Analyzing the Mediterranean Water Cycle Via Satellite Data Integration

  • Chapter
  • First Online:
Meteorology and Climatology of the Mediterranean and Black Seas

Abstract

The water cycle components are being retrieved by an increasing number of satellite missions. However, the monitoring of the water cycle by satellite Earth Observations is still a challenge. Data sets suffer from numerous systematic and random errors and they are often not coherent with each other. We focus here on the Mediterranean basin, one of the regions most sensitive to climate change. A satellite-based analysis of the water cycle is undertaken using a collection of available satellite data sets. Our satellite data set combination uses a simple bias correction and weighted average, and provides a better water budget closure results than any raw satellite data set. Our almost purely satellite data set allows to better describe the full water cycle, not only over the continents, but also in the atmosphere and over the ocean. The limitation/possibilities of this satellite multi-component data set are described: (1) although improved, the water cycle is still not closed by satellite data and the satellite community should focus on this issue, (2) our combined data set shows good coherency with the ERA-I reanalysis which is the reference so far, both in terms of seasonal climatology and long-term trends. This means that, even if the water budget is not yet closed by satellite data, our monitoring of the water cycle using satellite observations is improving, even over complex regions such as the Mediterranean basin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 105.49
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adler, R.F., Huffman, G.J., Chang, A., Ferraro, R., **e, P-P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind, J., Arkin, P., & Nelkin, E. (2003). The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979Present). Journal of Hydrometeorology, 4(6):1147–1167. ISSN 1525-755X. https://doi.org/10.1175/1525-7541(2003)004003C1147:TVGPCP003E2.0.CO;2.

  • Aires, F. (2014). Combining datasets of satellite-retrieved products. Part I: Methodology and water budget closure. Journal of Hydrometeorology, 15(4), 1677–1691. ISSN 1525-755X. https://doi.org/10.1175/JHM-D-13-0148.1.

    Article  Google Scholar 

  • Ashouri, H., Hsu, K-L., Sorooshian, S., Braithwaite, D.K., Knapp, K.R., Dewayne Cecil L., Nelson, B.R., Prat, O.P., Ashouri, H., Hsu, K-L., Sorooshian, S., Braithwaite, D.K., Knapp, K.R., & Prat, O.P. (2015). PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bulletin of the American Meteorological Society, 96(1), 69–83. ISSN 0003-0007. https://doi.org/10.1175/BAMSD-13-00068.1.

  • Barella-Ortiz, A., Polcher, J., Tuzet, A., & Laval, K. (2013). Potential evaporation estimation through an unstressed surfaceenergy balance and its sensitivity to climate change. Hydrology and Earth System Sciences, 17(11), 4625–4639. ISSN 1607–7938. doi: https://doi.org/10.5194/hess-17-4625-2013.

    Article  Google Scholar 

  • Barella-Ortiz, A., Polcher, J., Tuzet, A., & Laval, K. (2013). Potential evaporation estimation through an unstressed surfaceenergy balance and its sensitivity to climate change. Hydrology and Earth System Sciences, 17(11), 4625–4639. ISSN 1607-7938. https://doi.org/10.5194/hess-17-4625-2013.

    Article  Google Scholar 

  • Biancale, R., Balmino, G., Bruinsma, S., Lemoine, J., Perosanz, F., Marty, J., et al. (2004). Development and assessment of GRACE derived gravity field monthly solutions. American Geophysical Union, Fall Meeting 2004, abstract id. G23A-02.

    Google Scholar 

  • Curry, J.A., Bentamy, A., Bourassa, M.A., Bourras, D., Bradley, E.F., Brunke, M., Castro, S., Chou, S.H., Clayson, C.A., Emery, W.J., Eymard, L., Fairall, C.W., Kubota, M., Lin, B., Perrie, W., Reeder, R.A., Renfrew, I.A., Rossow, W.B., Schulz, J., Smith, S.R., Webster, P.J., Wick, G.A., Zeng, X., Curry, J.A., Bentamy, A., Bourassa, M.A., Bourras, D., Bradley, E.F., Brunke, M., Castro, S., Chou, S.H., Clayson, C.A., Emery, W.J., Eymard, L., Fairall, C.W., Kubota, M., Lin, B., Perrie, W., Reeder, R.A., Renfrew, I.A., Rossow, W.B., Schulz, J., Smith, S.R., Webster, P.J., Wick, G.A., & Zeng, X. (2004). SEAFLUX. Bulletin of the American Meteorological Society, 85(3), 409–424. ISSN 0003-0007. https://doi.org/10.1175/BAMS-85-3-409.

    Article  Google Scholar 

  • Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M.A.,Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A.C.M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A.J., Haimberger, L., Healy, S.B., Hersbach, H., Hólm, E.V., Isaksen, L., Kållberg, P., Kӧhler, M., Matricardi, M., McNally, A.P., Monge-Sanz, B.M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., & Vitart, F. (2011). The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Societ, 137(656), 553–597. ISSN 00359009. https://doi.org/10.1002/qj.828.

    Article  Google Scholar 

  • Ducharne, A., Golaz, C., Leblois, E., Laval, K., Polcher, J., Ledoux, E., & de Marsily, G. (2003). Development of a high resolution runoff routing model, calibration and application to assess runoff from the LMD GCM. Journal of Hydrology, 280(1), 207–228. ISSN 00221694. https://doi.org/10.1016/S0022-1694(03)00230-0.

    Article  Google Scholar 

  • Eicker, A., Forootan, E., Springer, A., & Longuevergne, L. (2016). Does GRACE see the terrestrial water cycle ‘intensifying’? Journal of Geophysical Research, 121(2), 733–745.

    Google Scholar 

  • Prieto, D.F., & van Oevelen, E.P. (2012). ESA-gewex earth observation and water cycle science priorities. Hydrology and Earth System Sciences

    Google Scholar 

  • Gosset, M., Viarre, J., Quantin, G., & Alcoba, M. (2013). Evaluation of several rainfall products used for hydrological applications over West Africa using two high-resolution gauge networks. Quarterly Journal of the Royal Meteorological Society, 139(673), 923–940. ISSN 00359009. https://doi.org/10.1002/qj.2130.

    Article  Google Scholar 

  • Guo, H., Chen, S., Bao, A., Hu, J., Gebregiorgis, A., Xue, X., & Zhang, X. (2015) Inter-comparison of high-resolution satellite precipitation products over central Asia. Remote Sensing, 7(12), 7181–7211. ISSN 2072-4292. https://doi.org/10.3390/rs70607181.

    Article  Google Scholar 

  • Harzallah, A., Jordà, G., Dubois, C., Sannino, G., Carillo, A., Li, L., Arsouze, T., Cavicchia, L., Beuvier, J., & Akhtar, N. (2016). Long term evolution of heat budget in the Mediterranean Sea from Med-CORDEX forced and coupled simulations. Climate Dynamics. ISSN 0930-7575. https://doi.org/10.1007/s00382-016-3363-5.

    Article  Google Scholar 

  • Haylock, M.R., Hofstra, N., Klein Tank, A.M.G., Klok, E.J., Jones, P.D., & New, M. (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 19502006. Journal of Geophysical Research, 113. https://doi.org/10.1029/2008JD010201

  • Hirschi, M., Viterbo, P, & Seneviratne, S.I. (2006). Basin-scale water-balance estimates of terrestrial water storage variations from ECMWF operational forecast analysis. Geophysical Research Letters, 33(21), L21401. ISSN 0094-8276. https://doi.org/10.1029/2006GL027659.

  • Huffman, G.J., Bolvin, D.T., Nelkin, E.J., Wolff, D.B., Adler, R.F., Gu, G., Hong, Y., Bowman, K.P., Stocker, E.F. (2007). The TRMM multisatellite precipitation analysis (TMPA): Quasiglobal, multiyear, combined-sensor precipitation estimates at fine scales. Journal of Hydrometeorology, 8(1), 38–55. ISSN 1525-755X. https://doi.org/10.1175/JHM560.1.

    Article  Google Scholar 

  • IPCC. (2014). IPCC, 2014: Climate change 2014: Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change [core writing team, R.K. Pachauri and L.A. Meyer (eds.)]. Geneva: IPCC, Technical report.

    Google Scholar 

  • Jordà, G., Sánchez-Román, A., & Gomis, D. (2016). Reconstruction of transports through the Strait of Gibraltar from limited observations. Climate Dynamics. ISSN 0930-7575. https://doi.org/10.1007/s00382-016-3113-8.

    Article  Google Scholar 

  • Jones, P.W. (1999). First- and second-order conservative remap** schemes for grids in spherical coordinates. Mon. Wea. Rev., 127, 2204–2210. https://doi.org/10.1175/1520-0493(1999).

  • Joyce, R. J., Janowiak, J. E., Arkin, P. A., & **e, P. (2004). CMORPH: a method that produces global precipitation estimates from data at high spatial and temporal resolution. Journal of Hydrometeorology, 5, 487–503.

    Article  Google Scholar 

  • Kidd, C., Bauer, P., Turk, J., Huffman, G.J., Joyce, R., Hsu, K.-L., Braithwaite, D., Kidd, C., Bauer, P., Turk, J., Huffman, G.J., Joyce, R., Hsu, K.-L., & Braithwaite, D. (2012). Intercomparison of high-resolution precipitation products over Northwest Europe. Journal of Hydrometeorology, 13(1), 67–83. ISSN 1525-755X. https://doi.org/10.1175/JHM-D-11-042.1.

    Article  Google Scholar 

  • Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World Map of the Kӧppen-Geiger climate classification updated. eschweizerbartxxx. Meteorologische Zeitschrift, 15(3), 259–263. https://doi.org/10.1127/0941-2948/2006/0130.

    Article  Google Scholar 

  • Landerer, F. W., & Swenson, S. C. (2012). Accuracy of scaled GRACE terrestrial water storage estimates. Water Resources Research, 48, W04531. https://doi.org/10.1029/2011WR011453.

  • Lawford, R.G., Roads, J., Lettenmaier, D.P., & Arkin, P. (2007). GEWEX contributions to large-scale hydrometeorology. Journal of Hydrometeorology, 8. https://doi.org/10.1175/JHM608.1.

    Article  Google Scholar 

  • L’Ecuyer, T.S., Beaudoing, H.K., Rodell, M., Olson, W., Lin, B., Kato, S., Clayson, C.A., Wood, E., Sheffield, J., Adler, R., Huffman, G., Bosilovich, M., Gu, G., Robertson, F., Houser, P.R., Chambers, D., Famiglietti, J.S., Fetzer, E., Liu, W.T., Gao, X., Schlosser, C.A., Clark, E., Lettenmaier, D.P., Hilburn, K., L’Ecuyer, T.S., Beaudoing, H.K., Rodell, M., Olson, W., Lin, B.,Kato, S., Clayson, C.A., Wood, E., Sheffield, J., Adler, R., Huffman, G., Bosilovich, M., Gu, G., Robertson, F., Houser, P.R., Chambers, D., Famiglietti, J.S., Fetzer, E., Liu, W.T., Gao, X., Schlosser, C.A., Clark, E., Lettenmaier, D.P., & Hilburn, K. (2015). The observed state of the energy budget in the early twenty-first century. Journal of Climate, 28(21), 8319–8346. ISSN 0894-8755. https://doi.org/10.1175/JCLI-D-14-00556.1.

    Article  Google Scholar 

  • Levizzani, V., Laviola, S., & Cattani, E. (2011). Detection and measurement of snowfall from space. Remote Sensing, 3(1), 145–166. ISSN 20724292. https://doi.org/10.3390/rs3010145.

    Article  Google Scholar 

  • Li, L.Z.X. (2006). Atmospheric GCM response to an idealized anomaly of the Mediterranean sea surface temperature. Climate Dynamics, 27(5):543–552. ISSN 0930-7575. https://doi.org/10.1007/s00382-006-0152-6.

    Article  Google Scholar 

  • Lionello, P., Malanotte-Rizzoli, P., Boscolo, R., Alpert, P., Artale, V., Li, L., et al. (2006). The Mediterranean climate: An overview of the main characteristics and issues. Developments in Earth and Environmental Sciences., 4, 1–26.

    Google Scholar 

  • Llasat, M.C., Marcos, R., Turco, M., Gilabert, J., & Llasat-Botija, M. (2016). Trends in flash flood events versus convective precipitation in the Mediterranean region: The case of Catalonia. Journal of Hydrology, 541, 24–37. ISSN 00221694. https://doi.org/10.1016/j.jhydrol.2016.05.040.

    Article  Google Scholar 

  • Longuevergne, L., Scanlon, B.R., & Wilson, C.R. (2010) GRACE hydrological estimates for small basins: Evaluating processing approaches on the high plains aquifer. Water Resources Research, 46.

    Google Scholar 

  • Ludwig, W., Dumont, E., Meybeck, M., & Heussner, S. (2009). River discharges of water and nutrients to the Mediterranean and Black Sea: Major drivers for ecosystem changes during past and future decades? Progress in Oceanography, 80(3–4), 199–217. ISSN 00796611. https://doi.org/10.1016/j.pocean.2009.02.001.

    Article  Google Scholar 

  • Maheras, P., Tolika, K., Anagnostopoulou, C., Vafiadis, M., Patrikas, I., & Flocas, H. (2004). On the relationships between circulation types and changes in rainfall variability in Greece. International Journal of Climatology, 24(13), 1695–1712. ISSN 0899-8418. https://doi.org/10.1002/joc.1088.

    Article  Google Scholar 

  • Margat, J. (2004). Programme des Nations Unies pour l’environnement Plan d’Action pour la Mediterranee: Situation et perspectives MAP Technical Report Series No. 158 PNUE/PAM. (158).

    Google Scholar 

  • Mariotti, A. (2010). Recent changes in the mediterranean water cycle: A pathway toward long-term regional hydroclimatic change? Journal of Climate, 23(6), 1513–1525. ISSN 08948755. https://doi.org/10.1175/2009JCLI3251.1.

    Article  Google Scholar 

  • Mariotti, A., Vittoria Struglia, M., Zeng, N., & Lau, K.-M. (2002). The Hydrological Cycle in the Mediterranean region and implications for the water budget of the Mediterranean Sea. Journal of Climate, 15(13), 1674–1690. ISSN 0894-8755. https://doi.org/10.1175/1520-0442(2002)015003C1674:THCITM003E2.0.CO;2.

  • Mariotti, A., Zeng,N., Yoon, J-H. , Artale, V., Navarra, A., Alpert, P., & Li, L.Z.X (2008). Mediterranean water cycle changes: Transition to drier 21st century conditions in observations and CMIP3 simulations. Environmental Research Letters, 3(4), 044001. ISSN 1748-9326. https://doi.org/10.1088/1748-9326/3/4/044001.

    Article  Google Scholar 

  • Martens, B., Miralles, D.G., Lievens, H., van der Schalie, R., de Jeu, R.A.M., Férnandez-Prieto, D., Beck, H.E., Dorigo, W.A., Verhoest, N.E.C. (2016). GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geoscientific Model Development Discussion, 1–36. ISSN 1991–962X. doi: https://doi.org/10.5194/gmd-2016-162.

  • Martens, B., Miralles, D.G., Lievens, H., van der Schalie, R., de Jeu, R.A.M., Férnandez-Prieto, D., Beck, H.E, Dorigo, W.A., Verhoest, N.E.C. (2016). GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geoscientific Model Development Discussion, 1–36. ISSN 1991-962X. https://doi.org/10.5194/gmd-2016-162.

  • Mu, Q., Zhao, M.,&Running S.W. (2011). Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sensing of Environment, 115(8), 1781–1800. ISSN 00344257. https://doi.org/10.1016/j.rse.2011.02.019.

    Article  Google Scholar 

  • Mueller, B., Hirschi, M., & Seneviratne, S.I. (2011). New diagnostic estimates of variations in terrestrial water storage based on ERA-Interim data. Hydrological Processes, 25(7), 996–1008. ISSN 08856087. https://doi.org/10.1002/hyp.7652.

    Article  Google Scholar 

  • Munier, S., Aires, F., Schlaffer, S., Prigent, C., Papa, F., Maisongrande, P., & Pan, M. (2014). Combining data sets of satelliteretrieved products for basin-scale water balance study: 2. Evaluation on the Mississippi Basin and closure correction model. Journal of Geophysical Research, 119(21), 12100–12116. ISSN 2169897X. https://doi.org/10.1002/2014JD021953.

    Google Scholar 

  • Pan, M., & Wood, E.F. (2006). Data assimilation for estimating the terrestrial water budget using a constrained ensemble Kalman Filter. Journal of Hydrometeorology, 7(3), 534–547. ISSN 1525-755X. https://doi.org/10.1175/JHM495.1.

    Article  Google Scholar 

  • Pan, M., Sahoo, A.K., Troy, T.J., Vinukollu, R.K., Sheffield, J., & Wood, E.F. (2012). Multisource estimation of long-term terrestrial water budget for major global river basins. Journal of Climate, 25(9), 3191–3206. ISSN 08948755. https://doi.org/10.1175/JCLI-D-11-00300.1.

    Article  Google Scholar 

  • Philandras, C.M., Nastos, P.T., Kapsomenakis, J., Douvis, K.C., Tselioudis, G., & Zerefos, C.S. (2011). Long term precipitation trends and variability within the Mediterranean region. Natural Hazards and Earth System Sciences, 11(12), 3235–3250. ISSN 15618633. doi: https://doi.org/10.5194/nhess-11-3235-2011.

    Article  Google Scholar 

  • Philandras, C.M., Nastos, P.T., Kapsomenakis, J., Douvis, K.C., Tselioudis, G., & Zerefos, C.S. (2011). Long term precipitation trends and variability within the Mediterranean region. Natural Hazards and Earth System Sciences, 11(12), 3235–3250. ISSN 15618633. https://doi.org/10.5194/nhess-11-3235-2011.

    Article  Google Scholar 

  • Pike, J.G. (1964). The estimation of annual run-off from meteorological data in a tropical climate. Journal of Hydrology, 2(2), 116–123. ISSN 00221694. https://doi.org/10.1016/0022-1694(64)90022-8

    Article  Google Scholar 

  • Polcher, J., Mcavaney, B., Viterbo, P., Gaertner,M.-A., Hahmann, A., Mahfouf, J.-F., Noilhan, J., Phillips, T., Pitman, A., Schlosser, C.A., Schulz, J.-P., Timbal, B., Verseghy, D., & Xue, Y. (1998). A proposal for a general interface between land surface schemes and general circulation models. Global and Planetary Change,19, 261–276.

    Article  Google Scholar 

  • Roads, J., Kanamitsu, M., Stewart, R., Roads, J., Kanamitsu, M., & Stewart, R. (2002a). CSE Water and energy budgets in the NCEPDOE reanalysis II. Journal of Hydrometeorology, 3(3), 227–248. ISSN 1525-755X. https://doi.org/10.1175/1525-7541(2002)003<0227:CWAEBI>5b2.0.CO;2.

    Article  Google Scholar 

  • Roads, J., Lawford, R., Bainto, E., Berbery, E., Chen, S., Fekete, B., Gallo, K., Grundstein, A., Higgins, W., Kanamitsu, M., Krajewski, W., Lakshmi, V., Leathers, D., Lettenmaier, D., Luo, L., Maurer, E., Meyers, T., Miller, D., Mitchell, K., Mote, T., Pinker, R., Reichler, T., Robinson, D., Robock, A., Smith, J., Srinivasan, G., Vinnikov, K., Vonder Haar, T., Vorosmarty, C., Williams, S., & Yarosh, E. (2002b). GCIP water and energy budget synthesis (WEBS). Journal of Geophysical Research

    Google Scholar 

  • Rodell, M., Beaudoing, H.K., L’Ecuyer, T.S., Olson, W.S., Famiglietti, J.S., Houser, P.R., Adler, R., Bosilovich, M.G., Clayson, C.A., Chambers, D., Clark, E., Fetzer, E.J., Gao, X., Gu, G., Hilburn, K., Huffman, G.J., Lettenmaier, D.P., Liu, W.T., Robertson, F.R., Schlosser, C.A., Sheffield, J., & Wood, E.F. (2015). The observed state of the water cycle in the early 21st century. Journal of Climate, 8289–8318. ISSN 0894-8755. https://doi.org/10.1175/JCLI-D-14-00555.1.

    Article  Google Scholar 

  • Schneider, N., Schrӧder, M., Lindstrot, R., Preusker, R., & Stengel, M. (2013). ESA DUE GlobVapour ESA DUE GlobVapour Consortium. ESA DUE GlobVapour Water Vapor Products: Validation, 1531, 484–487. https://doi.org/10.1063/1.4804812.

  • Senay, G.B., Asante, K., & Artan, G. (2009). Water balance dynamics in the Nile Basin. Hydrological Processes, 23(26):n/a–n/a. ISSN 08856087. https://doi.org/10.1002/hyp.7364.

  • Seneviratne, S.I., Lüthi, D., Litschi, M., & Schär, C. (2006). Landatmosphere coupling and climate change in Europe. Nature, 443(7108):205–209. ISSN 0028-0836. https://doi.org/10.1038/nature05095.

    Article  Google Scholar 

  • Sheffield, J., Ferguson, C.R., Troy, T.J., Wood, E. F., & McCabe, M.F. (2009). Closing the terrestrial water budget from satellite remote sensing. Geophys. Res. Lett., 36(7):1–5. ISSN 00948276. https://doi.org/10.1029/2009GL037338.

    Article  Google Scholar 

  • Soto-Navarro, J., Criado-Aldeanueva, F., García-Lafuente, J., & Sánchez-Román, A. (2010). Estimation of the Atlantic inflow through the Strait of Gibraltar from climatological and in situ data. J. Geophys. Res. 115(C10):C10023. ISSN 0148-0227. https://doi.org/10.1029/2010JC006302.

  • Stopa, J.E. & Cheung, K.F. (2014). Intercomparison of wind and wave data from the ECMWF reanalysis Interim and the NCEP climate forecast system reanalysis. Ocean Model, 75, 65–83. ISSN 14635003. https://doi.org/10.1016/j.ocemod.2013.12.006.

    Article  Google Scholar 

  • Struglia, M.V., Mariotti, A., & Filograsso, A. (2004). River discharge into the Mediterranean sea: Climatology and aspects of the observed variability. Journal of Climate, 17(24), 4740–4751. ISSN 08948755. https://doi.org/10.1175/JCLI-3225.1.

    Article  Google Scholar 

  • Sun, B., Yu, L., Weller, R.A. (2003). Comparisons of surface meteorology and turbulent heat fluxes over the Atlantic: NWP model analyses versus moored buoy observations*. Journal of Climate, 16(4), 679–695. ISSN 0894-8755. https://doi.org/10.1175/1520-0442(2003)016003C0679:COSMAT003E2.0.CO;2.

  • Tapley, B.D., Bettadpur, S., Watkins, M., & Reigber, C. 2004. The gravity recovery and climate experiment: Mission overview and early results. Geophysical Research Letters, 31. https://doi.org/10.1029/2004GL019920.

    Article  Google Scholar 

  • Trenberth, K.E., & Fasullo, J.T. (2013). Regional energy and water cycles: Transports from ocean to land. Journal of Climate, 26. https://doi.org/10.1175/JCLI-D-13-00008.1.

    Article  Google Scholar 

  • Trenberth, K.E., Smith, L., Qian, T., Dai, A., & Fasullo, J. (2007). Estimates of the global water budget and its annual cycle using observational and model data. Journal of Hydrometeorology, 8. https://doi.org/10.1175/JHM600.1.

    Article  Google Scholar 

  • Trenberth, K.E., Fasullo, J.T., & Mackaro, J. (2011). Atmospheric moisture transports from ocean to land and global energy flows in reanalyses. Journal of Climate, 24. https://doi.org/10.1175/2011JCLI4171.1.

    Article  Google Scholar 

  • Turk, J.T., Mostovoy, G.V., & Anantharaj, V. (2010). The NRLblend high resolution precipitation product and its application to land surface hydrology. In Satell. Rainfall Appl. Surf. Hydrol., pp. 85–104. Netherlands: Springer. https://doi.org/10.1007/978-90-481-2915-7-6.

  • Watkins, M.M., Wiese, D.N., Yuan, D.-N., Boening, C., & Landerer, F.W. (2015). Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. Journal of Geophysical Research: Solid Earth, 120(4), 2648–2671. ISSN 21699313. https://doi.org/10.1002/2014JB011547.

    Google Scholar 

  • Wood, E.F., & Schaepman, M. (2009). Continental and globalscale terrestrial water and energy budgets using remote sensing observations. Seminar

    Google Scholar 

  • Wu, H., Kimball, J.S., Mantua, N., Stanford, J. (2011). Automated upscaling of river networks for macroscale hydrological modeling. Water Resources Research, 47(3):n/a–n/a. ISSN 00431397. https://doi.org/10.1029/2009WR008871.

  • Tugrul Yilmaz, M., DelSole, T., & Houser, P.R. (2011). Improving land data assimilation performance with a water budget constraint. Journal of Hydrometeorology, 12(5), 1040–1055. ISSN 1525-755X. https://doi.org/10.1175/2011JHM1346.1.

    Article  Google Scholar 

  • Zektser, I.S., Loaiciga, H.A. (1993). Groundwater fluxes in the global hydrologic cycle: Past, present and future. Journal of Hydrology, 144(1–4), 405–427. ISSN 00221694. https://doi.org/10.1016/0022-1694(93)90182-9.

    Article  Google Scholar 

  • Zhang, K., Kimball, J.S., Nemani, R.R., & Running, S.W. (2010). A continuous satellite-derived global record of land surface evapotranspiration from 1983 to 2006. Water Resources Research, 46 (9):n/a–n/a. ISSN 00431397. https://doi.org/10.1029/2009WR008800.

Download references

Acknowledgements

We would like to thank the ESA (European Space Agency) and the STSE for funding the ‘‘Water Cycle Observation Multi-mission Strategy For Mediterranean region’’ project (wacmosmed.estellus.fr). We also thank colleagues for providing the data sets used in this study: Wouter Dorigo, from Wien University, for the EO data sets; Jan Polcher from LMD for the ORCHIDEE outputs; Ludwig Wolgang from CEFREM for the coastal discharge database; Gabriel Jorda from EMEDEA for the Gibraltar Netflow product. We are grateful for the E-OBS data set from the EU-FP6 project ENSEMBLES (http://ensembles-eu.metoffice.com) and the data providers in the ECA&D project (http://www.ecad.eu). We would like to thank the WACMOS-Med partners for the interesting related discussions and Phillipe Drobinsky for his support to WACMOS-Med and his role in the HYMEX project. We also thank the anonymous reviewers who help improving the manuscript. We finally would like to particularly thank Simon Munier for his help along this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Pellet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pellet, V., Aires, F., Mariotti, A., Fernández-Prieto, D. (2019). Analyzing the Mediterranean Water Cycle Via Satellite Data Integration. In: Vilibić, I., Horvath, K., Palau, J. (eds) Meteorology and Climatology of the Mediterranean and Black Seas. Pageoph Topical Volumes. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-11958-4_12

Download citation

Publish with us

Policies and ethics

Navigation