We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Examples of Optoelectronic Integrated Circuits | SpringerLink

Examples of Optoelectronic Integrated Circuits

  • Chapter
  • First Online:
Silicon Optoelectronic Integrated Circuits

Part of the book series: Springer Series in Advanced Microelectronics ((MICROELECTR.,volume 13))

  • 1497 Accesses

Abstract

In this chapter the full variety of silicon receiver OEICs in digital and analog techniques will be introduced. Examples of optical receivers range from low-power synchronous digital circuits for massively parallel optical interconnects and three-dimensional optical storage to asynchronous Gb/s fiber receivers. Hybrid integrated laser drivers are included as examples of optical emitters. Low-offset analog OEICs for two-dimensional optical storage systems like digital-versatile-disk (DVD) and digital-video-recording (DVR) will be described as well as image sensors. Among various optical sensors for industrial and medical applications, smart pixel sensors as well as distance measurement circuits leading to 3D cameras and paving the way to innovative cameras-on-a-chip (CoC) will be presented. Furthermore, very interesting 3D sensors with pin and single-photon avalanche diodes are described. Techniques like integrated voltage-up-converters and the four-quarter POF receiver approach for speed enhancement of OEICs as well as newer POF receivers will also be introduced. Innovative solutions to overcome the bandwidth limitations of integrated resistors in transimpedance amplifiers are described. Developments of burst-mode and deep-sub-\(\upmu \)m receivers are additionally addressed. Newest integrated receivers for optical wireless communication with pin and avalanche photodiodes are included. Two highly parallel optical receivers with total data rates of up to 140 Gb/s are described. Furthermore, highly innovative SPAD receivers eliminating electronic noise and reducing the gap to the quantum limit are introduced. A comparison of fiber and optical interconnect receivers plus an innovative optoelectronical PLL circuit as well as a summary are finally included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Ayadi, M. Kuijk, P. Heremans, G. Bickel, G. Borghs, R. Vounckx, A monolithic optoelectronic receiver in standard 0.7 \(\upmu \)m CMOS operating at 180 MHz and 176 fJ light input energy. IEEE Photonics Technol. Lett. 9(1), 88–90 (1997)

    Article  ADS  Google Scholar 

  2. J.F. Heanue, M.C. Bashaw, L. Hesselink, Volume holographic storage and retrieval of digital data. Science 265(8), 749–752 (1994)

    Article  ADS  Google Scholar 

  3. G. Williams, J. Janesick, Cameras with CCD’s capture new markets, Laser Focus World, Detector Handbook (1996), pp. S5–S9

    Google Scholar 

  4. M.E. Schaffer, P.A. Mitkas, Smart photodetector array for page-oriented optical memory in 0.35-\(\upmu \)m CMOS. IEEE Photonics Technol. Lett. 10(6), 866–868 (1998)

    Article  ADS  Google Scholar 

  5. M. Kuijk, D. Coppee, R. Vounckx, Spatially modulated light detector in CMOS with sense-amplifier receiver operating at 180 Mb/s for optical data link applications and parallel optical interconnects between chips. IEEE J. Sel. Top. Quantum Electron. 4(6), 1040–1045 (1998)

    Article  ADS  Google Scholar 

  6. F. Esfahani, K.O. Hofacker, A. Benedix, H.H. Berger, Small area optical inputs for high speed CMOS circuits, in 9th International IEEE ASIC Conference (Rochester, N.Y., 1996), pp. 7–10

    Google Scholar 

  7. H.H. Berger, J. Sturm, F. Esfahani, A. Benedix, S. von Aichberger, B. Müller, K.O. Hofacker, Optical signal injection for high-speed wafer level function test of integrated circuits, in IEEE International Conference on Microelectronic Test Structures (IEEE, Monterey, CA, 1997), pp. 39–42

    Google Scholar 

  8. A.V. Krishnamoorthy, L.M.F. Chirovsky, W.S. Hobson, R.E. Leibenguth, S.P. Hui, G.J. Zydzik, K.W. Goossen, J.D. Wynn, B.J. Tseng, J. Lopata, J.A. Walker, J.E. Cunningham, L.A. D’Asaro, Vertical-cavity surface-emitting lasers flip-chip bonded to gigabit-per-second CMOS circuits. IEEE Photonics Technol. Lett. 11(1), 128–130 (1999)

    Article  ADS  Google Scholar 

  9. T.C. Banwell, A.C.V. Lehmen, R.R. Cordell, VCSE laser transmitters for parallel data links. IEEE J. Quantum Electron. 29(2), 635–644 (1993)

    Article  ADS  Google Scholar 

  10. D.L. Mathine, R. Droopad, G.N. Maracas, A vertical-cavity surface-emitting laser applied to a 0.8 \(\upmu \)m NMOS driver. IEEE Photonics Technol. Lett. 9(7), 869–871 (1997)

    Article  ADS  Google Scholar 

  11. D. Bolliger, P. Malcovati, A. Häberli, H. Baltes, P. Sarro, F. Maloberti, Integrated ultraviolet sensor system with on-chip 1 G\(\Omega \) transimpedance amplifier, in ISSCC (1996), pp. 328–329

    Google Scholar 

  12. M. Seifart, Analoge Schaltungen (Verlag Technik, Berlin, 1996), pp. 315–316

    Google Scholar 

  13. C. Stanescu, S. Porumbescu, A. Hanganu, S. Costea, I. Mirea, G. Aungurecei, M. Furis, B. Mihalea, Bipolar preamplifier for monolithic OEIC receiver, in Proceedings of International Semiconductor Conference (CAS’97) (Sinaia, Romania, 1997), pp. 567–570

    Google Scholar 

  14. B. Schneider, H. Fischer, S. Benthien, H. Keller, T. Lule, P. Rieve, M. Sommer, J. Schulte, M. Böhm, TFA image sensors: from the one transistor cell to a locally adaptive high dynamic range sensor, in IEDM Digest Technical Papers (1997), pp. 209–212

    Google Scholar 

  15. T. Lule, H. Fischer, S. Benthien, H. Keller, M. Sommer, J. Schulte, P. Rieve, M. Böhm, Image sensor with per-pixel programmable sensitivity in TFA technology, in Micro System Technologies, ed. by H. Reichl, A. Heuberger (1996), p. 675

    Google Scholar 

  16. T. Hamamoto, K. Aizawa, A computational image sensor with adaptive pixel-based integration time. IEEE J. Solid-State Circuits 36(4), 580–585 (2001)

    Article  ADS  Google Scholar 

  17. M. Loose, K. Meier, J. Schemmel, A self-calibrating single-chip CMOS camera with logarithmic response. IEEE J. Solid-State Circuits 36(4), 586–596 (2001)

    Article  ADS  Google Scholar 

  18. R.H. Nixon, S.E. Kemeny, B. Pain, C.O. Staller, E.R. Fossum, 256 \(\times \) 256 CMOS active pixel sensor camera-on-a-chip. IEEE J. Solid-State Circuits 31(12), 2046–2050 (1996)

    Article  ADS  Google Scholar 

  19. I. Stuttart, The high-dynamic-range CMOS evaluation camera (HDRC), in Institut für Mikroelektronik Stuttgart, Germany, Publicity material (1997)

    Google Scholar 

  20. G.F. Marshall, S. Collins, A high-dynamic-range front-end for automatic image processing applications, in Proceedings of SPIE, Advanced Focal Plane Arrays and Electronic Cameras, vol. 3410 (1998)

    Google Scholar 

  21. S. Kavadias, B. Dierickx, D. Scheffer, A. Alaerts, D. Uwaerts, J. Bogaerts, A logarithmic response CMOS image sensor with on-chip calibration. IEEE J. Solid-State Circuits 35(8), 1146–1152 (2000)

    Article  ADS  Google Scholar 

  22. R.L. Geiger, P.E. Allen, N.R. Strader, VLSI Design Techniques for Analog and Digital Circuits (McGraw-Hill, New York, 1990)

    Google Scholar 

  23. O. Schrey, J. Huppertz, G. Filimonovic, W. Brockherde, B. J. Hosticka, A 1k \(\times \) 1k high dynamic range CMOS image sensor with on-chip programmable region of interest readout, in Proceedings of 27th European Solid-State Circuits Conference (ESSCIRC) (2001), pp. 124–127

    Google Scholar 

  24. R.W. Sandage, J.A. Connelly, A fingerprint opto-detector using lateral bipolar phototransistors in a standard CMOS process, in IEDM Digest Technical Papers (1995), pp. 171–174

    Google Scholar 

  25. L. Viarani, D. Stoppa, L. Gonzo, M. Gottardi, A. Simoni, A CMOS smart pixel for active 3D vision applications, in IEEE Proceeding Sensors (2002), pp. 11–14

    Google Scholar 

  26. R. Schwarte, Z. Xu, H. Heinol, J. Olk, R. Klein, B. Buxbaum, H. Fischer, J. Schulte, A new electrooptical mixing and correlating sensor: facilities and applications of the photonic mixer device (PMD), in Proceedings of SPIE — Sensors, sensor systems, and sensor data processing, vol. 3100 (1997), pp. 245–253

    Google Scholar 

  27. Z. Xu, R. Schwarte, H. Heinol, B. Buxbaum, T. Ringbeck, Smart pixel — photonic mixer device (PMD), in Proceedings of M\(^2\)VIP’98 — International Conference on Mechatronics and Machine Vision in Practice (1998), pp. 259–264

    Google Scholar 

  28. R. Jeremias, W. Brockherde, G. Doemens, B. Hosticka, L. Listl, P. Mengel, A CMOS photosensor array for 3D imaging using pulsed laser, in ISSCC Digest of Technical Papers (2001), pp. 252–253

    Google Scholar 

  29. A. Nemecek, G. Zach, R. Swoboda, K. Oberhauser, H. Zimmermann, Integrated BiCMOS p-i-n photodetectors with high bandwidth and high responsivity. IEEE J. Sel. Top. Quantum Electron. 12(6), 1469–1475 (2006)

    Article  ADS  Google Scholar 

  30. A. Nemecek, K. Oberhauser, H. Zimmermann, Distance measurement sensor with PIN-photodiode and bridge circuit. IEEE Sens. J. 6(2), 391–397 (2006)

    Article  ADS  Google Scholar 

  31. M. Förtsch, H. Zimmermann, W. Einbrodt, K. Bach, H. Pless, Integrated PIN photodiodes in high-performance BiCMOS technology, in IEDM Digest Technical Papers (2002), pp. 801–804

    Google Scholar 

  32. G. Zach, H. Zimmermann, A, \(2 \times 32\) range-finding sensor array with pixel-inherent suppression of ambient light up to 120 klx, in Proceedings IEEE International Solid-State Circuits Conference (2009), pp. 352–353

    Google Scholar 

  33. G. Zach, M. Davidovic, H. Zimmermann, A 16 \(\times \) 16 pixel distance sensor with in-pixel circuitry that tolerates 150 klx of ambient light. IEEE J. Solid-State Circuits 45(7), 1345–1353 (2010)

    Article  ADS  Google Scholar 

  34. G. Zach, M. Davidovic, H. Zimmermann, Extraneous-light resistant multipixel range sensor based on a low-power correlating pixel-circuit, in Proceedings of European Solid-State Circuits Conference (2009), pp. 236–239

    Google Scholar 

  35. M. Davidovic, G. Zach, H. Zimmermann, A 12-bit fully differential 2MS/s successive approximation analog-to-digital converter with reduced power consumption, in Proceedings of DDECS (2010), pp. 399–402

    Google Scholar 

  36. M. Perenzoni, P. Kostov, M. Davidovic, G. Zach, H. Zimmermann, Electronics-Based 3D Sensors (Springer, Berlin, 2013), pp. 39–68

    Google Scholar 

  37. M. Davidovic, J. Seiter, M. Hofbauer, W. Gaberl, H. Zimmermann, A background light resistant TOF range finder with integrated PIN photodiode in 0.35 \(\upmu \)m CMOS, Proc. SPIE 8791, 87910R–1–87910R–6 (2013)

    Google Scholar 

  38. M. Davidovic, J. Seiter, M. Hofbauer, W. Gaberl, S. Schidl, H. Zimmermann, 64 \(\times \) 48 TOF sensor in 0.35 \(\upmu \)m CMOS with high ambient light immunity. IET Electron. Lett. 50(19), 1375–1377 (2014)

    Article  Google Scholar 

  39. M. Davidovic, J. Seiter, M. Hofbauer, W. Gaberl, H. Zimmermann, Monolithically integrated dual-lock-in optical sensor. IET Electron. Lett. 50(4), 306–308 (2014)

    Article  Google Scholar 

  40. M. Davidovic, M. Hofbauer, K. Schneider-Hornstein, H. Zimmermann, High dynamic range background light suppression for a TOF distance measurement sensor in 180 nm CMOS, in Proceedings IEEE Sensors Conference (2011), pp. 359–362

    Google Scholar 

  41. C.S. Bamji, P. O’Connor, T. Elkhabit, S. Mehta, B. Thompson, L.A. Prather, D. Snow, O.C. Akkaya, A. Daniel, A.D. Payne, T. Perry, M. Fenton, V.-H. Chan, A 0.13 \(\upmu \)m CMOS system-on-chip for a 512 \(\times \) 424 time-of-flight image sensor with multi-frequency photo-demodulation up to 130 MHz and 2 GS/s ADC. IEEE J. Solid-State Circuits 50(1), 303–319 (2015)

    Article  ADS  Google Scholar 

  42. C. Niclass, C. Favi, T. Kluter, M. Gersbach, E. Charbon, A 128 \(\times \) 128 single-photon image sensor with column-level 10-bit time-to-digital converter array. IEEE J. Solid-State Circuits 43(12), 2977–2989 (2008)

    Article  ADS  Google Scholar 

  43. C. Niclass, M. Sergioh, E. Charbon, A single-photon avalanche diode array fabricated in 0.35 \(\upmu \)m CMOS and based on an event-driven readout for TCSPC experiments. Proc. SPIE 6372, 63720S (2006)

    Article  ADS  Google Scholar 

  44. C. Niclass, M. Soga, H. Matsubara, S. Kato, Kagami, A 100-m range 10-frame/s 340 \(\times \) 96-pixel time-of-flight depth sensor in 0.18-\(\upmu \)m CMOS. IEEE J. Solid-State Circuits 48(2), 559–572 (2013)

    Google Scholar 

  45. C. Niclass, M. Soga, H. Matsubara, M. Ogawa, Kagami, A, 0.18 \(\upmu \)m CMOS SoC for a 100-m range 10-frame/s 200 \(\times \) 96-pixel time-of-flight depth sensor. IEEE J. Solid-State Circuits 49(1), 315–330 (2014)

    Google Scholar 

  46. M. Perenzoni, D. Perenzoni, D. Stoppa, A 64 \(\times \) 64-pixel digital silicon photomultiplier direct TOF sensor with 100-MPhotons/s/pixel background rejection and imaging/altimeter mode with 0.14% precision up to 6 km for spacecraft navigation and landing. IEEE J. Solid-State Circuits 52(1), 151–160 (2017)

    Article  ADS  Google Scholar 

  47. L. Pancheri, G.-F.D. Betta, L.H.C. Braga, D. Stoppa, A single-photon avalanche diode test chip in 150 nm CMOS technology, in Proceedings of International Conference on Microelectronic Test Structures (ICMTS) (2014), pp. 161–164

    Google Scholar 

  48. H. Xu, L. Pancheri, L.H.C. Braga, G.-F.D. Betta, D. Stoppa, Cross-talk characterization of dense single-photon avalanche diode arrays in CMOS 150 nm technology. SPIE Opt. Eng. 55(6), 067102 (2016)

    Article  ADS  Google Scholar 

  49. W. Budde, Multidecade linearity measurements on Si photodiodes. Appl. Opt. 18(10), 1555–1558 (1979)

    Article  ADS  Google Scholar 

  50. P. Seitz, Smart pixels, in IEEE Int. Symposium on High Performance Electron Devices for Microwave and Optoelectronic Applications (2001), pp. 229–234

    Google Scholar 

  51. K. Engelhardt, P. Seitz, High-resolution optical position encoder with large mounting tolerances. Appl. Opt. 36(13), 2912–2916 (1997)

    Article  ADS  Google Scholar 

  52. S.U. Ay, S. Barna, E.R. Fossum, Differential mode CMOS active pixel sensor (APS) for optically programmable gate array (OPGA), in Proceedings of IEEE Workshop on Charge-Coupled Devices and Advanced Image Sensors (2001), pp. 161–164

    Google Scholar 

  53. A.F. Fercher, Optical coherence tomography. J. Biomed. Opt. 1(2), 157–173 (1996)

    Article  ADS  Google Scholar 

  54. S. Bourquin, P. Seitz, R.P. Salathe, Optical coherence topography based on a two-dimensional smart detector array. Opt. Lett. 26(8), 512–514 (2001)

    Article  ADS  Google Scholar 

  55. M. Barbaro, P.-Y. Burgi, A. Mortara, P. Nussbaum, F. Heitger, A 100 \(\times \) 100 pixel silicon retina for gradient extraction with steering filter capabilities and temporal output coding. IEEE J. Solid-State Circuits 37(2), 160–172 (2002)

    Article  ADS  Google Scholar 

  56. J.G. Harris, C. Koch, E. Staats, J. Luo, Analog hardware for detecting discontinuities in early vision. Int. J. Comput. Vis. 4, 211–223 (1990)

    Article  Google Scholar 

  57. A.G. Andreou, R.C. Meitzler, K. Strohbehn, K.A. Boahen, Analog VLSI neuromophic image acquisition and pre-processing systems. Neural Netw. 8, 1323–1347 (1995)

    Article  Google Scholar 

  58. C.-Y. Wu, C.-F. Chiu, A new structure of the 2-D silicon retina. IEEE J. Solid-State Circuits 30, 890–897 (1995)

    Article  ADS  Google Scholar 

  59. L. Raffo, S.P. Sabatini, G.M. Bo, G.M. Bisio, Analog VLSI circuits as physical structures for perception in early visual tasks. IEEE Trans. Neural Netw. 9, 1483–1494 (1998)

    Article  Google Scholar 

  60. M. Ishikawa, K. Ogawa, T. Komuro, I. Ishii, A CMOS vision chip with SIMD processing element array for 1 ms image processing, in IEEE International Solid-State Circuits Conference (1999), pp. 206–207

    Google Scholar 

  61. R. Etienne-Cummings, J. van der Spiegel, P. Mueller, A foveated silicon retina for two-dimensional tracking. IEEE Trans. Circuits Syst. I(47), 504–517 (2000)

    Article  Google Scholar 

  62. W.T. Freeman, E.L. Adelson, The design and use of steerable filters. IEEE Trans. Pattern Anal. Mach. Intell. 13, 891–906 (1991)

    Article  Google Scholar 

  63. A. Mortara, E.A. Vittoz, A 12-transistor PFM demodulator for analog neural networks communication. IEEE Trans. Neural Netw. 6, 1280–1283 (1995)

    Article  Google Scholar 

  64. E.A. Vittoz, Analog VLSI signal processing: why, where, and how? J. VLSI Signal Process. 8, 27–44 (1994)

    Article  Google Scholar 

  65. Y. Perelman, R. Ginosar, A low-light-level sensor for medical diagnostic applications. IEEE J. Solid-State Circuits 36(10), 1553–1558 (2001)

    Article  ADS  Google Scholar 

  66. B.J. Hosticka, CMOS sensor systems. Sens. Actuators A 66, 335–341 (1998)

    Article  Google Scholar 

  67. G. de Graaf, R.F. Wolffenbuttel, Smart optical sensor systems in CMOS for measuring light intensity and color. Sens. Actuators A 67, 115–119 (1999)

    Article  Google Scholar 

  68. B. Fowler, A. El-Gammal, Techniques for pixel level analog to digital conversion, in Proceedings of SPIE, Infrared Readout Electronics IV, vol. 3360 (1998), pp. 2–12

    Google Scholar 

  69. E. Säckinger, W. Guggenbuhl, A high swing, high impedance MOS cascode circuit. IEEE J. Solid-State Circuits 25(1), 289–297 (1990)

    Article  ADS  Google Scholar 

  70. S.R. Norsworthy, R. Schreier, G.C. Temes, Delta-Sigma Data Converters: Theory, Design and Simulation (IEEE Press, New York, 1997)

    Google Scholar 

  71. D. Droste, J. Bille, An ASIC for Hartmann-Shack wavefront detection. IEEE J. Solid-State Circuits 37(2), 173–182 (2002)

    Article  ADS  Google Scholar 

  72. E.D. Malacara, Optical Shop Testing (Wiley, New York, 1991)

    Google Scholar 

  73. F. Zernike, Beugungstheorie des Schneidenverfahrens und seine verbesserte Form der Phasenkontrastmethode. Physica 1, 689 (1934)

    Article  ADS  MATH  Google Scholar 

  74. J.L. et al., “Winner-take-all networks of O(N) complexity”, in Proceedings of Neural Information Processing Systems (NIPS) (1989), p. 703

    Google Scholar 

  75. J.A.S. et al., CMOS current mode winner-take-all circuit with both excitory and inhibitory feedback. Electron. Lett. 29(10) (1993)

    Google Scholar 

  76. E.A. Vittoz, MOS transistors operated in the lateral bipolar mode and their application in CMOS technology. IEEE J. Solid-State Circuits 18(6), 273–279 (1983)

    Article  ADS  Google Scholar 

  77. S. Groiss, J. Sturm, Low-noise sampling system for photocurrent detection with monolithically integrated photodiodes, in Proceedings of 27th European Solid-State Circuits Conference (ESSCIRC) (2001), pp. 180–183

    Google Scholar 

  78. S. Sengupta, H. Ouh, M.L. Johnston, An all-digital CMOS ambient light sensor using a single photon avalanche diode, in Proceedings IEEE Sensors Conference (2017), pp. 1–3

    Google Scholar 

  79. D. Portaluppi, E. Conca, F. Villa, 32 \(\times \) 32 SMOS SPAD imager for gated imaging, photon timing, and photon coincidence. IEEE J. Sel. Top. Quantum Electron. 24(2), 3800706 (2018)

    Article  Google Scholar 

  80. M. Perenzonil, N. Massari, D. Perenzoni, L. Gasparini, D. Stoppa, A 160\(\times \)120 pixel analog-counting single-photon imager with time-gating and self-referenced column-parallel A/D conversion for fluorescence lifetime imagingg. IEEE J. Solid-State Circuits 51(1), 155–167 (2016)

    Article  Google Scholar 

  81. N.A.W. Dutton, I. Gyongy, L. Parmesan, S. Gnecchi, N. Calder, B.R. Rae, S. Pellegrini, L.A. Grant, R.K. Henderson, A SPAD-based QVGA image sensor for single-photon counting and quanta imaging. IEEE Trans. Electron Devices 63(1), 189–196 (2016)

    Article  ADS  Google Scholar 

  82. A.R. **menes, P. Padmanabhan, M.-J. Lee, Y. Yamashita, D.N. Yaung, E. Charbon, A 256 \(\times \) 256 45/65nm 3D-stacked SPAD-based direct TOF image sensor for LiDAR applications with optical polar modulation for up to 18.6 dB interference suppression, in Proceedings of IEEE International Solid-State Circuits Conference (ISSCC) (2018), pp. 96–97

    Google Scholar 

  83. M. Mansuripur, G. Sincerbox, Principles and techniques of optical data storage. Proc. IEEE 85(11), 1780–1796 (1997)

    Article  Google Scholar 

  84. E. Fullin, G. Voirin, M. Chevroulet, A. Lagos, J.-M. Moret, CMOS-based technology for integrated optoelectronics: a modular approach, in IEDM Digest Technical Papers (1994), pp. 527–530

    Google Scholar 

  85. E. Braß, U. Hilleringmann, K. Schumacher, System integration of optical devices and analog CMOS amplifiers. IEEE J. Solid-State Circuits 29(8), 1006–1010 (1994)

    Article  ADS  Google Scholar 

  86. M. Yamamoto, M. Kubo, K. Nakao, Si-OEIC with a built-in PIN-photodiode. IEEE Trans. Electron Devices 42(1), 58–63 (1995)

    Article  ADS  Google Scholar 

  87. M. Kyomasu, Development of an integrated high speed silicon PIN photodiode sensor. IEEE Trans. Electron Devices 42(6), 1093–1099 (1995)

    Article  ADS  Google Scholar 

  88. H. Zimmermann, Monolithic Bipolar-, CMOS-, and BiCMOS-receiver OEICs, in Proceedings of International Semiconductor Conference (CAS’96) (Sinaia, Romania, 1996), pp. 31–40

    Google Scholar 

  89. A. Ghazi, T. Heide, H. Zimmermann, PIN CMOS OEIC for DVD systems, in Proceedings of 43rd International Scientific Colloquium, TU Ilmena, Germany, vol. 2 (1998), pp. 380–385

    Google Scholar 

  90. M. Förtsch, H. Zimmermann, A low-offset low-area 147-MHz CMOS DVD OEIC, in Proceedings of Austrochip (2003)

    Google Scholar 

  91. H. Zimmermann, K. Kieschnick, M. Heise, H. Pless, High-bandwidth BiCMOS OEIC for optical storage systems, in IEEE International Solid-State Circuits Conference (1999), pp. 384–385

    Google Scholar 

  92. H. Zimmermann, K. Kieschnick, Low-offset BiCMOS OEIC for optical storage systems. Electron. Lett. 36(14), 1223–1224 (2000)

    Article  Google Scholar 

  93. G.W. de Jong, J.R.M. Bergervoet, J.H.A. Brekelmans, J.F.P. van Mil, A DC-to-250 MHz current pre-amplifier with integrated photodiodes in standard CBiMOS for optical storage systems, in ISSCC (2002), pp. 362–363

    Google Scholar 

  94. H. Zimmermann, T. Heide, A. Ghazi, DVD OEIC and 1 Gbit/s fiber receiver in CMOS technology, in IEEE International Workshop on High Performance Electron Devices for Microwave and Optoelectronic Applications (2000), pp. 224–229

    Google Scholar 

  95. B.-E. Kim, M.-S. Jeong, D.-M. Cho, J.-K. KIM, J.-S. Lee, S.-K. KIM, S.-W. KIM, 0.8 \(\mu \)m CMOS analog front-end processor for CD-ROM. IEEE Trans. Consum. Electron. 42(3), 826–831 (1996)

    Google Scholar 

  96. M. Ingels, G.V.D. Plas, J. Crols, M. Steyart, A CMOS 18 THz\(\Omega \) 240 Mb/s transimpedance amplifier and 155 Mb/s LED-driver for low cost optical fiber links. IEEE J. Solid-State Circuits 29(12), 1552–1559 (1994)

    Article  ADS  Google Scholar 

  97. M. Ingels, M. Steyart, A 1-Gb/s, 0.7-\(\upmu \)m CMOS optical receiver with full rail-to-rail output swing. IEEE J. Solid-State Circuits 34(7), 971–976 (1999)

    Article  ADS  Google Scholar 

  98. T. Takimoto, N. Fukunaga, M. Kubo, N. Okabayashi, High speed Si-OEIC(OPIC) for optical pickup. IEEE Trans. Consum. Electron. 44(1), 137–142 (1998)

    Article  Google Scholar 

  99. K. Kieschnick, T. Heide, A. Ghazi, H. Zimmermann, P. Seegebrecht, High-speed photonic CMOS and BiCMOS receiver ICs, in Proceedings of 25th European Solid-State Circuits Conference (ESSCIRC) (1999), pp. 398–401

    Google Scholar 

  100. W.T. Holman, J.A. Connelly, A compact low-noise operational amplifier for a 1.2 \(\upmu \)m digital CMOS technology. IEEE J. Solid-State Circuits 30(6), 710–714 (1995)

    Article  ADS  Google Scholar 

  101. H. Zimmermann, T. Heide, A. Ghazi, Monolithic high-speed CMOS-photoreceiver. IEEE Photonics Technol. Lett. 11(2), 254–256 (1999)

    Article  ADS  Google Scholar 

  102. H. Zimmermann, K. Kieschnick, M. Heise, H. Pless, BiCMOS OEIC for optical storage systems. Electron. Lett. 34(19), 1875–1876 (1998)

    Article  Google Scholar 

  103. H. Zimmermann, Full custom CMOS and BiCMOS OPTO-ASICs, in Proceedings of 5th International Conference on Solid-State and Integrated-Circuit Technology (1998), pp. 344–347

    Google Scholar 

  104. P.R. Gray, R.G. Meyer, Analysis and Design of Analog Integrated Circuits (Wiley, New York, 1993), p. 456

    Google Scholar 

  105. H. Zimmermann, K. Kieschnick, T. Heide, A. Ghazi, Integrated high-speed, high-responsivity photodiodes in CMOS and BiCMOS technology, in Proceedings of 29th European Solid-State Device Conference (ESSDERC) (1999), pp. 332–335

    Google Scholar 

  106. K. Kieschnick, H. Zimmermann, P. Seegebrecht, BiCMOS OEIC with enhanced sensitivity for DVD systems, in Proceedings of 27th European Solid-State Circuits Conference (ESSCIRC) (2001), pp. 184–187

    Google Scholar 

  107. H. Zimmermann, Integrated Silicon Optoelectronics (Springer, Berlin, 2000)

    Book  Google Scholar 

  108. C. Seidl, J. Knorr, H. Zimmermann, Single-stage 378MHz 178k\(\Omega \) transimpedance amplifier with capacitive-coupled voltage dividers, in Proceedings IEEE International Solid-State Circuits Conference (2004), pp. 470–471

    Google Scholar 

  109. H. Zimmermann, Integrated Silicon Optoelectronics (Springer, Berlin, 2010)

    Book  Google Scholar 

  110. C. Seidl, J. Knorr, H. Zimmermann, Simple feedback network for bandwidth enhancement of transimpedance amplifiers. Electron. Lett. 39(25), 1849–1851 (2003)

    Article  Google Scholar 

  111. C. Seidl, R. Swoboda, H. Zimmermann, Optical receiver IC with capacitive coupled distributed resistors resulting in effectively reduced parasitic capacitance. Electron. Lett. 41(23), 1301–1302 (2005)

    Article  Google Scholar 

  112. R. Swoboda, K. Schneider-Hornstein, H. Wille, G. Langguth, H. Zimmermann, BiCMOS-integrated photodiode exploiting drift enhancement. Opt. Eng. 53(8), 087103-1–087103-4 (2014)

    Article  ADS  Google Scholar 

  113. J.-S. Rieh, D. Klotzkin, O. Qasaimeh, L.-H. Lu, K. Yang, L.P.B. Katehi, P. Bhattacharya, E.T. Croke, Monolithically integrated SiGe-Si PIN-HBT front-end photoreceiver. IEEE Photonics Technol. Lett. 10(3), 415–417 (1998)

    Article  ADS  Google Scholar 

  114. L.D. Garrett, J. Qi, C.L. Schow, J.C. Campbell, A silicon-based integrated NMOS-p-i-n photoreceiver. IEEE Trans. Electron Devices 43(3), 411–416 (1996)

    Article  ADS  Google Scholar 

  115. S. He, L.D. Garrett, K.-H. Lee, J.C. Campbell, Monolithic integrated silicon NMOS PIN photoreceiver. Electron. Lett. 30(22), 1887–1888 (1994)

    Article  Google Scholar 

  116. J. Qi, C.L. Schow, L.D. Garrett, J.C. Campbell, A silicon NMOS monolithically integrated optical receiver. IEEE Photonics Technol. Lett. 9(5), 663–665 (1997)

    Article  ADS  Google Scholar 

  117. C.L. Schow, J.D. Schaub, R. Li, J. Qi, J.C. Campbell, A monolithically integrated 1-Gb/s silicon photoreceiver. IEEE Photonics Technol. Lett. 11(1), 120–121 (1999)

    Article  ADS  Google Scholar 

  118. J.D. Schaub, R. Li, S.M. Csutak, J.C. Campbell, High-speed monolithic silicon photoreceivers on high resistivity and SOI substrates. IEEE J. Light. Technol. 19(2), 272–278 (2001)

    Article  ADS  Google Scholar 

  119. P.J.-W. Lim, A.Y.C. Tzeng, H.L. Chuang, S.A.S. Onge, A 3.3 V monolithic photodetector/CMOS preamplifier for 531 Mb/s optical data link applications, in ISSCC (1993), pp. 96–97

    Google Scholar 

  120. D.M. Kuchta, H.A. Ainspan, F.J. Canora, R.P. Schneider, Performance of fiber-optic data links using 670 nm CW VCSELs and a monolithic Si photodetector and CMOS preamplifier. IBM J. Res. Develop. 39(1/2), 63–72 (1995)

    Article  Google Scholar 

  121. K. Kieschnick, H. Zimmermann, H. Pless, P. Seegebrecht, BiCMOS receiver OEIC for optical interconnects, in Ext. Abstract 3nd IEEE Workshop on Signal Propagation on Interconnects, Neustadt, Germany (1999), pp. 72–73

    Google Scholar 

  122. R. Swoboda, H. Zimmermann, A low-noise monolithically integrated 1.5 Gb/s optical receiver in 0.6 \(\upmu \)m BiCMOS technology. IEEE J. Sel. Top. Quantum Electron. 9(2), 419–424 (2003)

    Google Scholar 

  123. R. Li, J.D. Schaub, S.M. Csutak, J.C. Campbell, A high-speed monolithic silicon photoreceiver fabricated on SOI. IEEE Photonics Technol. Lett. 12(8), 1046–1048 (2000)

    Article  ADS  Google Scholar 

  124. S.M. Csutak, J.D. Schaub, W.E. Wu, J.C. Campbell, High-speed monolithically integrated silicon optical receiver fabricated in 130 nm CMOS technology. IEEE Photonics Technol. Lett. 14(4), 516–518 (2002)

    Article  ADS  Google Scholar 

  125. S.M. Csutak, J.D. Schaub, W.E. Wu, R. Shimer, J.C. Campbell, High-speed monolithically integrated silicon photoreceivers fabricated in 130-nm CMOS technology. J. Light. Technol. 20(9), 1724–1729 (2002)

    Article  ADS  Google Scholar 

  126. R. Swoboda, J. Knorr, H. Zimmermann, A 5-Gb/s OEIC with voltage-up-converter. IEEE J. Solid-State Circuits 40(7), 1521–1526 (2005)

    Article  ADS  Google Scholar 

  127. R. Swoboda, H. Zimmermann, Monolithic optical receiver in 0.5 \(\upmu \)m BiCMOS technology for wavelengths up to 850 nm, in Proceedings of 2nd IEEE International Conference on Group IV Photonics (2005), pp. 180–182

    Google Scholar 

  128. T. Heide, H. Zimmermann, Investigation of optical interconnect receivers in standard micron and sub-micron MOS technology. Opt. Eng. 42(3), 773–786 (2003)

    Article  ADS  Google Scholar 

  129. R.C. Jaeger, Microelectronic Circuit Design (McGraw-Hill, New York, 1997), p. 934

    Google Scholar 

  130. H. Zimmermann, U. Müller, R. Buchner, P. Seegebrecht, Optoelectronic receiver circuits in CMOS-technology, in Mikroelektronik’97, GMM-Fachbericht 17 (VDE-Verlag, Berlin, Offenbach, 1997), pp. 195–202

    Google Scholar 

  131. H. Zimmermann, A. Ghazi, T. Heide, R. Popp, R. Buchner, in Proceedings of 49th Electronic Components and Technology Conference (ECTC) (1999), pp. 1030–1035

    Google Scholar 

  132. C. Rooman, D. Coppee, M. Kuijk, Asynchronous 250-Mb/s optical receivers with integrated detector in standard CMOS technology for optocoupler applications. IEEE J. Solid-State Circuits 35(7), 953–957 (2000)

    Article  ADS  Google Scholar 

  133. C. Rooman, M. Kuijk, R. Windisch, R. Vounckx, G. Borghs, A. Plichta, M. Brinkmann, K. Gerstner, R. Strack, P. van Daele, W. Woittiez, R. Baets, P. Heremans, Inter-chip optical interconnects using imaging fiber bundles and integrated CMOS detectors, in Proceedings of 27th European Conference on Optical Communication (ECOC) (2001), pp. 296–297

    Google Scholar 

  134. T.K. Woodward, A.V. Krishnamoorthy, 1 Gbit/s CMOS photoreceiver with integrated detector operating at 850 nm. Electron. Lett. 34(12), 1252–1253 (1998)

    Article  Google Scholar 

  135. G. Williams, Lightwave receivers, in Topics in lightwave systems, ed. by L. Tingye (Academic Press, New York, 1991), pp. 79–148

    Chapter  Google Scholar 

  136. T. Yoshida, Y. Ohtomo, M. Shimaya, A novel p-i-n photodetector fabricated on SIMOX for 1 GHz 2 V CMOS OEICs, in IEDM Digest Technical Papers (1998), pp. 29–32

    Google Scholar 

  137. A. Apsel, A.G. Andreou, 5 mW Gbit/s silicon on sapphire CMOS optical receiver. Electron. Lett. 37(19), 1186–1188 (2001)

    Article  Google Scholar 

  138. A.G. Andreou, Z.K. Kalayjian, A. Apsel, P.O. Pouliquen, R.A. Athale, G. Simonis, R. Reedy, Silicon on Sapphire CMOS for optoelectronic microsystems. IEEE Circuits Syst. Mag. 1(3), 22–30 (2001)

    Article  Google Scholar 

  139. T.K. Woodward, A.V. Krishnamoorthy, R.G. Rozier, A.L. Lentine, Low-power, small-footprint gigabit Ethernet compatible optical receiver circuit in 0.25 \(\upmu \)m CMOS. Electron. Lett. 36(17), 1489–1490 (2000)

    Article  Google Scholar 

  140. K. Phang, D. Johns, A CMOS optical preamplifier for wireless infrared communications. IEEE Trans. Circuits Syst. 46(7), 852–859 (1999)

    Article  Google Scholar 

  141. T. Heide, A. Ghazi, H. Zimmermann, High speed optical PIN-CMOS-receiverss, in IEEE International Workshop on High Performance Electron Devices for Microwave and Optoelectronic Applications (1998), pp. 72–76

    Google Scholar 

  142. H. Zimmermann, T. Heide, H. Pless, High-performance receivers for optical interconnects in standard MOS technology, in Optoelectronic Interconnects VIII, SPIE Proc. Vol. 4292, (2001), pp. 1–9

    Google Scholar 

  143. T. Heide, Monolithische Lasertreiber- und Empfängerschaltkreise in CMOS-Technologie für die optische Kurzstreckenübertragung, Ph.D. Thesis, Christian-Albrechts University of Kiel (2000)

    Google Scholar 

  144. H. Zimmermann, T. Heide, A monolithically integrated 1-Gb/s optical receiver in 1-\(\mu \)m CMOS technology. IEEE Photonics Technol. Lett. 13(7), 711–713 (2001)

    Article  ADS  Google Scholar 

  145. G. Agrawal, Fiber-Optic Communication Systems (Wiley, New York, 1997)

    Google Scholar 

  146. K. Phang, D.A. Johns, A CMOS optical preamplifier for wireless infrared communications. IEEE Trans. Circuits Syst.-II: Analog. Digit. Signal Process. 46(7), 852–859 (1999)

    Article  Google Scholar 

  147. Infrared Data Association, Serial Infrared Physical Layer Link Specification (1997), http://www.irda.org

  148. L.A.D. van den Broeke, A.J. Nieuwkerk, Wide-band integrated optical receiver with improved dynamic range using a current switch at the input. IEEE J. Solid-State Circuits 28(7), 862–864 (1993)

    Article  ADS  Google Scholar 

  149. P. Palojarvi, T. Ruotsalainen, J. Kostamovaara, A variable gain transimpedance amplifier channel with a timing discriminator for a time-of-flight laser radar, in Proceedings of European Solid-State Circuits Conference (1997), pp. 384–387

    Google Scholar 

  150. R.G. Meyer, W.D. Mack, A wide-band low-noise variable-gain BiCMOS transimpedance amplifier. IEEE J. Solid-State Circuits 29(6), 701–706 (1994)

    Article  ADS  Google Scholar 

  151. H. Khorramabadi, L. D. Tzeng, M.J. Tarsia, A 1.06 Gb/s-31 dBm to 0 dBm BiCMOS optical preamplifier featuring adaptive transimpedance, in IEEE International Solid-State Circuits Conference (1995), pp. 54–55

    Google Scholar 

  152. M.B. Ritter, F. Gfeller, W. Hirt, D. Rogers, S. Gowda, Circuit and system challenges in IR wireless communication, in ISSCC (1996), pp. 398–399

    Google Scholar 

  153. C. Petri, S. Rocchi, V. Vignoli, High dynamic CMOS preamplifiers for QW diodes. Electron. Lett. 34(9), 877–878 (1998)

    Article  Google Scholar 

  154. A. Tanabe, M. Soda, Y. Nakahara, A. Furukawa, T. Tamura, K. Yoshida, A single-chip 2.4 Gb/s CMOS optical receiver IC with low substrate crosstalk preamplifier, in ISSCC (1998), pp. 304–305

    Google Scholar 

  155. R.G. Swartz, Y. Ota, M.J. Tarsia, V.D. Archer, A burst mode, packet receiver with precision reset and automatic dark level compensation for optical bus communications, in Proceedings of Symposium on VLSI Technology (1993), pp. 67–68

    Google Scholar 

  156. J.L. Hullett, S. Moustakas, Optimum transimpedance broadband optical preamplifier design. Opt. Quantum Electron. 13, 65–69 (1981)

    Article  Google Scholar 

  157. R. Coppoolse, J. Verbeke, P. Lambrecht, J. Codenie, J. Vandewege, Comparison of a bipolar and a CMOS front end in broadband optical transimpedance amplifiers, in Proceedings of 38th Midwest Symp. Circuits and Systems (1996), pp. 1026–1029

    Google Scholar 

  158. A.S. Sedra, K.C. Smith, Microelectronic Circuits (Oxford University Press, Oxford, 1997), pp. 718–722

    Google Scholar 

  159. P. Brandl, S. Schidl, H. Zimmermann, PIN photodiode optoelectronic integrated receiver used for 3-Gb/s free-space optical communication. IEEE J. Sel. Top. Quantum Electron. 20(6), 6000510 (2014)

    Article  Google Scholar 

  160. P. Brandl, A. Weiss, H. Zimmermann, Automated alignment system for optical wireless communication systems using image recognition. Opt. Lett. 39(13), 4045–4048 (2014)

    Article  ADS  Google Scholar 

  161. R. Swoboda, M. Förtsch, H. Zimmermann, 3Gbps-per-channel highly-parallel silicon receiver OEIC, in Proceedings of 33rd European Conference and Exhibition on Optical Communication (ECOC), vol. 2 (2007), pp. 255–256

    Google Scholar 

  162. H. Zimmermann, R. Swobodai, M. Förtsch, 45-channel monolithically integrated, high-temperature capable optical receiver with a total data rate of 140Gbit/s. SPIE Opt. Eng. 54(6), 067111 (2015)

    Article  ADS  Google Scholar 

  163. P. Brandl, R. Enne, T. Jukic, H. Zimmermann, Optical wireless communication with adaptive focus and MEMS-based beam steering. IEEE Photonics Technol. Lett. 25(15), 1428–1431 (2013)

    Article  ADS  Google Scholar 

  164. P. Brandl, T. Jukic, R. Enne, K. Schneider-Hornstein, H. Zimmermann, Optical wireless APD receiver with high background-light immunity for increased communication distances. IEEE J. Solid-State Circuits 51(7), 1663–1673 (2016)

    Article  ADS  Google Scholar 

  165. R. Enne, B. Steindl, K. Schneider-Hornstein, H., Zimmermann, pn photodiode in 0.35-\(\upmu \)m high-voltage CMOS with 1.2-GHz bandwidth. Opt. Eng. 53(11), 116114 (2014)

    Google Scholar 

  166. M. Atef, R. Swoboda, H. Zimmermann, 1.25 Gbit/s over 50 m step-index plastic optical fiber using a fully integrated optical receiver with an integrated equalizer. J. Light. Technol. 30(1), 118–122 (2012)

    Article  ADS  Google Scholar 

  167. W. Gaberl, R. Swoboda, H. Zimmermann, Integrated optical receiverfor lens-less short range free-space gigabit communication, in Proceedings of 35th European Conference and Exhibition on Optical Communication (ECOC) (2009), pp. 1–2

    Google Scholar 

  168. E. Kamrami, F. Lesage, M. Sawan, Low-noise, high-gain transimpedance amplifier integrated with SiAPD for low-intensity near-infrared light detection. IEEE Sens. J. 14(1), 258–269 (2014)

    Article  ADS  Google Scholar 

  169. Y. Dong, K.W. Martin, A high-speed fully-integrated POF receiver with large-area photo detectors in 65 nm CMOS. IEEE J. Solid-State Circuits 47(9), 2080–2092 (2012)

    Article  ADS  Google Scholar 

  170. Y. Dong, K.W. Martin, A 4-Gbps POF receiver using linear equalizer with multi-shunt-shunt feedbaks in 65-nm CMOS. IEEE Trans. Circuits Syst. II 60(10), 617–621 (2013)

    Article  Google Scholar 

  171. D. Milovancev, Free-space optical communication with CMOS and BiCMOS receivers, Ph. D. Thesis, Technische Universität, Wien (2019)

    Google Scholar 

  172. T. Jukic, B. Steindl, R. Enne, H. Zimmermann, 200 \(\upmu \)m APD OEIC in 0.35 \(\upmu \)m BiCMOS. IET Electron. Lett. 52(2), 128–130 (2016)

    Article  Google Scholar 

  173. D. Milovancev, T. Jukic, B. Steindl, P. Brandl, H. Zimmermann, Optical wireless cummunication using a fully integrated 400\(\upmu \)m diameter APD receiver. J. Eng. (2017). https://doi.org/10.1049/joe.2017.0247

    Article  Google Scholar 

  174. D. Milovancev, T. Jukic, P. Brandl, R. Enne, H. Zimmermann, OWC using a monlithically integrated 200 \(\upmu \)m APD OEIC in 0.35 \(\upmu \)m BiCMOS technology. Opt. Express 24(2), 918–923 (2016)

    Article  ADS  Google Scholar 

  175. T. Jukic, B. Steindl, R. Enne, H. Zimmermann, 400 \(\upmu \)m diameter APD OEIC in 0.35 \(\upmu \)m BiCMOS. IEEE Photonics Technol. Lett. 28(18), 2004–2007 (2016)

    Article  ADS  Google Scholar 

  176. D. Milovancev, T. Jukic, B. Steindl, H. Zimmermann, Optical wireless monolithically integrated receiver with large-area APD and DC current rejection, in Advances in Wireless and Optical Communications, RTUWO’17 (2017), pp. 12–16

    Google Scholar 

  177. W. Gaberl, K. Schneider-Hornstein, R. Enne, B. Steindl, H. Zimmermann, Avalanche photodiode with high responsivity in 0.35 \(\upmu \)m CMOS, SPIE Opt. Eng. 53(4), 043105–1–043105–4 (2014)

    Google Scholar 

  178. B. Steindl, W. Gaberl, R. Enne, S. Schidl, K. Schneider-Hornstein, H. Zimmermann, Linear mode avalanche photodiode with 1-GHz bandwidth fabricated in 0.35 \(\upmu \)m CMOS. IEEE Photonics Technol. Lett. 26(15), 1511–1514 (2014)

    Article  ADS  Google Scholar 

  179. T. Jukić, B. Steindl, R. Enne, H. Zimmermann, 200 \(\upmu \)m APD OEIC in 0.35 \(\upmu \)m BiCMOS. Electron. Lett. 52, 11 (2015)

    Google Scholar 

  180. R. Swoboda, H. Zimmermann, 2.5 Gbit/s silicon receiver OEIC with large diameter photodiode. Electron. Lett. 40(8), 505–507 (2004)

    Article  Google Scholar 

  181. F. Tavernier, M. Steyaert, High-speed POF receiver with 1 mm integrated photodiode in 180 nm CMOS, in IEEE ECOC, 36th European Conference on Optical Communication (Torino, Italy, 2010), pp. 1–3

    Google Scholar 

  182. T.S.C. Kao, F.A. Musa, A.C. Carusone, A 5-Gbit/s CMOS optical receiver with integrated spatially modulated light detector and equalization. IEEE Trans. Circuits Syst. I 57(11), 2844–2857 (2010)

    Article  MathSciNet  Google Scholar 

  183. D. Lee, J. Han, G. Han, S.M. Park, An 8.5-Gb/s fully integrated CMOS optoelectronic receiver using slope-detection adaptive equalizer. IEEE J. Solid-State Circuits 45(12), 2861–2873 (2010)

    Article  ADS  Google Scholar 

  184. H. Zimmermann, B. Steindl, M. Hofbauer, R. Enne, Integrated fiber optical receiver reducing the gap to the quantum limit. Sci. Rep. 7, 2652 (2017)

    Article  ADS  Google Scholar 

  185. D. Milovancev, T. Jukic, B. Steindl, M. Hofbauer, R. Enne, K. Schneider-Hornstein, H. Zimmermann, Optical wireless communication with monolithic avalanche photodiode receivers, in Proceedings of IEEE Photonics Conference (2017), pp. 25–26

    Google Scholar 

  186. D. Milovancev, B. Steindl, M. Hofbauer, R. Enne, H. Zimmermann, Visible light communication at 50 Mbit/s using a SPAD receiver, in 11th IEEE/IET International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP18) (2018), p. 1570433378

    Google Scholar 

  187. D. Milovancev, J. Weidenauer, B. Steindl, M. Hofbauer, R. Enne, H. Zimmermann, Influence of on-off keying duty cycle on BER in wireless optical communication up to 75 Mbit/s using an SPAD and a RC LED, in International Conference on Broadband Communications for Next Generation Networks and Multimedia Applications (COBCOM) (2018), pp. 1–5

    Google Scholar 

  188. D. Chitnis, L. Zhang, H. Chun, S. Rajbhandari, G. Faulkner, D. O’Brien, S. Collins, A 200 Mb/s VLC demonstration with a SPAD based receiver, in Proceedings of IEEE Topical Summer Meeting Series (SUM) (2015), pp. 226–227

    Google Scholar 

  189. J. Kosman, O. Almer, A.V.N. Jalajakumari, S. Videv, H. Haas, R.K. Henderson, 60 Mb/s, 2 meters visible light communication in 1 klx ambient using an unlensed CMOS SPAD receiver, in Proceedings of IEEE Topical Summer Meeting Series (SUM) (2016), pp. 171–172

    Google Scholar 

  190. T. Nakahara, H. Tsuda, K. Tateno, S. Matsuo, T. Kurokawa, Hybride integration of GaAs pin-photodiodes with CMOS transimpedance amplifier circuits. Electron. Lett. 34(13), 1352–1353 (1998)

    Article  Google Scholar 

  191. T. Nakahara, H. Tsuda, N. Ishihara, K. Tateno, C. Amano, High-sensitivity 1 Gbit/s CMOS receiver integrated with GaAs- or InGaAs-photodiode by wafer-bonding. Electron. Lett. 37(12), 781–783 (2001)

    Article  Google Scholar 

  192. T.M. et al., 45 GHz transimpedance 32 dB limiting amplifier and 40 Gbps 1:4 high-sensitivity demultiplexer with decision circuit using SiGe HBTs for 40 Gbps optical receiver, in ISSCC Digest of Technical Papers (2000), pp. 60–61

    Google Scholar 

  193. F.T. Chien, Y.J. Chan, Bandwidth enhancement of transimpedance amplifier by a capacitive peaking design. IEEE J. Solid-State Circuits 34(8), 1167–1170 (1999)

    Article  ADS  Google Scholar 

  194. C.-H. Lu, W.-Z. Chen, Bandwidth enhancement techniques for transimpedance amplifier in CMOS technologies, in Proceedings of 27th European Solid-State Circuits Conference (ESSCIRC) (2001), pp. 192–195

    Google Scholar 

  195. S.S. Mohan, M. Hershenson, S.P. Boyd, T.H. Lee, Bandwidth extension in CMOS with optimized on-chip inductors. IEEE J. Solid-State Circuits 35(3), 346–355 (2000)

    Article  ADS  Google Scholar 

  196. H. Zimmermann, Integrated Silicon Optoelectronics (Springer, Berlin, 2000), p. 129

    Google Scholar 

  197. R. Swoboda, J. Knorr, H. Zimmermann, Speed-enhanced OEIC with voltage-up-converter. Electron. Lett. 39(1), 112–113 (2003)

    Article  Google Scholar 

  198. J.F. Dickson, On-chip high-voltage generation in NMOS integrated circuits using an improved voltage multiplier technique. IEEE J. Solid-State Circuits 11(3), 374–378 (1976)

    Article  ADS  Google Scholar 

  199. H. Zimmermann, R. Swoboda, K. Schneider, and J. Knorr, “Comparison of CMOS and BiCMOS Optical Receiver SoCs”, in VLSI Circuits and Systems Conference at SPIE’s International Symposium on Microtechnologies for the New Millenium, SPIE Proc., vol. 5117 (2003), pp. 598–609

    Google Scholar 

  200. J. Knorr, R. Swoboda, H. Zimmermann, Speed-enhanced OEIC with area-efficient charge pump and shunt regulator, in IEEE International Symposium on High Performance Electron Devices for Microwave & Optoelectronic Applications (EDMO) (2003)

    Google Scholar 

  201. M. Atef, H. Zimmermann, Optical Communication Over Plastic Optical Fibers (Springer, Berlin, 2013)

    Book  Google Scholar 

  202. S. Brigati, F. Francesconi, D. Gardino, M. Poletti, A. Maglione, A 20 Mbit/s integrated photoreceiver with digital outputs in 0.6 \(\upmu \)m CMOS technology, in Proceedings of 28th European Solid-State Circuits Conference (ESSCIRC) (2002), pp. 503–506

    Google Scholar 

  203. S.M. Park, C. Papavassiliou, On the design of low-noise, Giga-Hertz bandwidth preamplifiers for optical receiver applications. Proc. ICECS 2, 785–788 (1999)

    Google Scholar 

  204. M. Förtsch, H. Zimmermann, Integrierter optischer Sensor mit geteilter Fotodiode zur Grenzfrequenzsteigerung, in Informationstagung Mikroelektronik, Vienna (2003)

    Google Scholar 

  205. R. Swoboda, H. Zimmermann, 2.5 Gb/s silicon receiver OEIC with large diameter photodiode. Electron. Lett. 40(8), 505–507 (2004)

    Article  Google Scholar 

  206. M. Lang, W. Bronner, W. Benz, M. Ludwig, V. Hurm, G. Kaufel, A. Leuther, J. Rosenzweig, M. Schlechtweg, Complete monolithic integrated 2.5 Gbit/s optoelectronic receiver with large area MSM photodiode for 850 nm wavelength. Electron. Lett. 37(20), 1247–1249 (2001)

    Article  Google Scholar 

  207. M. Atef, R. Swoboda, H. Zimmermann, Optical receiver front-end for multilevel signalling. Electron. Lett. 45(2), 121–122 (2009)

    Article  Google Scholar 

  208. S.C.J. Lee, F. Breyer, S. Randel, R. Gaudino, G. Bosco, A. Bluschke, M. Matthews, P. Rietzsch, H.P.A. van den Boom, A.M.J. Koonen, Discrete multitone modulation for maximizing transmission rate in step-index plastic optical fibers. J. Light. Technol. 27(11), 1503–1513 (2009)

    Article  ADS  Google Scholar 

  209. O. Jeon, R.M. Fox, B.A. Myers, Analog AGC circuitry for a CMOS WLAN receiver. IEEE J. Solid-State Circuits 41(10), 2291–2300 (2006)

    Article  ADS  Google Scholar 

  210. M. Atef, R. Swoboda, H. Zimmermann, Optical receiver for multicarrier modulation in short-reach communication. Electron. Lett. 46(3), 225–226 (2010)

    Article  Google Scholar 

  211. J.M. Castillo, A.D. Sanchez, M.L. Aranda, Differential transimpedance amplifiers for communications systems based on common-gate topology, in IEEE International Symposium on Circuits and Systems (ISCAS)

    Google Scholar 

  212. A. Kopa, A.B. Apsea, Common-emitter feedback transimpedance amplifier for analog optical receiver, in IEEE International Symposium on Circuits and Systems (ISCAS)

    Google Scholar 

  213. T. Ridder, P. Ossieur, X. Yin, B. Baekelandt, C. Melange, J. Bauwelinck, X. Qiu, J. Vandewege, BiCMOS variable gain transimpedance amplifier for automotive applications. Electron. Lett. 44(4), 287–288 (2008)

    Article  Google Scholar 

  214. J.P. Alegre, S. Celma, B. Calvo, N. Fiebig, S. Halder, SiGe analog AGC circuit for an 802.11a WLAN direct conversion receiver. IEEE Trans. Circuits Syst. II 56(2), 93–96 (2009)

    Article  Google Scholar 

  215. K. Mori, T. Akashi, Y. Tochio, H. Nobuhara, K. Tanaka, N. Nagase, Y. Akimoto, H. Kitasagami, Y. Shimizu, T. Yaname, A. Abe, M. Kawai, 155.52 Mb/s optical tranceiver modules for ONU/OLT on ATM-PON systems, in Proceedings European Conference on Optical Communication (ECOC) (1997), pp. 363–366

    Google Scholar 

  216. S. Yamashita, S. Ide, K. Mori, A. Hayakawa, N. Ueno, K. Tanaka, Novel cell-AGC technique for burst-mode CMOS preamplifier with wide dynamic range and high sensitivity for ATM-PON system, in Proceedings of 27th European Solid-State Circuits Conference (ESSCIRC) (2001), pp. 200–203

    Google Scholar 

  217. Y. Ota, R.G. Swartz, Burst-mode compatible optical receiver with a large dynamic range. J. Light. Technol. 8(12), 1897–1902 (1990)

    Article  ADS  Google Scholar 

  218. D. Yamazaki, N. Nagase, H. Nobuhara, T. Funaki, K. Wakao, 156 Mbit/s preamplifier IC with wide dynamic range for ATM-PON application. Electron. Lett. 33(15), 1308–1309 (1997)

    Article  Google Scholar 

  219. M. Nakamura, N. Ishihara, Y. Akazawa, H. Kimura, An instantaneous response CMOS optical receiver IC with wide dynamic range and evtremely high sensitivity using feed-forward auto-bias adjustment. IEEE J. Solid-State Circuits 30(9), 991–997 (1995)

    Article  ADS  Google Scholar 

  220. M. Nakamura, N. Ishihara, Y. Akazawa, A 156-Mb/s CMOS optical receiver burst-mode transmission. IEEE J. Solid-State Circuits 33(8), 1179–1187 (1998)

    Article  ADS  Google Scholar 

  221. M. Nakamura, N. Ishihara, 1.2 V, 35 mW CMOS optical transceiver ICs for 50 Mbit/s burst-mode communication. Electron. Lett. 35(5), 394–395 (1999)

    Article  Google Scholar 

  222. K. Phang, D.A. Johns, A 1 V 1 mW front-end with on-chip dynamic gate biasing for a 75 Mb/s optical receiver, in ISSCC (2001), pp. 218–219

    Google Scholar 

  223. V. Peluso, P. Vancorenland, M. Steyaert, W. Sansen, 900 mV differentail class AB OTA for switched opamp applications. Electron. Lett. 33(17), 1455–1456 (1997)

    Article  Google Scholar 

  224. J. Wilson, J.F.B. Hawkes, Optoelectronics (Prentice Hall, New York, 1989), p. 310

    Google Scholar 

  225. X. D. Wu, R.A. Street, R. Weisfield, S. Ready, S. Nelson, Page sized a-Si:H two-dimensional array as imaging devices, in Proceedings of 4th International Conference on Solid-State and Integrated-Circuit Technology (1995), pp. 724–726

    Google Scholar 

  226. B. Sklar, Digital Communications: Fundamentals and Applications (Prentice Hall, London, 2001)

    MATH  Google Scholar 

  227. ITU-T, G.975.1: forward error correction for high bit-rate DWDM submarine systems, in Telecommunication Standardization Sector (2004)

    Google Scholar 

  228. D. O’Brien, R. Turnbull, H.L. Minh, G. Faulkner, O. Bouchet, P. Porcon, M.E. Tabach, E. Gueutier, M. Wolf, L. Grobe, J. Li, High-speed optical wireless demonstrators: conclusions and future directions. J. Light. Technol. 30(13), 2181–2187 (2012)

    Article  ADS  Google Scholar 

  229. E. Fisher, I. Underwood, R. Henderson, A reconfigurable single-photon counting integrating receiver for optical communications. IEEE J. Solid-State Circuits 48(7), 1638–1650 (2013)

    Article  ADS  Google Scholar 

  230. B. Steindl, M. Hofbauer, K. Schneider-Hornstein, P. Brandl, H. Zimmermann, Single-photon avalanche photodiode based fiber optical receiver up to 200 Mb/s. J. Sel. Top. Quantum Electron. 24(2), 3801308 (2018)

    Article  Google Scholar 

  231. R. Enne, B. Steindl, M. Hofbauer, H. Zimmermann, Fast cascoded quenching circuit for decreasing afterpulsing effects in 0.35 \(\upmu \)m CMOS. IEEE Solid-State Circuits Lett. 1(3), 62–65 (2018)

    Article  Google Scholar 

  232. B. Goll, M. Hofbauer, B. Steindl, H. Zimmermann, A fully integrated SPAD-based CMOS data-receiver with a sensitivity of -64 dBm at 20 Mb/s. IEEE Solid-State Circuits Lett. 1(1), 2–5 (2018)

    Article  Google Scholar 

  233. M.J. McCullagh, D.R. Wisely, 155 Mbit/s optical wireless link using a bootstrapped silicon APD receiver. IET Electron. Lett. 30(5), 430–432 (1994)

    Article  Google Scholar 

  234. A.L. Lentine, K.W. Goossen, J.A. Walker, J.E. Cunningham, W.Y. Jan, T.K. Woodward, A.V. Krishnamoorthy, B.J. Tseng, S.P. Hui, R.E. Leibenguth, L.M.F. Chirovsky, R.A. Novotny, D.B. Buchholz, R.L. Morrison, Optoelectronic VLSI switching chip with greater than 1 Tbit/s potential optical I/O bandwidth. Electron. Lett. 33(10), 894–895 (1997)

    Article  Google Scholar 

  235. A.V. Krishnamoorthy, R.G. Rozier, T.K. Woodward, P. Chandramani, K.W. Goossen, B.J. Tseng, J.A. Walker, W.Y. Jan, J.E. Cunningham, Triggered receivers for optoelectronic VLSI. Electron. Lett. 36(3), 249–250 (2000)

    Article  Google Scholar 

  236. H.H. Kim, R.G. Swartz, Y. Ota, T.K. Woodward, M.D. Feuer, W.L. Wilson, Prospects for silicon monolithic opto-electronics with polymer light emitting diodes. IEEE J. Light. Technol. 12(12), 2114–2121 (1994)

    Article  ADS  Google Scholar 

  237. K.G. Moerschel, T.Y. Chiu, W.A. Possanza, K.S. Lau, R.G. Swartz, R.A. Mantz, T.Y.M. Liu, K.F. Lee, V.D. Archer, G.R. Hower, G.T. Mazsa, R.E. Carsia, J.A. Pavlo, M.P. Ling, J.L. Dolcin, F.M. Erceg, J.J. Egan, C.J. Fassl, J.T. Glick, M.A. Prozonic, BEST: a BiCMOS-compatible super-self-aligned ECL technology, in IEEE Custom Integrated Circuits Conference (1990), pp. 18.3.1–18.3.4

    Google Scholar 

  238. D. Chitnis, S. Collins, A SPAD-based photon detecting system for optical communications. J. Light. Technol. 32, 2028–2034 (2014)

    Article  Google Scholar 

  239. S. Radovanovic, A.J. Annema, B. Nauta, A 3-Gb/s optical detector in standard CMOS for 850-nm optical communication. IEEE J. Solid-State Circuits 40(8), 1706–1717 (2005)

    Article  ADS  Google Scholar 

  240. F. Tavernier, M. Steyaert, High-speed optical receivers with integrated photodiode in 130 nm CMOS. IEEE J. Solid-State Circuits 44(10), 2856–2867 (2009)

    Article  ADS  Google Scholar 

  241. S.H. Huang, W.Z. Chen, Y.W. Chang, Y.T. Huang, A 10-Gb/s OEIC with meshed spatially modulated photodetector in 0.18-\(\upmu \)m CMOS technology. IEEE J. Solid-State Circuits 46(5), 1158–1169 (2011)

    Article  ADS  Google Scholar 

  242. J. Leeb, K. Schneider, H. Zimmermann, A 380MHz two-stage OEIC for the use in DVD pickup units, in Proceedings IEEE International Symposium on Consumer Electronics (2004), pp. 381–384

    Google Scholar 

  243. R. Swoboda, J. Knorr, H. Zimmermann, A 2.4GHz-bandwidth OEIC with voltage-up-converter, in Proceedings of European Solid-State Circuits Conference (2004), pp. 223–226,

    Google Scholar 

  244. R. Swoboda, H. Zimmermann, 11Gb/s monolithically integrated silicon optical receiver for 850nm wavelength, in Proceedings of IEEE International Solid-State Circuits Conference (ISSCC) (2006), pp. 240–241

    Google Scholar 

  245. M. Atef, H. Zimmermann, Optoelectronic Circuits in Nanometer CMOS Technology (Springer, Switzerland, 2016)

    Book  Google Scholar 

  246. T. Ringbeck, R. Schwarte, B. Buxbaum, Introduction of a new opto-electrical phase locked loop in CMOS technology, the PMD-PLL. Proc. SPIE 3850, 108–115 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horst Zimmermann .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zimmermann, H. (2018). Examples of Optoelectronic Integrated Circuits. In: Silicon Optoelectronic Integrated Circuits. Springer Series in Advanced Microelectronics, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-030-05822-7_6

Download citation

Publish with us

Policies and ethics

Navigation