA, Chun JT, Ercolano E, Lim D, Gragnaniello G, Kyozuka K et al (2006) Modulation of calcium signalling by the actin-binding protein cofilin. Biochem Biophys Res Commun 348(1):109–114

    Article  CAS  PubMed  Google Scholar 

  116. Lovelock JD, Monasky MM, Jeong EM, Lardin HA, Liu H, Patel BG et al (2012) Ranolazine improves cardiac diastolic dysfunction through modulation of myofilament calcium sensitivity. Circ Res 110(6):841–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yoneda M, Nishizaki T, Tasaka K, Kurachi H, Miyake A, Murata Y (2000) Changes in actin network during calcium-induced exocytosis in permeabilized GH3 cells: calcium directly regulates F-actin disassembly. J Endocrinol 166(3):677–687

    Article  CAS  PubMed  Google Scholar 

  118. Couchman JR, Pataki CA (2012) An introduction to proteoglycans and their localization. J Histochem Cytochem 60(12):885–897

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Afratis NA, Nikitovic D, Multhaupt HA, Theocharis AD, Couchman JR, Karamanos NK (2017) Syndecans - key regulators of cell signaling and biological functions. FEBS J 284(1):27–41

    Article  CAS  PubMed  Google Scholar 

  120. Couchman JR (2010) Transmembrane signaling proteoglycans. Annu Rev Cell Dev Biol 26:89–114

    Article  CAS  PubMed  Google Scholar 

  121. Trebak M, Hempel N, Wedel BJ, Smyth JT, Bird GS, Putney JW Jr (2005) Negative regulation of TRPC3 channels by protein kinase C-mediated phosphorylation of serine 712. Mol Pharmacol 67(2):558–563

    Article  CAS  PubMed  Google Scholar 

  122. Oh ES, Woods A, Couchman JR (1997) Syndecan-4 proteoglycan regulates the distribution and activity of protein kinase C. J Biol Chem 272(13):8133–8136

    Article  CAS  PubMed  Google Scholar 

  123. Keum E, Kim Y, Kim J, Kwon S, Lim Y, Han I et al (2004) Syndecan-4 regulates localization, activity and stability of protein kinase C-alpha. Biochem J 378(Pt 3):1007–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Horowitz A, Murakami M, Gao Y, Simons M (1999) Phosphatidylinositol-4,5-bisphosphate mediates the interaction of syndecan-4 with protein kinase C. Biochemistry 38(48):15871–15877

    Article  CAS  PubMed  Google Scholar 

  125. Oh ES, Woods A, Lim ST, Theibert AW, Couchman JR (1998) Syndecan-4 proteoglycan cytoplasmic domain and phosphatidylinositol 4,5-bisphosphate coordinately regulate protein kinase C activity. J Biol Chem 273(17):10624–10629

    Article  CAS  PubMed  Google Scholar 

  126. Tu LC, Chou CK, Chen HC, Yeh SF (2001) Protein kinase C-mediated tyrosine phosphorylation of paxillin and focal adhesion kinase requires cytoskeletal integrity and is uncoupled to mitogen-activated protein kinase activation in human hepatoma cells. J Biomed Sci 8(2):184–190

    Article  CAS  PubMed  Google Scholar 

  127. Fogh BS, Multhaupt HA, Couchman JR (2014) Protein kinase C, focal adhesions and the regulation of cell migration. J Histochem Cytochem 62(3):172–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Trinkaus-Randall V, Kewalramani R, Payne J, Cornell-Bell A (2000) Calcium signaling induced by adhesion mediates protein tyrosine phosphorylation and is independent of pHi. J Cell Physiol 184(3):385–399

    Article  CAS  PubMed  Google Scholar 

  129. Liu Y, Echtermeyer F, Thilo F, Theilmeier G, Schmidt A, Schulein R et al (2012) The proteoglycan syndecan 4 regulates transient receptor potential canonical 6 channels via RhoA/Rho-associated protein kinase signaling. Arterioscler Thromb Vasc Biol 32(2):378–385

    Article  PubMed  CAS  Google Scholar 

  130. Lunde IG, Herum KM, Carlson CC, Christensen G (2016) Syndecans in heart fibrosis. Cell Tissue Res 365(3):539–552

    Article  CAS  PubMed  Google Scholar 

  131. Couchman JR, Multhaupt H, Sanderson RD (2016) Recent insights into cell surface heparan sulphate proteoglycans and cancer. F1000Res 5

    Google Scholar 

  132. Saied-Santiago K, Bulow HE (2018) Diverse roles for glycosaminoglycans in neural patterning. Dev Dyn 247(1):54–74

    Article  CAS  PubMed  Google Scholar 

  133. Christensen G, Herum KM, Lunde IG (2018) Sweet, yet underappreciated: Proteoglycans and extracellular matrix remodeling in heart disease. Matrix Biol

    Google Scholar 

  134. Gopal S, Couchman J, Pocock R (2016) Redefining the role of syndecans in C. elegans biology. Worm 5(1):e1142042

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Humphries JD, Byron A, Humphries MJ (2006) Integrin ligands at a glance. J Cell Sci 119(Pt 19):3901–3903

    Article  CAS  PubMed  Google Scholar 

  136. Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110(6):673–687

    Article  CAS  PubMed  Google Scholar 

  137. **ong JP, Stehle T, Goodman SL, Arnaout MA (2003) Integrins, cations and ligands: making the connection. J Thromb Haemost 1(7):1642–1654

    Article  CAS  PubMed  Google Scholar 

  138. Luo BH, Carman CV, Springer TA (2007) Structural basis of integrin regulation and signaling. Annu Rev Immunol 25:619–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Craig D, Gao M, Schulten K, Vogel V (2004) Structural insights into how the MIDAS ion stabilizes integrin binding to an RGD peptide under force. Structure 12(11):2049–2058

    Article  CAS  PubMed  Google Scholar 

  140. Zhang K, Chen J (2012) The regulation of integrin function by divalent cations. Cell Adhes Migr 6(1):20–29

    Article  Google Scholar 

  141. Stefansson S, Su EJ, Ishigami S, Cale JM, Gao Y, Gorlatova N et al (2007) The contributions of integrin affinity and integrin-cytoskeletal engagement in endothelial and smooth muscle cell adhesion to vitronectin. J Biol Chem 282(21):15679–15689

    Article  CAS  PubMed  Google Scholar 

  142. Cherny RC, Honan MA, Thiagarajan P (1993) Site-directed mutagenesis of the arginine-glycine-aspartic acid in vitronectin abolishes cell adhesion. J Biol Chem 268(13):9725–9729

    CAS  PubMed  Google Scholar 

  143. Charo IF, Nannizzi L, Smith JW, Cheresh DA (1990) The vitronectin receptor alpha v beta 3 binds fibronectin and acts in concert with alpha 5 beta 1 in promoting cellular attachment and spreading on fibronectin. J Cell Biol 111(6 Pt 1):2795–2800

    Article  CAS  PubMed  Google Scholar 

  144. Chen J, Maeda T, Sekiguchi K, Sheppard D (1996) Distinct structural requirements for interaction of the integrins alpha 5 beta 1, alpha v beta 5, and alpha v beta 6 with the central cell binding domain in fibronectin. Cell Adhes Commun 4(4–5):237–250

    Article  CAS  PubMed  Google Scholar 

  145. Sjaastad MD, Angres B, Lewis RS, Nelson WJ (1994) Feedback regulation of cell-substratum adhesion by integrin-mediated intracellular Ca2+ signaling. Proc Natl Acad Sci USA 91(17):8214–8218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Sarin V, Gaffin RD, Meininger GA, Muthuchamy M (2005) Arginine-glycine-aspartic acid (RGD)-containing peptides inhibit the force production of mouse papillary muscle bundles via alpha 5 beta 1 integrin. J Physiol 564(Pt 2):603–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Lin CY, Hilgenberg LG, Smith MA, Lynch G, Gall CM (2008) Integrin regulation of cytoplasmic calcium in excitatory neurons depends upon glutamate receptors and release from intracellular stores. Mol Cell Neurosci 37(4):770–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Wu X, Mogford JE, Platts SH, Davis GE, Meininger GA, Davis MJ (1998) Modulation of calcium current in arteriolar smooth muscle by alphav beta3 and alpha5 beta1 integrin ligands. J Cell Biol 143(1):241–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Gui P, Wu X, Ling S, Stotz SC, Winkfein RJ, Wilson E et al (2006) Integrin receptor activation triggers converging regulation of Cav1.2 calcium channels by c-Src and protein kinase A pathways. J Biol Chem 281(20):14015–14025

    Article  CAS  PubMed  Google Scholar 

  150. Waitkus-Edwards KR, Martinez-Lemus LA, Wu X, Trzeciakowski JP, Davis MJ, Davis GE et al (2002) alpha(4)beta(1) Integrin activation of L-type calcium channels in vascular smooth muscle causes arteriole vasoconstriction. Circ Res 90(4):473–480

    Article  CAS  PubMed  Google Scholar 

  151. Kwon MS, Park CS, Choi K, Ahnn J, Kim JI, Eom SH et al (2000) Calreticulin couples calcium release and calcium influx in integrin-mediated calcium signaling. Mol Biol Cell 11(4):1433–1443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Jiao R, Cui D, Wang SC, Li D, Wang YF (2017) Interactions of the mechanosensitive channels with extracellular matrix, integrins, and cytoskeletal network in osmosensation. Front Mol Neurosci 10:96

    PubMed  PubMed Central  Google Scholar 

  153. Matthews BD, Thodeti CK, Tytell JD, Mammoto A, Overby DR, Ingber DE (2010) Ultra-rapid activation of TRPV4 ion channels by mechanical forces applied to cell surface beta1 integrins. Integr Biol (Camb) 2(9):435–442

    Article  CAS  Google Scholar 

  154. Zimolo Z, Wesolowski G, Tanaka H, Hyman JL, Hoyer JR, Rodan GA (1994) Soluble alpha v beta 3-integrin ligands raise [Ca2+]i in rat osteoclasts and mouse-derived osteoclast-like cells. Am J Phys 266(2 Pt 1):C376–C381

    Article  CAS  Google Scholar 

  155. Bhattacharya S, Ying X, Fu C, Patel R, Kuebler W, Greenberg S et al (2000) alpha(v)beta(3) integrin induces tyrosine phosphorylation-dependent Ca2+ influx in pulmonary endothelial cells. Circ Res 86(4):456–462

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors thank Ms. Ioli Mitsou for images for Fig. 43.3. SG is supported by Senior Postdoctoral Fellowship from Monash University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Gopal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gopal, S., Multhaupt, H.A.B., Couchman, J.R. (2020). Calcium in Cell-Extracellular Matrix Interactions. In: Islam, M. (eds) Calcium Signaling. Advances in Experimental Medicine and Biology, vol 1131. Springer, Cham. https://doi.org/10.1007/978-3-030-12457-1_43

Download citation

Publish with us

Policies and ethics

Navigation