Surgically Facilitated Orthodontic Therapy

  • Chapter
Advances in Periodontal Surgery

Abstract

Comorbidities that negatively impact orthodontic (malocclusion), periodontal (periodontitis, deficient dentoalveolar bone volume, mucogingival), and prosthetic (structural integrity compromise from caries, attrition, and erosion) conditions can affect the general health of the patient. In addition, emerging data highlights the importance of undiagnosed airway volume deficiencies and sleep-disordered breathing conditions in the adult and pediatric population. Deficiencies in dentoalveolar bone and discrepancies in alveoloskeletal relationships can impact the volume of hard and soft tissue structures of the periodontium and decrease oral cavity volume. Contemporary interdisciplinary dentofacial therapy (IDT) is a key process for addressing the comprehensive problems of patients based on etiology, homeostasis, and sustainability of physiologically sound outcomes. These provide the patient with sustainable esthetics and function. Surgically facilitated orthodontic therapy (SFOT) uses corticotomies and dentoalveolar bone decortication to stimulate the regional acceleratory phenomenon and upregulate bone remodeling and tooth movement as a part of orthodontic decompensation. It also generally includes guided periodontal tissue regeneration and/or dentoalveolar bone augmentation via particulate bone grafting. SFOT enhances the dentoalveolar bone phenotype and augments the orthodontic boundary conditions as well as expanding orthodontic treatment opportunities for challenging malocclusion cases. SFOT as a part of IDT is demanding and requires extensive attention and communication among all team members. This chapter focuses on the role of SFOT as an integral component of contemporary IDT to enhance and facilitate highly predictable and sustainable outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 149.79
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wilcko WM, Wilcko T, Bouquot JE, Ferguson DJ (2001) Rapid orthodontics with alveolar resha**: two case reports of decrowding. Int J Periodontics Restorative Dent [Case Reports] 21(1):9–19

    Google Scholar 

  2. Garg AK (1997) The regional acceleratory phenomenon: an up-to-date rationale for bone decortication. Dent Implantol Update 8(8):63–64

    PubMed  Google Scholar 

  3. Mueller M, Schilling T, Minne HW, Ziegler R (1991) A systemic acceleratory phenomenon (SAP) accompanies the regional acceleratory phenomenon (RAP) during healing of a bone defect in the rat. J Bone Miner Res 6(4):401–410

    Article  PubMed  Google Scholar 

  4. Frost HM (1989) The biology of fracture healing. An overview for clinicians. Part II. Clin Orthop Relat Res [Review] (248):294–309

    Google Scholar 

  5. Frost HM (1989) The biology of fracture healing. An overview for clinicians. Part I. Clin Orthop Relat Res [Review] (248):283–293

    Google Scholar 

  6. Frost HM (1983) The regional acceleratory phenomenon: a review. Henry Ford Hosp Med J 31(1):3–9

    PubMed  Google Scholar 

  7. Enlow DH, Moyers RE (1971) Growth and architecture of the face. J Am Dent Assoc 82(4):763–774

    Article  PubMed  Google Scholar 

  8. Evensen JP, Ogaard B (2007) Are malocclusions more prevalent and severe now? A comparative study of medieval skulls from Norway. Am J Orthod Dentofacial Orthop 131(6):710–716

    Article  PubMed  Google Scholar 

  9. Krneta B, Zhurov A, Richmond S, Ovsenik M (2015) Diagnosis of Class III malocclusion in 7- to 8-year-old children—a 3D evaluation. Eur J Orthod 37(4):379–385

    Article  PubMed  Google Scholar 

  10. Joshi N, Hamdan AM, Fakhouri WD (2014) Skeletal malocclusion: a developmental disorder with a life-long morbidity. J Clin Med Res 6(6):399–408

    PubMed  PubMed Central  Google Scholar 

  11. Ahn J, Kim SJ, Lee JY, Chung CJ, Kim KH (2017) Transverse dental compensation in relation to sagittal and transverse skeletal discrepancies in skeletal Class III patients. Am J Orthod Dentofacial Orthop 151(1):148–156

    Article  PubMed  Google Scholar 

  12. Staudt CB, Kiliaridis S (2009) Different skeletal types underlying Class III malocclusion in a random population. Am J Orthod Dentofacial Orthop 136(5):715–721

    Article  PubMed  Google Scholar 

  13. Mandelaris GA, De Groot BS, Relle R, Shah B (2018) Surgically facilitated orthodontic therapy (SFOT): optimizing dentoalveolar bone and space appropriation for facially prioritized interdisciplinary dentofacial therapy. Compend Contin Educ Dent 39(3):146–156

    PubMed  Google Scholar 

  14. Mandelaris GA, Neiva R, Chambrone L (2017) Cone-beam computed tomography and interdisciplinary dentofacial therapy: an American Academy of Periodontology Best Evidence Review focusing on risk assessment of the dentoalveolar bone changes influenced by tooth movement. J Periodontol 88(10):960–977

    Article  PubMed  Google Scholar 

  15. Rose JC, Roblee RD (2009) Origins of dental crowding and malocclusions: an anthropological perspective. Compendium of continuing education in dentistry. Compend Contin Educ Dent [Historical Article] 30(5):292–300

    Google Scholar 

  16. Gilbert SF (2001) Ecological developmental biology: developmental biology meets the real world. Dev Biol 233(1):1–12

    Article  PubMed  Google Scholar 

  17. Boyd KL (2012) Darwinian dentistry part 2: early childhood nutrition, dento-facial development and chronic disease. J Am Orthodontia Soc 12(2):28–32

    Google Scholar 

  18. Agarwal SS, Sharma M, Nehra K, Jayan B, Poonia A, Bhattal H (2016) Validation of association between breastfeeding duration, facial profile, occlusion, and spacing: a cross-sectional study. Int J Clin Pediatr Dent 9(2):162–166

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kohli MV, Patil GB, Kulkarni NB, Bagalkot K, Purohit Z, Dave N et al (2014) A changing trend in eruption age and pattern of first deciduous tooth: correlation to feeding pattern. J Clin Diagn Res 8(3):199–201

    PubMed  PubMed Central  Google Scholar 

  20. Thomaz EB, Cangussu MC, Assis AM (2012) Maternal breastfeeding, parafunctional oral habits and malocclusion in adolescents: a multivariate analysis. Int J Pediatr Otorhinolaryngol 76(4):500–506

    Article  PubMed  Google Scholar 

  21. Kim SJ, Kim KH, Yu HS, Baik HS (2014) Dentoalveolar compensation according to skeletal discrepancy and overjet in skeletal Class III patients. Am J Orthod Dentofacial Orthop 145(3):317–324

    Article  PubMed  Google Scholar 

  22. Qu X, Liu Z, Wang Y, Fang Y, Du M, He H (2017) Dentofacial traits in association with lower incisor alveolar cancellous bone thickness: a multiple regression analysis. Angle Orthod 87(3):409–415

    Article  PubMed  Google Scholar 

  23. Estelita S, Janson G, Chiqueto K (2015) Extreme dental compensation in an adult skeletal Class III malocclusion: 3-year follow-up of a successfully compromised treatment. Int J Orthod Milwaukee 26(2):69–76

    PubMed  Google Scholar 

  24. Evangelista K, Vasconcelos Kde F, Bumann A, Hirsch E, Nitka M, Silva MA (2010) Dehiscence and fenestration in patients with Class I and Class II Division 1 malocclusion assessed with cone-beam computed tomography. Am J Orthod Dentofacial Orthop 138(2):133 e1–133 e7; discussion 5

    Google Scholar 

  25. Franklin KA, Lindberg E (2015) Obstructive sleep apnea is a common disorder in the population—a review on the epidemiology of sleep apnea. J Thorac Dis 7(8):1311–1322

    PubMed  PubMed Central  Google Scholar 

  26. Peppard PE, Young T, Barnet JH, Palta M, Hagen EW, Hla KM (2013) Increased prevalence of sleep-disordered breathing in adults. Am J Epidemiol 177(9):1006–1014

    Article  PubMed  PubMed Central  Google Scholar 

  27. Patino M, Sadhasivam S, Mahmoud M (2013) Obstructive sleep apnoea in children: perioperative considerations. Br J Anaesth 111(Suppl 1):i83–i95

    Article  PubMed  Google Scholar 

  28. Nespoli L, Caprioglio A, Brunetti L, Nosetti L (2013) Obstructive sleep apnea syndrome in childhood. Early Hum Dev 89(Suppl 3):S33–S37

    Article  PubMed  Google Scholar 

  29. Iida-Kondo C, Yoshino N, Kurabayashi T, Mataki S, Hasegawa M, Kurosaki N (2006) Comparison of tongue volume/oral cavity volume ratio between obstructive sleep apnea syndrome patients and normal adults using magnetic resonance imaging. J Med Dent Sci 53(2):119–126

    PubMed  Google Scholar 

  30. Iared W, Koga da Silva EM, Rufino Macedo C (2017) Esthetic perception of changes in facial profile resulting from orthodontic treatment with extraction of premolars: a systematic review. J Am Dent Assoc 148(1):9–16

    Article  PubMed  Google Scholar 

  31. Pliska BT, Tam IT, Lowe AA, Madson AM, Almeida FR (2016) Effect of orthodontic treatment on the upper airway volume in adults. Am J Orthod Dentofacial Orthop 150(6):937–944

    Article  PubMed  Google Scholar 

  32. Miller A, Vargervik K (1983) Electromyography as a technique to study neuromuscular characteristics in hemifacial microsomia and other congenital anomalies. In: Harvold EP, Vargervik K, Chierici G (eds) Treatment of hemifacial microsomia. Alan R. Liss, New York, pp 89–112

    Google Scholar 

  33. Harvold EP (1983) The theoretical basis for the treatment of hemifacial microsomia. In: Harvold EP, Vargervik K, Chierici G (eds) Treatment of hemifacial microsomia. Alan R. Liss, New York, pp 1–137

    Google Scholar 

  34. Chin M (2016) Establishing and maintaining osseointegration within the functional matrix. Int J Periodontics Restorative Dent 36(1):29–37

    Article  PubMed  Google Scholar 

  35. Chin M (2015) 5. Using develo** teeth to generate bone. Surgical design for dental reconstruction with implants: a new paradigm. Quintessence Books, Hanover Park

    Google Scholar 

  36. Chin M (2015) 1. Introduction to surgical design using embryologic processes. Surgical design for dental reconstruction with implants: a new paradigm. Quintessence Books, Hanover Park

    Google Scholar 

  37. Nanci A, Moffatt P (2012) Section 1: Bones of the oral-dental and craniofacial complex. In: McCauley LK, Somerman MJ (eds) Mineralized tissues in oral and craniofacial science: biological principles and clinical correlates. Wiley-Blackwell, West Sussex, pp 3–12

    Google Scholar 

  38. ten Cate AR (1980) Embryology of the head, face and oral cavity. In: Ten Cate AR (ed) Oral histology. development, structure and function. Mosby, St. Louis, pp 18–46

    Google Scholar 

  39. Cho MI, Garant PR (2000) Development and general structure of the periodontium. Periodontology 24:9–27

    Article  Google Scholar 

  40. ten Cate AR (1980) Development of the periodontium. In: Ten Cate AR (ed) Oral histology. development, structure and function. Mosby, St. Louis, pp 218–233

    Google Scholar 

  41. Bosson C, Devillard F, Satre V, Dieterich K, Ray PF, Morand B et al (2016) Microdeletion del(22)(q12.1) excluding the MN1 gene in a patient with craniofacial anomalies. Am J Med Genet A 170(2):498–503

    Article  Google Scholar 

  42. Calic A, Peterlin B (2015) Epigenetics and bruxism: possible role of epigenetics in the etiology of bruxism. Int J Prosthodont 28(6):594–599

    Article  PubMed  Google Scholar 

  43. Rot I, Mardesic-Brakus S, Costain WJ, Saraga-Babic M, Kablar B (2014) Role of skeletal muscle in mandible development. Histol Histopathol 29(11):1377–1394

    PubMed  Google Scholar 

  44. Seelan RS, Mukhopadhyay P, Pisano MM, Greene RM (2012) Developmental epigenetics of the murine secondary palate. ILAR J 53(3–4):240–252

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ejdesjo A, Wentzel P, Eriksson UJ (2012) Influence of maternal metabolism and parental genetics on fetal maldevelopment in diabetic rat pregnancy. Am J Physiol Endocrinol Metab 302(10):E1198–E1209

    Article  PubMed  Google Scholar 

  46. Williams SD, Hughes TE, Adler CJ, Brook AH, Townsend GC (2014) Epigenetics: a new frontier in dentistry. Aust Dent J 59(Suppl 1):23–33

    Article  PubMed  Google Scholar 

  47. Beebe K, Kennedy AD (2016) Sharpening precision medicine by a thorough interrogation of metabolic individuality. Comput Struct Biotechnol J 14:97–105

    Article  PubMed  PubMed Central  Google Scholar 

  48. Trainor PA, Richtsmeier JT (2015) Facing up to the challenges of advancing craniofacial research. Am J Med Genet A 167(7):1451–1454

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zimmo N, Saleh MH, Mandelaris GA, Chan HL, Wang HL (2017) Corticotomy-accelerated orthodontics: a comprehensive review and update. Compend Contin Educ Dent 38(1):17–25; quiz 6.

    PubMed  Google Scholar 

  50. Mandelaris GA, Vence BS, Rosenfeld AL, Forbes DS (2013) A classification system for crestal and radicular dentoalveolar bone phenotypes. Int J Periodontics Restorative Dent 33(3):289–296

    Article  PubMed  Google Scholar 

  51. Mandelaris GA (2016) “Restorative Leadership” in the Digital Era of Implantology. Compend Contin Educ Dent 37(7):488–490

    PubMed  Google Scholar 

  52. Yilmaz BS, Kucukkeles N (2014) Skeletal, soft tissue, and airway changes following the alternate maxillary expansions and constrictions protocol. Angle Orthod 84(5):868–877

    PubMed  Google Scholar 

  53. Denolf PL, Vanderveken OM, Marklund ME, Braem MJ (2016) The status of cephalometry in the prediction of non-CPAP treatment outcome in obstructive sleep apnea patients. Sleep Med Rev 27:56–73

    Article  PubMed  Google Scholar 

  54. Evans M (2013) Three-dimensional control with TAD-tissue supported rapid palatal expander: an overview of clinical applications and biological advantages. Orthodont Clin Rev:22–31

    Google Scholar 

  55. Carlson C, Sung J, McComb RW, Machado AW, Moon W (2016) Micro-implant assisted rapid palatal expansion appliance to orthopaedically correct transverse maxillary deficiency in an adult. Am J Orthod Dentofacial Orthop 149:716–728

    Article  PubMed  Google Scholar 

  56. Mandelaris GA, Scheyer ET, Evans M, Kim D, McAllister B, Nevins ML et al (2017) American Academy of Periodontology Best Evidence Consensus Statement on selected oral applications for cone-beam computed tomography. J Periodontol 88(10):939–945

    Article  PubMed  Google Scholar 

  57. Handelman CS (1996) The anterior alveolus: its importance in limiting orthodontic treatment and its influence on the occurrence of iatrogenic sequelae. Angle Orthod 66(2):95–109; discussion 10

    PubMed  Google Scholar 

  58. Braut V, Bornstein MM, Belser U, Buser D (2011) Thickness of the anterior maxillary facial bone wall-a retrospective radiographic study using cone beam computed tomography. Int J Periodontics Restorative Dent 31(2):125–131

    PubMed  Google Scholar 

  59. Nowzari H, Molayem S, Chiu CH, Rich SK (2012) Cone beam computed tomographic measurement of maxillary central incisors to determine prevalence of facial alveolar bone width >/=2 mm. Clin Implant Dent Relat Res [Research Support, Non-U.S. Gov’t] 14(4):595–602

    Article  Google Scholar 

  60. Wang HL, Boyapati L (2006) “PASS” principles for predictable bone regeneration. Implant Dent 15(1):8–17

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge and thank Dr. Brian Shah and Dr. Robert Relle for their expertise and contribution to the orthognathic (jaws-to-face planning) surgery section of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George A. Mandelaris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Mandelaris, G.A., DeGroot, B.S. (2020). Surgically Facilitated Orthodontic Therapy. In: Nares, S. (eds) Advances in Periodontal Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-12310-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12310-9_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12309-3

  • Online ISBN: 978-3-030-12310-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation