Integrated Silicon Photodetectors

  • Chapter
  • First Online:
Silicon Optoelectronic Integrated Circuits

Part of the book series: Springer Series in Advanced Microelectronics ((MICROELECTR.,volume 13))

  • 1376 Accesses

Abstract

In this chapter the bipolar, CMOS, and BiCMOS process technologies are described. Photodetectors which are produced in these technologies without process modifications and their properties are introduced. Furthermore, the possible improvements of photodetectors resulting from small substrate and process modifications are discussed. CMOS is the economically most important technology. The section on integrated photodetectors in CMOS technology, therefore, is more comprehensive than the sections on photodetectors in bipolar and BiCMOS technologies. Within the CMOS section, the sophisticated spatially-modulated-light (SML) detector suppressing slow carrier diffusion effects in standard CMOS will be described. Furthermore, the photonic mixer device (PMD) being relevant for future 3D cameras on a chip will be discussed. In addition, the innovative integration of vertical PIN photodiodes will be highlighted, since they allow a considerable improvement of the speed of CMOS OEICs. Avalanche photodiodes and single-photon avalanche diodes are explained. Triple-well processes are explained with respect of their isolation capabilities. Furthermore, image sensors using charge-coupled-devices and active pixel image sensors will be described in some detail because of their economical importance. Within the BiCMOS section, the exploitation of double photodiodes will be mentioned as another innovation for high-speed OEICs and OPTO-ASICs in standard technology. With some process modifications, a very fast vertical PIN photodiode was realized in BiCMOS technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, vol. 17c (Springer, Berlin, 1984), p. 474

    Google Scholar 

  2. M. Takagi, K. Nakayama, C. Terada, H. Kamoka, in Proceedings of the 4th Conference on Solid-State Devices, vol. 42(Suppl.) (Japan Society of Applied Physics, 1973), p. 101

    Google Scholar 

  3. D.D. Tang, T.H. Ning, R.D. Isaac, G.C. Feth, S.K. Wiedmann, H.-N. Yu, Subnanosecond self-aligned \(I^2L\)/MTL circuits. IEEE J. Solid-Sate Circuits 15(4), 444–449 (1980)

    Article  ADS  Google Scholar 

  4. E.F. Labuda, J.T. Clemens, Integrated circuit technology, in Encyclopedia of Chemical Technology, ed. by R.E. Kirk, D.F. Othmer (Wiley, New York, 1980)

    Google Scholar 

  5. J.A. Appels, E. Kooi, M.M. Paffen, J.J.H. Schlorje, W.H.C.G. Verkuylen, Local oxidation of silicon and its application in semiconductor technology. Philips Res. Rep. 25, 118 (1970)

    Google Scholar 

  6. M. Grossman, Recessed-oxide isolation hikes IBM’s LSI density and speed. Electron Des. 12(6), 26–28 (1979)

    Google Scholar 

  7. R.J. Blumberg, S. Brenner, A 1500 gate, random logic, large-scale integrated (LSI) masterslice. IEEE J. Solid-State Circuits 14(5), 818–822 (1979)

    Article  ADS  Google Scholar 

  8. D.D. Tang, P.M. Soloman, T.H. Ning, R.D. Issac, R.E. Burger, 1.25-\(\upmu \)m deep-groove-isolated self-aligned bipolar circuits. IEEE J. Solid-Sate Circuits 17(5), 925–931 (1982)

    Article  ADS  Google Scholar 

  9. A. Hayasaka, Y. Takami, M. Kawamura, K. Ogiue, S. Ohwaki, U-groove isolation technique for high speed bipolar VLSI’s, in IEDM Digest Technical Papers (1982), pp. 62–65

    Google Scholar 

  10. H. Goto, T. Takada, R. Abe, Y. Kawabe, K. Oami, M. Tanaka, An isolation technology for high performance bipolar memories: IOP-II, in IEDM Digest Technical Papers (1982), pp. 58–61

    Google Scholar 

  11. M. Yamamoto, M. Kubo, K. Nakao, Si-OEIC with a built-in PIN-photodiode. IEEE Trans. Electron Devices 42(1), 58–63 (1995)

    Article  ADS  Google Scholar 

  12. H.-M. Rein, R. Ranfft, Integrierte Bipolarschaltungen (Springer, Berlin, 1987), p. 50

    Google Scholar 

  13. H.H. Kim, R.G. Swartz, Y. Ota, T.K. Woodward, M.D. Feuer, W.L. Wilson, Prospects for silicon monolithic opto-electronics with polymer light emitting diodes. IEEE J. Light. Technol. 12(12), 2114–2121 (1994)

    Article  ADS  Google Scholar 

  14. J. Popp, H.v. Philipsborn, 10 Gbit/s on-chip photodetection with self-aligned silicon bipolar transistors, in ESSDERC (1990), pp. 571–574

    Google Scholar 

  15. J. Wieland, H. Duran, A. Felder, Two-channel 5 Gbit/s silicon bipolar monolithic receiver for parallel optical interconnects. Electron. Lett. 30(4), 358 (1994)

    Article  Google Scholar 

  16. H. Kabza, K. Ehinger, T.F. Meister, H.-W. Meul, P. Weger, I. Kerner, M. Miura-Mattausch, R. Schreiter, D. Hartwig, M. Reisch, M. Ohnemus, R. Köpl, J. Weng, H. Klose, H. Schaber, L. Treitinger, A 1-\(\upmu \)m polysilicon self-aligned bipolar process for low-power high-speed integrated circuits. IEEE Electron Device Lett. 10(8), 344–346 (1989)

    Article  ADS  Google Scholar 

  17. J. Wieland, H. Melchior, M.Q. Kearley, C.R. Morris, A.M. Moseley, M.J. Goodwin, R.C. Goodfellow, Optical receiver array in silicon bipolar technology with selfaligned, low parasitic III/V detectors for DC-1 Gbit/s parallel links. Electron. Lett. 24(27), 2211–2213 (1994)

    Google Scholar 

  18. G. Winstel, C. Weyrich, Optoelektronik II (Springer, Berlin, 1986), p. 97

    Book  Google Scholar 

  19. J. Lindemayer, C.Y. Wrigley, Beta cuttoff frequencies of junction transistors. Proc. IRE 50, 194–198 (1962)

    Article  Google Scholar 

  20. D. Bolliger, P. Malcovati, A. Häberli, H. Baltes, P. Sarro, F. Maloberti, Integrated ultraviolet sensor system with on-chip 1 G\(\Omega \) transimpedance amplifier, in ISSCC (1996), pp. 328–329

    Google Scholar 

  21. D. Bolliger, R.S. Popovic, H. Baltes, Integration of a smart selective UV detector, in Transducers’95 and Eurosensors IX, Digest of Technical Papers 2 (8th International Conference on Solid-State Sensors and Actuators) (1995), pp. 144–147

    Google Scholar 

  22. L.K. Nanver, E.J.G. Goudena, H.W. van Zeijl, DIMES-01, a baseline BIFET process for smart sensor experimentation. Sens. Actuators A 36, 139–147 (1993)

    Article  Google Scholar 

  23. H. Zimmermann, Improved CMOS-integrated photodiodes and their application in OEICs, in IEEE International Workshop on High Performance Electron Devices for Microwave & Optoelectronic Applications (1997), pp. 346–351

    Google Scholar 

  24. C.T. Kirk, A theory of transistor cutoff frequency \((f_{\rm T})\) falloff at high current densities. IRE Trans. Electron Devices ED–9, 164–174 (1962)

    Article  ADS  Google Scholar 

  25. L.A. Hahn, The saturation characteristics of high-voltage transistors. Proc. IEEE 55(8), 1384–1388 (1967)

    Article  Google Scholar 

  26. J.R.A. Beale, J.A.G. Slatter, The equivalent circuit of a transistor with a lightly doped collector operating in saturation. Solid-State Electron. 11, 241–252 (1968)

    Article  ADS  Google Scholar 

  27. J.A. Pals, H.C. de Graaff, On the behaviour of the base-collector junction of a transistor at high collector current densities. Philips Res. Rep. 24, 53–69 (1969)

    Google Scholar 

  28. R.J. Whittier, D.A. Tremere, Current gain and cutoff frequency falloff at high currents. IEEE Trans. Electron Devices ED–16(1), 39–57 (1969)

    Article  ADS  Google Scholar 

  29. H.C. Poon, H.K. Gummel, Modeling of emitter capacitance. Proc. IRE 57, 2181–2182 (1969)

    Google Scholar 

  30. H.C. de Graaff, Collector models for bipolar transistors. Solid-State Electron. 16, 587–600 (1973)

    Article  ADS  Google Scholar 

  31. G. Rey, J.P. Bailbe, Some aspects of current gain variations in bipolar transistors. Solid-State Electron. 17, 1045–1057 (1974)

    Article  ADS  Google Scholar 

  32. T.H. Ning, D.D. Tang, P.M. Solomon, Scaling properties of bipolar devices, IEEE International Electron Device Meeting (Washington, D.C., 1980), pp. 61–64

    Google Scholar 

  33. R. Swoboda, H. Zimmermann, A 2.5-Gb/s receiver OEIC in 0.6-\(\upmu \)m BiCMOS technology. IEEE Photonics Technol. Lett. 16(7), 1730–1732 (2004)

    Article  ADS  Google Scholar 

  34. G. Schumicki, P. Seegebrecht, Prozesstechnologie (Springer, Berlin, 1991), pp. 370–380

    Book  Google Scholar 

  35. T. Hori, Gate Dielectrics and MOS ULSIs (Springer, New York, 1997)

    Book  Google Scholar 

  36. L.C. Parrillo, R.S. Payne, R.E. Davies, G.W. Rentlinger, R.L. Field, Twin-tub CMOS - a technology for VLSI circuits, in IEDM Digest Technical Papers (1980), pp. 752–755

    Google Scholar 

  37. C.-Y. Lu, J.J. Sung, H.C. Kirsch, N.-S. Tsai, R. Liu, A.S. Manocha, S.J. Hillenius, High-perfomance salicide shallow-junction CMOS devices for submicrometer VLSI application in twin-tub VI. IEEE Trans. Electron Devices 36(11), 2530–2536 (1989)

    Article  ADS  Google Scholar 

  38. R.A. Chapman, C.C. Wei, D.A. Bell, S. Aur, G.A. Brown, R.A. Haken, 0.5 micron CMOS for high performance at 3.3 V, in IEDM Digest Technical Papers (1988), pp. 52–55

    Google Scholar 

  39. B. Davari, W.H. Chang, M. Wordeman, C.S. Oh, Y. Taur, K.E. Petrillo, D. Moy, J.J. Bucchignano, H.Y. Ng, M.G. Rosenfield, F.J. Hohn, M. D. Rodriguez, A high performance 0.25 \(\upmu \)m CMOS technology, in IEDM Digest Technical Papers (1988), pp. 56–59

    Google Scholar 

  40. Y. Ogasahara, M. Hashimoto, T. Kanamoto, T. Onoye, Supply noise suppression by triple-well structure. IEEE Trans. VLSI Syst. 21(4), 781–785 (2013)

    Article  Google Scholar 

  41. W. Muth, Matrix method for latch-up free demonstration in a triple-well bulk-silicon technology. IEEE Trans. Nucl. Sci. 39(3), 396–400 (1992)

    Article  ADS  Google Scholar 

  42. E. Braß, U. Hilleringmann, K. Schumacher, System integration of optical devices and analog CMOS amplifiers. IEEE J. Solid-State Circuits 29(8), 1006–1010 (1994)

    Article  ADS  Google Scholar 

  43. U. Hilleringmann, K. Goser, Optoelectronic system integration on silicon: waveguides, photodetectors, and VLSI CMOS circuits on one chip. IEEE Trans. Electron Devices 42(5), 841–846 (1995)

    Article  ADS  Google Scholar 

  44. E. Fullin, G. Voirin, M. Chevroulet, A. Lagos, J.-M. Moret, CMOS-based technology for integrated optoelectronics: a modular approach, in IEDM Digest Technical Papers (1994), pp. 527–530

    Google Scholar 

  45. R. Kauert, W. Budde, A. Kalz, A monolithic field segment photo sensor system. IEEE J. Solid-State Circuits 30(7), 807–811 (1995)

    Article  ADS  Google Scholar 

  46. P. Lee, A. Simoni, A. Sartori, G. Torelli, A photosensor array for spectrophotometry. Sens. Actuators A 46–47, 449–452 (1995)

    Article  Google Scholar 

  47. H. Zimmermann, K. Kieschnick, T. Heide, A. Ghazi, Integrated high-speed, high-responsivity photodiodes in CMOS and BiCMOS technology, in Proceedings of the 29th European Solid-State Device Conference (ESSDERC) (1999), pp. 332–335

    Google Scholar 

  48. M.L. Simpson, M.N. Ericson, G.E. Jellison, W.B. Dress, A.L. Wintenberg, M.B. Bobrek, Application specific spectral response with CMOS compatible photodiodes. IEEE Trans. Electron Devices 46(5), 905–913 (1999)

    Article  ADS  Google Scholar 

  49. T.K. Woodward, A.V. Krishnamoorthy, 1 Gbit/s CMOS photoreceiver with integrated detector operating at 850 nm. Electron. Lett. 34(12), 1252–1253 (1998)

    Article  Google Scholar 

  50. C. Rooman, D. Coppee, M. Kuijk, Asynchronous 250-Mb/s optical receivers with integrated detector in standard CMOS technology for optocoupler applications. IEEE J. Solid-State Circuits 35(7), 953–957 (2000)

    Article  ADS  Google Scholar 

  51. M. Kuijk, D. Coppee, R. Vounckx, Spatially modulated light detector in CMOS with sense-amplifier receiver operating at 180 Mb/s for optical data link applications and parallel optical interconnects between chips. IEEE J. Sel. Top. Quantum Electron. 4(6), 1040–1045 (1998)

    Article  ADS  Google Scholar 

  52. L.D. Garrett, J. Qi, C.L. Schow, J.C. Campbell, A silicon-based integrated NMOS-p-i-n photoreceiver. IEEE Trans. Electron Devices 43(3), 411–416 (1996)

    Article  ADS  Google Scholar 

  53. S. He, L.D. Garrett, K.-H. Lee, J.C. Campbell, Monolithic integrated silicon NMOS PIN photoreceiver. Electron. Lett. 30(22), 1887–1888 (1994)

    Article  Google Scholar 

  54. S.M. Sze, VLSI Technology (McGraw-Hill, New York, 1988)

    Google Scholar 

  55. T. Hori, J. Hirase, Y. Odake, T. Yasui, Deep-submicrometer large-angle-tilt implanted drain (LATID) technology. IEEE Trans. Electron Devices 39(10), 2312–2324 (1992)

    Article  ADS  Google Scholar 

  56. H. Zimmermann, Monolithic Bipolar-, CMOS-, and BiCMOS-receiver OEICs, in Proceedings of the International Semiconductor Conference (CAS’96) (Sinaia, Romania, 1996), pp. 31–40

    Google Scholar 

  57. H. Zimmermann, T. Heide, A. Ghazi, Monolithic high-speed CMOS-photoreceiver. IEEE Photonics Technol. Lett. 11(2), 254–256 (1999)

    Article  ADS  Google Scholar 

  58. H. Zimmermann, U. Müller, R. Buchner, P. Seegebrecht, Optoelectronic receiver circuits in CMOS-technology, Mikroelektronik’97, GMM-Fachbericht 17 (VDE-Verlag, Berlin, Offenbach, 1997), pp. 195–202

    Google Scholar 

  59. H. Zimmermann, T. Heide, A. Ghazi, K. Kieschnick, PIN-CMOS-receivers for optical interconnects, in Ext. Abstr. 2nd IEEE Workshop on Signal Propagation on Interconnects, Travemünde, Germany (1998), pp. 88–89

    Google Scholar 

  60. H. Zimmermann, A. Ghazi, T. Heide, R. Popp, R. Buchner, in Proceedings of the 49th Electronic Components and Technology Conference (ECTC) (1999), pp. 1030–1035

    Google Scholar 

  61. R.A. Chapman, R.A. Haken, D.A. Bell, C.C. Wei, R.H. Havemann, T.E. Tang, T.C. Holloway, R.J. Gale, An 0.8 \(\upmu \)m CMOS technology for high performance logic applications, in IEDM Digest Technical Papers (1987), pp. 362–365

    Google Scholar 

  62. P. Pavan, G. Spiazzi, E. Zanoni, M. Muschitiello, M. Cecchetti, Latch-up DC triggering and holding characteristics of n-well, twin-tub and epitaxial CMOS technologies. IEE Proc.-G 138(5), 605–612 (1991)

    Google Scholar 

  63. H. Zimmermann, T. Heide, A. Ghazi, P. Seegebrecht, PIN-CMOS-receivers for optical interconnects, in Signal Propagation on Interconnects, vol. II, ed. by H. Grabinski (Kluwer, Amsterdam, 1999)

    Google Scholar 

  64. A. Ghazi, T. Heide, H. Zimmermann, PIN CMOS OEIC for DVD systems, in Proceedings of the 43rd International Scientific Colloquium, TU Ilmena, vol. 2 (Germany, 1998), pp. 380–385

    Google Scholar 

  65. H. Zimmermann, Integrated Silicon Optoelectronics (Springer, Berlin, 2000)

    Book  Google Scholar 

  66. P. Brandl, S. Schidl, H. Zimmermann, PIN photodiode optoelectronic integrated receiver used for 3-Gb/s free-space optical communication. IEEE J. Sel. Top. Quantum Electron. 20(6), 6000510 (2014)

    Article  Google Scholar 

  67. M. Davidovic, T. Wimbauer, H. Zimmermann, PIN photodiode in 0.15 \(\upmu \)m CMOS. IET Electron. Lett. 50(17), 1229–1231 (2014)

    Article  Google Scholar 

  68. W.S. Boyle, G.E. Smith, Charge coupled semiconductor devices. Bell Syst. Tech. 49(4), 587–593 (1970)

    Article  Google Scholar 

  69. E.G. Stevens, B.C. Burkey, D.N. Nicols, Y.S. Yee, D.L. Losee, T.-H. Lee, T.J. Tredwell, R.P. Khosla, A 1-megapixel, progressive-scan image sensor with antiblooming control and lag-free operation. IEEE Trans. Electron Devices 38(5), 981–988 (1991)

    Article  ADS  Google Scholar 

  70. T. Kuriyama, H. Kodama, T. Kozono, Y. Kitahama, Y. Morita, Y. Hiroshima, A 1/3-in 270000 pixel CCD image sensor. IEEE Trans. Electron Devices 38(5), 949–953 (1991)

    Article  ADS  Google Scholar 

  71. S. Kawai, N. Mutoh, N. Teranishi, Thermionic-emission-based barrier height analysis for precise estimation of charge handling capacity in CCD registers. IEEE Trans. Electron Devices 44(10), 1588–1592 (1997)

    Article  ADS  Google Scholar 

  72. J.P. Lavine, E.K. Banghart, The effect of potential obstacles on charge transfer in image sensors. IEEE Trans. Electron Devices 44(10), 1593–1598 (1997)

    Article  ADS  Google Scholar 

  73. R. Miyagawa, T. Kanade, CCD-based range-finding sensor. IEEE Trans. Electron Devices 44(10), 1648–1652 (1997)

    Article  ADS  Google Scholar 

  74. T. Spirig, M. Marley, P. Seitz, The multitap lock-in CCD with offset subtraction. IEEE Trans. Electron Devices 44(10), 1643–1647 (1997)

    Article  ADS  Google Scholar 

  75. B.E. Burke, J.A. Gregory, M.W. Bautz, G.Y. Prigozhin, S.E. Kissel, B.B. Kosiki, A.H. Loomis, D.J. Young, Soft-X-ray CCD imagers for AXAF. IEEE Trans. Electron Devices 44(10), 1633–1642 (1997)

    Article  ADS  Google Scholar 

  76. K. Itakura, T. Nobusada, Y. Saitou, N. Kokusenya, R. Nagayoshi, M. Ozaki, Y. Sugawara, K. Mitani, Y. Fujita, A 2/3-in 2.0 M-pixel CCD imager with an advanced M-FIT architecture capable of progressive scan. IEEE Trans. Electron Devices 44(10), 1625–1632 (1997)

    Article  ADS  Google Scholar 

  77. K. Tachikawa, T. Umeda, Y. Oda, T. Kuroda, Device design with automatic simulation system for basic CCD characteristics. IEEE Trans. Electron Devices 44(10), 1611–1616 (1997)

    Article  ADS  Google Scholar 

  78. T. Yamada, Y. Kawakami, T. Nakano, N. Mutoh, K. Orihara, N. Teranishi, Driving voltage reduction in a two-phase CCD by suppression of potential pockets in inter-electrode gaps systems. IEEE Trans. Electron Devices 44(10), 1580–1587 (1997)

    Article  ADS  Google Scholar 

  79. B.E. Burke, R.K. Reich, J.A. Gregory, W.H. McGonagle, A.M. Waxman, E.D. Savoye, B.B. Kosiki, 640 \(\times \) 480 back-illuminated CCD imager with improved blooming control for night vision, in IEDM Digest Technical Papers (1998), pp. 33–36

    Google Scholar 

  80. J.T. Bosiers, A.C. Kleinman, A. van der Sijde, L. Korthout, D.W. Verbugt, H.L. Peek, E. Roks, A. Heringa, F.F. Vledder, P. Opmeer, A 2/3” 2-M pixel progressive scan FT-CCD for digital still camera applications, in IEDM Digest Technical Papers (1998), pp. 37–40

    Google Scholar 

  81. A. Tanabe, Y. Kudoh, Y. Kawakami, K. Masubuchi, S. Kawai, T. Yamada, M. Morimoto, K. Arai, K. Hatano, M. Furumiya, Y. Nakashiba, N. Mutoh, K. Orihara, N. Teranishi, Dynamic range improvement by narrow-channel effect suppression and smear reduction technologies in small pixel IT-CCD image sensors, in IEDM Digest Technical Papers (1998), pp. 41–44

    Google Scholar 

  82. H. Fiedler, K. Knupfer, Market overview: charge-coupled devices, in Sensors Update, vol. 1, ed. by H. Baltes, W. Göpel, J. Hesse (VCH, Weinheim, 1996), pp. 223–271

    Google Scholar 

  83. P. Seitz, K. Knop, Image sensors, in Sensors Update, vol. 2, ed. by H. Baltes, W. Göpel, J. Hesse (VCH, Weinheim, 1996), pp. 85–103

    Google Scholar 

  84. Y. Hagiwara, High-density and high-quality frame transfer CCD imager with very low smear, low dark current, and very high blue sensitivity. IEEE Trans. Electron Devices 43(12), 2122–2130 (1996)

    Article  ADS  Google Scholar 

  85. J. Hynecek, Low-noise and high-speed charge detection in high-resolution CCD image sensors. IEEE Trans. Electron Devices 44(10), 1679–1688 (1997)

    Article  ADS  Google Scholar 

  86. N. Tanaka, N. Nakamura, Y. Matsunaga, S. Manabe, H. Tango, O. Yoshida, A low driving voltage CCD with single layer electrode structure for area image sensor. IEEE Trans. Electron Devices 44(11), 1869–1874 (1997)

    Article  ADS  Google Scholar 

  87. S.M. Sze, Physics of semiconductor devices (Wiley, New York, 1981), p. 412

    Google Scholar 

  88. R.H. Walden, R.H. Krambeck, R.J. Strain, J. McKenna, N.L. Schryer, G.E. Smith, The buried channel charge coupled device. Bell Syst. Tech. 51, 1635–1640 (1972)

    Article  Google Scholar 

  89. M.M. Blouke, J.R. Janesick, J.E. Hall, M.W. Cowens, P.J. May, 800 \(\times \) 800 charge coupled device image sensor. Opt. Eng. 22(5), 607–614 (1983)

    Article  ADS  Google Scholar 

  90. Y. Ishihara, E. Oda, H. Tanigawa, A. Kohno, N. Teranishi, E.-I. Takeuchi, I. Akiyama, T. Kamata, Interline CCD image sensor with an antiblooming structure. IEEE Trans. Electron Devices 31(1), 83–88 (1984)

    Article  ADS  Google Scholar 

  91. N. Teranishi, Y. Ishihara, Smear reduction in interline CCD image sensor. IEEE Trans. Electron Devices 34(5), 1052–1056 (1987)

    Article  ADS  Google Scholar 

  92. E. Oda, K. Orihara, T. Tanaka, T. Kamata, Y. Ishihara, 1/2-in 768(H) \(\times \) 492(V) pixel CCD image sensor. IEEE Trans. Electron Devices 36(1), 46–53 (1989)

    Article  ADS  Google Scholar 

  93. K. Knop, Image sensors, in Optical Sensors, ed. by W. Göpel, J. Hesse, J.N. Zemel (VCH, Weinheim, 1992), pp. 233–252

    Google Scholar 

  94. P. Centen, CCD on-chip amplifiers: noise performance versus MOS transistor dimensions. IEEE Trans. Electron Devices 38(5), 1206–1216 (1991)

    Article  ADS  Google Scholar 

  95. J. Hojo, Y. Naito, H. Mori, K. Fujikawa, N. Kato, T. Wakayama, E. Komatsu, M. Itasaka, A 1/3-in 510(H) \(\times \) 492(V) CCD image sensor with mirror image function. IEEE Trans. Electron Devices 38(5), 954–959 (1991)

    Article  ADS  Google Scholar 

  96. N. Mutoh, Simulation for 3-D optical and electrical analysis of CCD. IEEE Trans. Electron Devices 44(10), 1604–1610 (1997)

    Article  ADS  Google Scholar 

  97. M. Yamagishi, M. Negishi, H. Yamada, T. Tsunakawa, K. Shinohara, T. Ishimaru, Y. Kamide, Y. Yamazaki, H. Abe, H. Kanbe, Y. Tomiya, K. Yonemoto, T. Iizuka, S. Nakamura, K. Harada, K. Wada, A 2 million pixel FIT-CCD image sensor for HDTV camera systems. IEEE Trans. Electron Devices 38(5), 976–980 (1991)

    Article  ADS  Google Scholar 

  98. G. Williams, J. Janesick, Cameras with CCD’s capture new markets, Laser Focus World, Detector Handbook (1996), pp. S5–S9

    Google Scholar 

  99. A.L. Lattes, S.C. Munroe, M.M. Seaver, Ultrafast shallow-buried-channel CCD’s with built-in drift fields. IEEE Electron Device Lett. 12(2), 104–107 (1991)

    Article  ADS  Google Scholar 

  100. T. Satoh, N. Mutoh, M. Furumiya, I. Murakami, S. Suwazono, C. Ogawa, K. Hatano, H. Utsumi, S. Kawai, K. Arai, M. Morimoto, K. Orihara, T. Tamura, N. Teranishi, Y. Hokari, Optical limitations to cell size reduction in IT-CCD image sensors. IEEE Trans. Electron Devices 44(10), 1599–1603 (1997)

    Article  ADS  Google Scholar 

  101. R. Dawson, J. Preisig, J. Carnes, J. Pridgen, CMOS/buried-N-channel CCD compatible process for analog signal processing applications. RCA Rev. 38, 406–435 (1977)

    ADS  Google Scholar 

  102. D. Ong, An all-implanted CCD/CMOS process. IEEE Trans. Electron Devices 28(1), 6–12 (1981)

    Article  ADS  Google Scholar 

  103. E.R. Fossum, CMOS image sensors: electronic camera-on-a-chip. IEEE Trans. Electron Devices 44(10), 1689–1698 (1997)

    Article  ADS  Google Scholar 

  104. A. Simoni, A. Sartori, M. Gottardi, A. Zorat, A digital vision sensor. Sens. Actuators A 46–47, 439–443 (1995)

    Article  Google Scholar 

  105. P. Noble, Self-scanned silicon image detector arrays. IEEE Trans. Electron Devices 15(4), 202–209 (1968)

    Article  ADS  Google Scholar 

  106. F. Andoh, K. Taketoshi, J. Yamazaki, M. Sugawara, Y. Fujita, F. Mitani, Y. Matuzawa, K. Miyata, S. Araki, A 250000 pixel image sensor with FET amplification at each pixel for high-speed television cameras, in ISSCC Digest Technical Papers (1990), pp. 212–213

    Google Scholar 

  107. H. Kawashima, F. Andoh, N. Murata, K. Tanaka, M. Yamawaki, K. Taketoshi, A 1/4 inch format 250000 pixel amplifier MOS image sensor using CMOS process, in IEDM Digest Technical Papers (1993), pp. 575–578

    Google Scholar 

  108. M. Sugawara, H. Kawashima, F. Andoh, N. Murata, Y. Fujita, M. Yamawaki, An amplified MOS imager suited for image processing, in ISSCC Digest Technical Papers (1994), pp. 228–229

    Google Scholar 

  109. E. Oba, K. Mabuchi, Y. Iida, N. Nakamura, H. Miura, A 1/4 inch 330 k square pixel progressive scan CMOS active pixel image sensor, in ISSCC Digest Technical Papers (1997), pp. 180–181

    Google Scholar 

  110. C. Aw, B. Wooley, A 128 \(\times \) 128 pixel standard CMOS image sensor with electronic shutter. IEEE J. Solid-State Circuits 31(12), 1922–1930 (1996)

    Article  ADS  Google Scholar 

  111. R.H. Nixon, S.E. Kemeny, B. Pain, C.O. Staller, E.R. Fossum, 256 \(\times \) 256 CMOS active pixel sensor camera-on-a-chip. IEEE J. Solid-State Circuits 31(12), 2046–2050 (1996)

    Article  ADS  Google Scholar 

  112. R.H. Nixon, S.E. Kemeny, R.C. Gee, B. Pain, Q. Kim, E.R. Fossum, CMOS active pixel image sensors for highly integrated imaging systems. IEEE J. Solid-State Circuits 32(2 (Feb.)), 187–197 (1997)

    Article  ADS  Google Scholar 

  113. O. Yadid-Pecht, E.R. Fossum, Wide intrascene dynamic range CMOS APS using dual sampling. IEEE Trans. Electron Devices 44(10), 1721–1723 (1997)

    Article  ADS  Google Scholar 

  114. Z. Zhou, B. Pain, E.R. Fossum, CMOS active pixel sensor with on-chip successive approximation analog-to-digital converter. IEEE Trans. Electron Devices 44(10), 1759–1763 (1997)

    Article  ADS  Google Scholar 

  115. Z. Zhou, B. Pain, E.R. Fossum, Frame-transfer CMOS active pixel sensor with pixel binning. IEEE Trans. Electron Devices 44(10), 1764–1768 (1997)

    Article  ADS  Google Scholar 

  116. G. Yang, O. Yadid-Pecht, C. Wrigley, B. Pain, A snap-shot CMOS active pixel imager for low-noise, high-speed imaging, in IEDM Digest Technical Papers (1998), pp. 45–48

    Google Scholar 

  117. D. Scheffer, B. Dierickx, G. Meynants, Random addressable 2048 \(\times \) 2048 active pixel image sensor. IEEE Trans. Electron Devices 44(10), 1716–1720 (1997)

    Article  ADS  Google Scholar 

  118. F. Pardo, B. Dierickx, D. Scheffer, CMOS foveated image sensor: signal scaling and small geometry effects. IEEE Trans. Electron Devices 44(10), 1731–1737 (1997)

    Article  ADS  Google Scholar 

  119. A. Dickinson, B. Auckland, E.-S. Eid, D. Inglis, E.R. Fossum, A 256 \(\times \) 256 CMOS active pixel image sensor with motion detection, in ISSCC (1995), pp. 226–227

    Google Scholar 

  120. R.M. Guidash, T.-H. Lee, P.P.K. Lee, D.H. Sackett, C.I. Drowley, M.S. Swenson, L. Arbaugh, R. Hollstein, F. Shapiro, S. Domer, A 0.6 \(\upmu \)m CMOS pinned photodiode color imager technology, in IEDM Digest Technical Papers (1997), pp. 927–929

    Google Scholar 

  121. S. Mendis, S.E. Kemeny, E.R. Fossum, CMOS active pixel image sensor. IEEE Trans. Electron. Devices 41, 452–453 (1994)

    Article  ADS  Google Scholar 

  122. M.-H. Chi, Technologies for high performance CMOS active pixel imaging system-on-a-chip, in Proceedings of the 5th International Conference on Solid-State and Integrated-Circuit Technology (1998), pp. 180–183

    Google Scholar 

  123. H. Totsuka, T. Tsuboi, T. Muto, D. Yoshida, Y. Matsuno, M. Ohmura, H. Takahashi, K. Sakurai, T. Ichikawa, H. Yuzurihara, S. Inoue, An APS-H-size 250 Mpixel CMOS image sensor using column single-slope ADCs with dual-gain amplifiers, in Proceedings IEEE International Solid-State Circuits Conference (2016), pp. 116–117

    Google Scholar 

  124. T. Toyama, K. Mishina, H. Tsuchiya, T. Ichikawa, H. Iwaki, Y. Gendai, H. Murakami, K. Takamiya, H. Shiroshita, Y. Muramatsu, T. Furusawa, A 17.7 Mpixel 120 fps CMOS image sensor with 34.8 Gb/s readout, in Proceedings IEEE International Solid-State Circuits Conference (2011), pp. 420–421

    Google Scholar 

  125. M.F. Snoeji, P. Donegan, A.J.P. Theuwissen, K.A.A. Makinwa, J.H. Huijsing, A CMOS image sensor with a column-level multiple-ramp single-slope ADC, in Proceedings IEEE International Solid-State Circuits Conference (2007), pp. 506–507

    Google Scholar 

  126. J. Bogaerts, R. Lafaille, J. Guo, B. Ceulemans, G. Meynants, N. Sarhangnejad, G. Arsinte, V. Statescu, S. van der Groen, 105\(\times \)65 mm\(^2\) 391 Mpixel CMOS image sensor with \(>\)78 dB dynamic range for airborne map** applications, in Proceedings IEEE International Solid-State Circuits Conference (2016), pp. 114–115

    Google Scholar 

  127. J. Bosiers, E.-J.P. Manoury, W. Klaassens, H. Stoldt, R.L.J. Leenen, H. van Kuijk, H.L. Peek, W.T.F.M. de Laat, Recent developments on large-area CCDs for professional applications, in International Image Sensor Workshop (IISW) (2015)

    Google Scholar 

  128. T. Arai, T. Yasue, K. Kitamura, H. Shimamoto, T. Kosugi, S. Jun, S. Aoyama, M.-C. Hsu, Y. Yamashita, H. Sumi, S. Kawahito, A 1.1 \(\upmu \)m 33 Mpixel 240 fps 3D-stacked CMOS image sensor with 3-stage cyclic-based analog-to-digital converters, in Proceedings IEEE International Solid-State Circuits Conference (2016), pp. 126–127

    Google Scholar 

  129. C.C.-M. Liu, C.-H. Chang, H.-Y. Tu, C.Y.-P. Chao, F.-L. Hsueh, S.-Y. Chen, V. Hsu, J.-C. Liu, D.-N. Yaung, S.-G. Wuu, A peripheral switchable 3D stacked CMOS image sensor, in Proceedings Symposium on VLSI Circuits (2014), pp. 1–2

    Google Scholar 

  130. C.C.-M. Liu, M.M. Mhala, C.-H. Chang, H. Tu, P.-S. Chou, C. Chao, F.-L. Hsueh, A 1.5 V 33 Mpixel 3D-stacked CMOS image sensor with negative substrate bias, in Proceedings IEEE International Solid-State Circuits Conference (2016), pp. 124–125

    Google Scholar 

  131. K. Kitamura, T. Watabe, T. Sawamoto, T. Kosugi, T. Akahori, T. Iida, K. Isobe, T. Watanabe, H. Shimamoto, H. Ohtake, S. Aoyama, S. Kawahito, N. Egami, A 33 Megapixel 120 frames-per-second 2.5 W CMOS image sensor with column-parallel two-stage cyclic analog-to-digital converters. IEEE Trans. Electron Devices 59(12), 3426–3433 (2012)

    Article  ADS  Google Scholar 

  132. T. Haruta, T. Nakajima, J. Hashizume, T. Umebayashi, H. Takahashi, K. Taniguchi, M. Kuroda, H. Sumihiro, K. Enoki, T. Yamasaki, K. Ikezawa, A. Kitahara, M. Zen, M. Oyama, H. Koga, H. Tsugawa, T. Ogita, T. Nagano, S. Takano, T. Nomoto, A 1/2.3inch 20 Mpixel 3-layer stackedCMOS image sensor with DRAM, in Proceedings IEEE International Solid-StateCircuits Conference (2017), pp. 76–77

    Google Scholar 

  133. N.A.W. Dutton, L. Parmesan, A.J. Holmes, L.A. Grant, R.K. Henderson, 320 \(\times \) 240 oversampled digital single photon counting image sensor, in Proceedings Symposium on VLSI Circuits (2014), pp. 147–148

    Google Scholar 

  134. M. Mori, Y. Sakata, M. Usudaa, S. Yamahira, S. Kasuga, Y. Hirose, Y. Kato, T. Tanaka, A 1280 \(\times \) 720 single-photon-detecting image sensor with 100 dB dynamic range using a sensitivity-boosting technique, in Proceedings IEEE International Solid-State Circuits Conference (2016), pp. 120–121

    Google Scholar 

  135. M. Kunii, K. Hasegawa, H. Oka, Y. Nakazawa, T. Takeshita, H. Kurihara, Performance of a high-resolution contact-type linear image sensor with a-Si:H/a-SiC: H heterojunction photodiodes. IEEE Trans. Electron Devices 36(12), 2877–2881 (1989)

    Article  ADS  Google Scholar 

  136. H. Kakinuma, M. Sakamoto, Y. Kasuya, H. Sawai, Characterisitics of Cr Schottky amorphous silicon photodiodes and their application in linear image sensors. IEEE Trans. Electron Devices 37(1), 128–133 (1990)

    Article  ADS  Google Scholar 

  137. L.E. Antonuk, J. Boudry, Y. El-Mohri, W. Huang, J. Siewerdsen, J. Yorkston, R.A. Street, A high-resolution, high frame rate flatpanel TFT array for digital X-Ray imaging, in SPIE, Physics of Medical Imaging vol. 2163 (1994), pp. 118–127

    Google Scholar 

  138. N.C. Bird, C.J. Curling, C. van Berkel, Large-area image sensing using amorphous silicon NIP diodes. Sens. Actuators 46–47, 444–448 (1995)

    Article  Google Scholar 

  139. X.D. Wu, R.A. Street, R. Weisfield, S. Ready, S. Nelson, Page sized a-Si:H two-dimensional array as imaging devices, in Proceedings of the 4th International Conference on Solid-State and Integrated-Circuit Technology (1995), pp. 724–726

    Google Scholar 

  140. E.D. Palik, Handbook of Optical Constants of Solids (Academic Press Inc, Orlando, 1985), pp. 571–586

    Google Scholar 

  141. R.H. Bube, Solar cells, in Handbook on Semiconductors, Device Physics, vol. 4, ed. by C. Hilsum (North-Holland, Amsterdam, 1993), pp. 825–826

    Google Scholar 

  142. M. Böhm, F. Blecher, A. Eckhardt, B. Schneider, S. Benthien, H. Keller, T. Lule, P. Rieve, M. Sommer, R.C. Lind, L. Humm, M. Daniels, N. Wu, High dynamic range image sensors in thin film on ASIC - technology for automotive applications, in Advanced Microsystems for Automotive Applications, ed. by D.E. Ricken, W. Gessner (Springer, Berlin, Heidelberg, 1998), pp. 157–172

    Google Scholar 

  143. B. Schneider, H. Fischer, S. Benthien, H. Keller, T. Lule, P. Rieve, M. Sommer, J. Schulte, M. Böhm, TFA image sensors: from the one transistor cell to a locally adaptive high dynamic range sensor, in IEDM Digest Technical Papers (1997), pp. 209–212

    Google Scholar 

  144. H. Fischer, J. Schulte, P. Rieve, M. Böhm, Technology and performance of TFA (Thin Film on ASIC)-sensors. Mater. Res. Soc. Symp. Proc. 336, 867–872 (1994)

    Article  Google Scholar 

  145. J. Schulte, H. Fischer, T. Lule, Q. Zhu, M. Böhm, Properties of TFA (Thin Film on ASIC) sensors, in Micro System Technologies, ed. by H. Reichl, A. Heuberger (1994), pp. 783–790

    Google Scholar 

  146. M.P. Vidal, M. Bafleur, J. Buxo, G. Sarrabayrouse, A bipolar photodetector compatible with standard CMOS technology. Solid-State Electron. 34(8), 809–814 (1991)

    Article  ADS  Google Scholar 

  147. E.A. Vittoz, MOS transistors operated in the lateral bipolar mode and their application in CMOS technology. IEEE J. Solid-State Circuits 18(6), 273–279 (1983)

    Article  ADS  Google Scholar 

  148. R.W. Sandage J.A. Connelly, A fingerprint opto-detector using lateral bipolar phototransistors in a standard CMOS process, in IEDM Digest Technical Papers (1995), pp. 171–174

    Google Scholar 

  149. W.T. Holman, J.A. Connelly, A compact low-noise operational amplifier for a 1.2 \(\upmu \)m digital CMOS technology. IEEE J. Solid-State Circuits 30(6), 710–714 (1995)

    Article  ADS  Google Scholar 

  150. H. Beneking, Gain and bandwidth of fast near-infrared photodetectors: a comparison of diodes, phototransistors, and photoconductive devices. IEEE Trans. Electron Devices 29(9), 1420–1430 (1982)

    Article  ADS  Google Scholar 

  151. R. Schwarte, Z. Xu, H. Heinol, J. Olk, R. Klein, B. Buxbaum, H. Fischer, J. Schulte, A new electrooptical mixing and correlating sensor: facilities and applications of the photonic mixer device (PMD), in Proceedings of the SPIE — Sensors, Sensor Systems, and Sensor Data Processing, vol. 3100 (1997), pp. 245–253

    Google Scholar 

  152. R. Schwarte, Dynamic 3D-vision, in Proceedings of the IEEE International Symposium on Electron Devices for Microwave and Optoelectronic Applications (2001), pp. 241–248

    Google Scholar 

  153. K. Oberhauser, G. Zach, A. Nemecek, H. Zimmermann, Time-of-flight based pixel architecture with integrated double-cathode photodetector, in Proceedings of the SPIE vol. 6616 (2007), pp. 66160C–1–66160C–9

    Google Scholar 

  154. A. Nemecek and H. Zimmermann, Gate-controlled photodetector in PIN technology for distance measurement, in Proceedings of the International Semiconductor Device Research Symposium (ISDRS) (2007), pp. CFP07511–CDR

    Google Scholar 

  155. A. Nemecek, G. Zach, H. Zimmermann, Correlating photodetector with current carrying photogate for time-of-flight distance measurement, in Proceedings of the SPIE, vol. 7003 (2008), pp. 70030L–1–70030L–8

    Google Scholar 

  156. A. Nemecek, H. Zimmermann, Buried finger concept for a correlating double cathode photodetector in BiCMOS, in Proceedings of the European Solid State Device Research Conference (ESSDERC) (2010), pp. 261–264

    Google Scholar 

  157. C.S. Bamji, P. O’Connor, T. Elkhabit, S. Mehta, B. Thompson, L.A. Prather, D. Snow, O.C. Akkaya, A. Daniel, A.D. Payne, T. Perry, M. Fenton, V.-H. Chan, A 0.13 \(\upmu \)m CMOS system-on-chip for a 512 \(\times \) 424 time-of-flight image sensor with multi-frequency photo-demodulation up to 130 MHz and 2 GS/s ADC. IEEE J. Solid-State Circuits 50(1), 303–319 (2015)

    Article  ADS  Google Scholar 

  158. B. Ciftcioglu, J. Zhang, L. Zhang, J.R. Marciante, J.D. Zuegel, R. Sobolewski, H. Wu, 3-GHz silicon photodiodes integrated in a 0.18-\(\upmu \)m CMOS technology. IEEE Photonics Technol. Lett. 20(24), 2069–2071 (2008)

    Article  ADS  Google Scholar 

  159. F.-P. Chou, C.-W. Wang, Z.-Y. Li, Y.-C. Hsieh, Y.-M. Hsin, Effect of deep n-well bias in an 850-nm Si photodiode fabricated using the CMOS process. IEEE Photonics Technol. Lett. 25(7), 659–662 (2013)

    Article  ADS  Google Scholar 

  160. M.-J. Lee, W.-Y. Choi, A silicon avalanche photodetector fabricated with standard CMOS technology with over 1 THz gain-bandwidth product. Opt. Exp. 18(23), 24189–24194 (2010)

    Article  ADS  Google Scholar 

  161. J.-S. Youn, M. Lee, K.-Y. Park, W.-Y. Choi, 10-Gb/sw 850 nm CMOS OEIC receiver with a silicon avalanche photodetector. IEEE J. Quantum Electron. 48(2), 229–236 (2012)

    Article  ADS  Google Scholar 

  162. M. Atef, A. Polzer, H. Zimmermann, Avalanche double photodiode in 40-nm standard CMOS technology. IEEE J. Quantum Electron. 49(3), 350–356 (2013)

    Article  ADS  Google Scholar 

  163. M.-J. Lee, W.-Y. Choi, Performance optimization and improvement of silicon avalanche photodetectors in standard CMOS technology. IEEE J. Sel. Top. Quantum Electron. 24(2), 3801013 (2018)

    Google Scholar 

  164. C.-K. Tseng, K.-H. Chen, W.-T. Chen, M.-C.M. Lee, N. Na, A high-speed and low-breakdown-voltage silicon avalanche photodetector. IEEE Photonics Technol. Lett. 26(6), 591–594 (2014)

    Article  ADS  Google Scholar 

  165. B. Steindl, R. Enne, S. Schidl, H. Zimmermann, Linear mode APD with high responsivity integrated in high-voltage CMOS. IEEE Electron Device Lett. 35(9), 897–899 (2014)

    Article  ADS  Google Scholar 

  166. P. Brandl, R. Enne, T. Jukic, H. Zimmermann, OWC using a fully integrated optical receiver with large-diameter APD. IEEE Photonics Technol. Lett. 27(5), 482–485 (2015)

    Article  ADS  Google Scholar 

  167. W. Gaberl, K. Schneider-Hornstein, R. Enne, B. Steindl, H. Zimmermann, Avalanche photodiode with high responsivity in 0.35 \(\upmu \)m CMOS. SPIE Opt. Eng. 53(4), 043105–1–043105–4 (2014)

    Google Scholar 

  168. B. Steindl, W. Gaberl, R. Enne, S. Schidl, K. Schneider-Hornstein, H. Zimmermann, Linear mode avalanche photodiode with 1-GHz bandwidth fabricated in 0.35 \(\upmu \)m CMOS. IEEE Photonics Technol. Lett. 26(15), 1511–1514 (2014)

    Google Scholar 

  169. R. Enne, B. Steindl, H. Zimmermann, Improvement of CMOS-integrated vertical APDs by applying lateral well modulation. IEEE Photonics Technol. Lett. 27(18), 1907–1910 (2015)

    Article  ADS  Google Scholar 

  170. R. Enne, B. Steindl, H. Zimmermann, Speed optimized linear-mode high-voltage CMOS avalanche photodiodes with high responsivity. Opt. Lett. 40(19), 4400–4403 (2015)

    Article  ADS  Google Scholar 

  171. B. Steindl, T. Jukic, H. Zimmermann, Optimized silicon CMOS reach-through avalanche photodiode with 2.3-GHz bandwidth. SPIE Opt. Eng. 56(11), pp. 110501–110501–3 (2017)

    Article  Google Scholar 

  172. T. Jukic, P. Brandl, H. Zimmermann, Determination of the excess noise of avalanche photodiodes intergated in 0.35 \(\upmu \)m CMOS technologies. SPIE Opt. Eng. 57(4), 044101-1–044101-5 (2018)

    Google Scholar 

  173. H. Finkelstein, M.J. Hsu, S.C. Esener, STI-bounded single-photon avalanche diode in a deep-submicrometer CMOS technology. IEEE Electron Device Lett. 27(11), 887–889 (2006)

    Article  ADS  Google Scholar 

  174. J.A. Richardson, L.A. Grant, R.K. Henderson, Low dark count single-photon avalanche diode structure compatible with standard nanometer scale CMOS technology. IEEE Photonics Technol. Lett. 21, 1020–1022 (2009)

    Article  ADS  Google Scholar 

  175. C. Niclass, K. Ito, M. Soga, H. Matsubara, I. Aoyagi, S. Kato, M. Kagami, Design and characterization of a 256\(\times \)64-pixel single-photon imager in CMOS for a MEMS-based laser scanning time-of-flight sensor. Opt. Exp. 20, 11863–11881 (2012)

    Article  ADS  Google Scholar 

  176. Y. Maruyam, J.R. Blacksberg, E. Charbon, A 1024\(\times \)8 700 ps time-gated SPAD line sensor for laser Raman spectroscopy and LIBS in space and rover-based planetary exploration, in Proceedings of the IEEE International on Solid-State Circuits Conference, pp. 110–111, 2013

    Google Scholar 

  177. C. Veerappan, E. Charbon, A low darc count P-I-N diode based SPAD in CMOS technology. IEEE Trans. Electron Devices 63(1), 65–71 (2016)

    Article  ADS  Google Scholar 

  178. S. Lindner, S. Pellegrini, Y. Henrion, B. Rae, W. Wolf, E. Charbon, A high-PDE, backside-illuminated SPAD in 65/40-nm 3D IC CMOS pixel with cascoded passive quenching and active recharge. IEEE Electron Device Lett. 38(11), 1547–1550 (2017)

    Article  ADS  Google Scholar 

  179. B. Steindl, R. Enne, H. Zimmermann, Thick detection zone single-photon avalanche diode fabricated in 0.35 \(\upmu \)m complementary metal-oxide semiconductors. SPIE Opt. Eng. 54(5), 050503-1–050503-3 (2015)

    ADS  Google Scholar 

  180. E.G. Webster, L.A. Grant, R.K. Henderson, A high-performance single-photon avalanche diode in 130-nm CMOS imaging technology. IEEE Electron Device Lett. 33(11), 1589–1591 (2012)

    Article  ADS  Google Scholar 

  181. E.G. Webster, J.A. Richardson, L.A. Grant, D. Renshaw, R.K. Henderson, A single-photon avalanche diode in 90-nm CMOS imaging technology with 44% photon detection efficiency at 690 nm. IEEE Electron Device Lett. 33(5), 694–696 (2012)

    Article  ADS  Google Scholar 

  182. S. Mandai, M.W. Fishburn, Y. Maruyama, E. Charbon, A wide spectral range single-photon avalanche diode fabricated in an advanced 180 nm CMOS technology. Opt. Exp. 20(6), 5849–5857 (2012)

    Article  ADS  Google Scholar 

  183. C. Niclass, H. Matsubara, M. Soga, M. Ohta, M. Ogawa, T. Yamashita, A NIR-sensitivity-enhanced single-photon avalanche diode in 0.18 \(\upmu \)m CMOS, in Proceedings of the International Image Sensor Workshop (2015), pp. 11–4

    Google Scholar 

  184. I. Takai, H. Matsubara, M. Soga, M. Ohta, M.O.T. Yamashita, Single-photon avalanche diode with enhanced NIR-sensitivity for automotive LIDAR systems. Sensors 16, 459 (2016)

    Article  Google Scholar 

  185. H. Zimmermann, B. Steindl, M. Hofbauer, R. Enne, Integrated fiber optical receiver reducing the gap to the quantum limit. Sci. Rep. 7, 2652 (2017)

    Article  ADS  Google Scholar 

  186. S. Wolf, Silicon processing for the VLSI era, Vol. 2 – Process integration (Lattice Press, Sunset Beach, 1990)

    Google Scholar 

  187. R.H. Havemann, R.H. Eklund, Process integration issues for submicron BiCMOS technology. Solid State Technol. 6, 71–76 (1992)

    Google Scholar 

  188. T. Ikeda, A. Watanabe, Y. Nishio, I. Masuda, N. Tamba, M. Odaka, K. Ogiue, High-speed BiCMOS technology with a buried twin well structure. IEEE Trans. Electron Devices 34(6), 1304–1310 (1987)

    Article  ADS  Google Scholar 

  189. S.S. Ahmed, W.W. Asakawa, M.T. Bohr, S.S. Chambers, T. Deeter, M. Denham, J.K. Greason, W.W. Holt, R.R. Taylor, I. Young, A triple diffused approach for high performance 0.8 \(\upmu \)m BiCMOS technology. Solid State Technol. 10, 33–40 (1992)

    Google Scholar 

  190. R.A. Chapman, D.A. Bell, R.H. Eklund, R.H. Havemann, M.G. Harward, R.A. Haken, Submicrometer BiCMOS well design for optimum circuit performance, in IEDM Digest Technical Papers (1988), pp. 756–759

    Google Scholar 

  191. H. Iwai, G. Sasaki, Y. Unno, Y. Niitsu, M. Norishima, Y. Sugimoto, K. Kanzaki, 0.8-\(\upmu \)m Bi-CMOS technology with high \(f_{\rm T}^{\prime \prime }\) ion-implanted emitter bipolar transistor, in IEDM Digest Technical Papers (1987), pp. 28–31

    Google Scholar 

  192. T.-Y. Chiu, G.M. Chin, M.Y. Lau, R.C. Hanson, M.D. Morris, K.F. Lee, A.M. Voshchenkov, R.G. Swartz, V.D. Archer, M.T.Y. Liu, S.N. Finegan, M.D. Feuer, Non-overlap** super self-aligned BiCMOS with 87 ps low power ECL, in IEDM Digest Technical Papers (1988), pp. 752–755

    Google Scholar 

  193. W.R. Burger, C. Lage, T. Davies, M. DeLong, D. Haueisen, J. Small, G. Huglin, A. Landau, F. Whitwer, B. Bastani, An advanced self-aligned BICMOS technology for high performance 1-megabit ECL i/O SRAMs, in IEDM Digest Technical Papers (1989), pp. 421–424

    Google Scholar 

  194. Y. Kobayashi, C. Yamaguchi, Kobayashi, Y. Amemiya, T. Sakai, High perfomance LSI process technology: SST CBi-CMOS, in IEDM Digest Technical Papers (1988), pp. 760–763

    Google Scholar 

  195. K. Sakaue, Y. Shobatake, M. Motoyama, Y. Kumaki, S. Takatsuka, S. Tanaka, H. Hara, K. Matsuda, S. Kitaoka, M. Noda, Y. Niitsu, M. Norishima, H. Momose, K. Maeguchi, M. Ishibe, S. Shimizu, T. Kodama, A 0.8-\(\upmu \)m BiCMOS ATM switch on an 800-Mb/s asynchronous buffered banyan network. IEEE J. Solid-State Circuits 26(8), 1133–1144 (1991)

    Article  ADS  Google Scholar 

  196. M. El-Diwany, J. Borland, J. Chen, S. Hu, P. v. Wijnen, C. Vorst, V. Akylas, M. Brassington, R. Razouk, An advanced BiCMOS process utilizing ultra-thin silicon epitaxy over arsenic buried layers, in IEDM Digest Technical Papers (1989), pp. 245–248

    Google Scholar 

  197. M. Norishima, Y. Niitsu, G. Sasaki, H. Iwai, K. Maeguchi, Bipolar transistor design for low process-temperature 0.5 \(\upmu \)m BI-CMOS, in IEDM Digest Technical Papers (1989), pp. 237–240

    Google Scholar 

  198. P.J.-W. Lim, A.Y.C. Tzeng, H.L. Chuang, S.A.S. Onge, A 3.3 V monolithic photodetector/CMOS preamplifier for 531 Mb/s optical data link applications, in ISSCC (1993), pp. 96–97

    Google Scholar 

  199. D.M. Kuchta, H.A. Ainspan, F.J. Canora, R.P. Schneider, Performance of fiber-optic data links using 670 nm CW VCSELs and a monolithic Si photodetector and CMOS preamplifier. IBM J. Res. Develop. 39(1/2), 63–72 (1995)

    Article  Google Scholar 

  200. H. Zimmermann, K. Kieschnick, M. Heise, H. Pless, BiCMOS OEIC for optical storage systems. Electron. Lett. 34(19), 1875–1876 (1998)

    Article  Google Scholar 

  201. H. Zimmermann, Full custom CMOS and BiCMOS OPTO-ASICs, in Proceedings of the 5th International Conference on Solid-State and Integrated-Circuit Technology (1998), pp. 344–347

    Google Scholar 

  202. K. Kieschnick, H. Zimmermann, P. Seegebrecht, Silicon-based optical receivers in BiCMOS technology for advanced optoelectronic integrated circuits, in Proceedings of the European Materials Research Society Meeting (E-MRS), Strasbourg, 1–4 June 1999 (1999)

    Google Scholar 

  203. H. Zimmermann, K. Kieschnick, M. Heise, H. Pless, High-bandwidth BiCMOS OEIC for optical storage systems, in IEEE International on Solid-State Circuits Conference (1999), pp. 384–385

    Google Scholar 

  204. K. Kieschnick, T. Heide, A. Ghazi, H. Zimmermann, P. Seegebrecht, High-speed photonic CMOS and BiCMOS receiver ICs, in Proceedings of the 25th European Solid-State Circuits Conference (ESSCIRC) (1999), pp. 398–401

    Google Scholar 

  205. S. Groiss, J. Sturm, Low-noise sampling system for photocurrent detection with monolithically integrated photodiodes, in Proceedings of the 27th European Solid-State Circuits Conference (ESSCIRC) (2001), pp. 180–183

    Google Scholar 

  206. J. Sturm, S. Hainz, G. Langguth, H. Zimmermann, Integrated photodiodes in standard BiCMOS technology, in Proceedings of the SPIE, vol. 4997B (2003)

    Google Scholar 

  207. K. Kieschnick, H. Zimmermann, H. Pless, P. Seegebrecht, Integrated photodiodes for DVD and CD-ROM applications, in Proceedings of the 30th European Solid-State Device Conference (ESSDERC) (2000), pp. 252–255

    Google Scholar 

  208. H. Zimmermann, K. Kieschnick, Low-offset BiCMOS OEIC for optical storage systems. Electron. Lett. 36(14), 1223–1224 (2000)

    Article  Google Scholar 

  209. G.W. de Jong, J.R.M. Bergervoet, J.H.A. Brekelmans, J.F.P. van Mil, A DC-to-250 MHz current pre-amplifier with integrated photodiodes in standard CBiMOS for optical storage systems, in ISSCC (2002), pp. 362–363

    Google Scholar 

  210. M. Förtsch, H. Zimmermann, W. Einbrodt, K. Bach, H. Pless, Integrated PIN photodiodes in high-performance BiCMOS technology, in IEDM Digest Technical Papers (2002), pp. 801–804

    Google Scholar 

  211. R. Swoboda, K. Schneider-Hornstein, H. Wille, G. Langguth, H. Zimmermann, BiCMOS-integrated photodiode exploiting drift enhancement. Opt. Eng. 53(8), pp. 087103-1-087103-4 (2014)

    Article  ADS  Google Scholar 

  212. A. Nemecek, G. Zach, R. Swoboda, K. Oberhauser, H. Zimmermann, Integrated BiCMOS p-i-n photodetectors with high bandwidth and high responsivity. IEEE J. Sel. Top. Quantum Electron. 12(6), 1469–1475 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horst Zimmermann .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zimmermann, H. (2018). Integrated Silicon Photodetectors. In: Silicon Optoelectronic Integrated Circuits. Springer Series in Advanced Microelectronics, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-030-05822-7_2

Download citation

Publish with us

Policies and ethics

Navigation