Recent Trends in Quasisymmetric Functions

  • Chapter
  • First Online:
Recent Trends in Algebraic Combinatorics

Part of the book series: Association for Women in Mathematics Series ((AWMS,volume 16))

Abstract

This article serves as an introduction to several recent developments in the study of quasisymmetric functions. The focus of this survey is on connections between quasisymmetric functions and the combinatorial Hopf algebra of noncommutative symmetric functions, appearances of quasisymmetric functions within the theory of Macdonald polynomials, and analogues of symmetric functions. Topics include the significance of quasisymmetric functions in representation theory (such as representations of the 0-Hecke algebra), recently discovered bases (including analogues of well-studied symmetric function bases), and applications to open problems in symmetric function theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 106.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aguiar, M., Bergeron, N., & Sottile, F. (2006). Combinatorial Hopf algebras and generalized Dehn-Sommerville relations. Compos. Math., 142(1), 1–30.

    Article  MathSciNet  MATH  Google Scholar 

  2. P. Alexandersson, G. Panova, LLT polynomials, chromatic quasisymmetric functions and graphs with cycles. ar**v:1705.10353

  3. E.E. Allen, J. Hallam, S.K. Mason, Dual immaculate quasisymmetric functions expand positively into Young quasisymmetric Schur functions (2016), ar**v:1606.03519

  4. S. Assaf, D. Searles, Kohnert tableaux and a lifting of quasi-Schur functions (2016), ar**v:1609.03507

  5. Assaf, S., & Searles, D. (2017). Schubert polynomials, slide polynomials, Stanley symmetric functions and quasi-Yamanouchi pipe dreams. Adv. Math., 306, 89–122.

    Article  MathSciNet  MATH  Google Scholar 

  6. S.H. Assaf, Dual equivalence graphs, ribbon tableaux and Macdonald polynomials. ProQuest LLC, Ann Arbor, MI, 2007. Thesis (Ph.D.)-University of California, Berkeley (2007)

    Google Scholar 

  7. Assaf, S. H. (2015). Dual equivalence graphs I: a new paradigm for Schur positivity. Forum Math. Sigma, 3: e12, 33.

    MathSciNet  MATH  Google Scholar 

  8. Aval, J.-C., & Bergeron, N. (2003). Catalan paths and quasi-symmetric functions. Proc. Am. Math. Soc., 131(4), 1053–1062.

    Article  MathSciNet  MATH  Google Scholar 

  9. Aval, J.-C., Bergeron, F., & Bergeron, N. (2004). Ideals of quasi-symmetric functions and super-covariant polynomials for \(\mathscr {S}_n\). Adv. Math., 181(2), 353–367.

    Article  MathSciNet  MATH  Google Scholar 

  10. Baker, A., & Richter, B. (2008). Quasisymmetric functions from a topological point of view. Math. Scand., 103(2), 208–242.

    Article  MathSciNet  MATH  Google Scholar 

  11. C. Ballantine, Z. Daugherty, A. Hicks, S. Mason, E. Niese, Quasisymmetric power sums (2017), ar**v:1710.11613

  12. Berg, C., Bergeron, N., Saliola, F., Serrano, L., & Zabrocki, M. (2014). A lift of the Schur and Hall-Littlewood bases to non-commutative symmetric functions. Can. J. Math., 66(3), 525–565.

    Article  MathSciNet  MATH  Google Scholar 

  13. Berg, C., Bergeron, N., Saliola, F., Serrano, L., & Zabrocki, M. (2015). Indecomposable modules for the dual immaculate basis of quasi-symmetric functions. Proc. Am. Math. Soc., 143(3), 991–1000.

    Article  MathSciNet  MATH  Google Scholar 

  14. F. Bergeron, Algebraic Combinatorics and Coinvariant Spaces. CMS Treatises in Mathematics. Canadian Mathematical Society, Ottawa, ON; A K Peters, Ltd., Wellesley, MA, 2009

    Google Scholar 

  15. Bergeron, N., & Billey, S. (1993). RC-graphs and Schubert polynomials. Exp. Math., 2(4), 257–269.

    Article  MathSciNet  MATH  Google Scholar 

  16. N. Bergeron, S. Mykytiuk, F. Sottile, S. van Willigenburg, Shifted quasi-symmetric functions and the Hopf algebra of peak functions. Discret. Math. 246(1–3), 57–66 (2002) (Formal power series and algebraic combinatorics (Barcelona, 1999))

    Article  MathSciNet  MATH  Google Scholar 

  17. N. Bergeron, S. Mykytiuk, F. Sottile, S. van Willigenburg, Noncommutative Pieri operators on posets. J. Comb. Theory Ser. A 91(1–2), 84–110 (2000) (In memory of Gian-Carlo Rota)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bergeron, N., Sánchez-Ortega, J., & Zabrocki, M. (2016). The Pieri rule for dual immaculate quasi-symmetric functions. Ann. Comb., 20(2), 283–300.

    Article  MathSciNet  MATH  Google Scholar 

  19. Billera, L. J., & Liu, N. (2000). Noncommutative enumeration in graded posets. J. Algebr. Comb., 12(1), 7–24.

    Article  MathSciNet  MATH  Google Scholar 

  20. Billera, L. J., Hsiao, S. K., & van Willigenburg, S. (2003). Peak quasisymmetric functions and Eulerian enumeration. Adv. Math., 176(2), 248–276.

    Article  MathSciNet  MATH  Google Scholar 

  21. Billey, S. C., Jockusch, W., & Stanley, R. P. (1993). Some combinatorial properties of Schubert polynomials. J. Algebr. Comb., 2(4), 345–374.

    Article  MathSciNet  MATH  Google Scholar 

  22. P. Brosnan, T.Y. Chow, Unit interval orders and the dot action on the cohomology of regular semisimple Hessenberg varieties (2015), ar**v:1511.00773

  23. Carter, R. W. (1986). Representation theory of the \(0\)-Hecke algebra. J. Algebra, 104(1), 89–103.

    Article  MathSciNet  MATH  Google Scholar 

  24. Cherednik, I. (1995). Nonsymmetric Macdonald polynomials. Int. Math. Res. Not., 10, 483–515.

    Article  MathSciNet  MATH  Google Scholar 

  25. C.-O. Chow, Noncommutative symmetric functions of type B. ProQuest LLC, Ann Arbor, MI, 2001. Thesis (Ph.D.)–Massachusetts Institute of Technology

    Google Scholar 

  26. S. Clearman, M. Hyatt, B. Shelton, M. Skandera, Evaluations of Hecke algebra traces at Kazhdan-Lusztig basis elements. Electron. J. Comb. 23(2), Paper 2.7, 56 (2016)

    Google Scholar 

  27. S. Dahlberg, A. Foley, S. van Willigenburg, Resolving Stanley’s e-positivity of claw-contractible-free graphs (2017), ar**v:1703.05770

  28. M. Demazure, Une nouvelle formule des caractères. Bull. Sci. Math. (2) 98(3), 163–172 (1974)

    Google Scholar 

  29. Derksen, H. (2009). Symmetric and quasi-symmetric functions associated to polymatroids. J. Algebr. Comb., 30(1), 43–86.

    Article  MathSciNet  MATH  Google Scholar 

  30. Ditters, E. J. (1972). Curves and formal (co)groups. Invent. Math., 17, 1–20.

    Article  MathSciNet  MATH  Google Scholar 

  31. G. Duchamp, D. Krob, B. Leclerc, J.-Y. Thibon, Fonctions quasi-symétriques, fonctions symétriques non commutatives et algèbres de Hecke à \(q=0\). C. R. Acad. Sci. Paris Sér. I Math. 322(2), 107–112 (1996)

    Google Scholar 

  32. G. Duchamp, F. Hivert, J.-Y. Thibon, Noncommutative symmetric functions. VI. Free quasi-symmetric functions and related algebras. Int. J. Algebra Comput. 12(5), 671–717 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  33. Egge, E., Loehr, N. A., & Warrington, G. S. (2010). From quasisymmetric expansions to Schur expansions via a modified inverse Kostka matrix. Eur. J. Comb., 31(8), 2014–2027.

    Article  MathSciNet  MATH  Google Scholar 

  34. Ehrenborg, R. (1996). On posets and Hopf algebras. Adv. Math., 119(1), 1–25.

    Article  MathSciNet  MATH  Google Scholar 

  35. B. Ellzey, A directed graph generalization of chromatic quasisymmetric functions (2017), ar**v:1709.00454

  36. Eğecioğlu, Ö., & Remmel, J. B. (1990). A combinatorial interpretation of the inverse Kostka matrix. Linear Multilinear Algebr., 26(1–2), 59–84.

    MathSciNet  MATH  Google Scholar 

  37. S. Fomin, R. Stanley, Schubert polynomials and the nil-Coxeter algebra. Adv. Math. 103(2), 196–207 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  38. Foulkes, H. O. (1950). Concomitants of the quintic and sextic up to degree four in the coefficients of the ground form. J. Lond. Math. Soc., 25, 205–209.

    Article  MathSciNet  MATH  Google Scholar 

  39. W. Fulton, Young Tableaux, vol. 35. London Mathematical Society Student Texts (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  40. A. Garsia, J. Remmel, A note on passing from a quasi-symmetric function expansion to a Schur function expansion of a symmetric function (2018), ar**v:1802.09686

  41. Garsia, A. M., & Wallach, N. (2003). Qsym over Sym is free. J. Comb. Theory Ser. A, 104(2), 217–263.

    Article  MathSciNet  MATH  Google Scholar 

  42. V. Gasharov, Incomparability graphs of \((3+1)\)-free posets are \(s\)-positive, in Proceedings of the 6th Conference on Formal Power Series and Algebraic Combinatorics (New Brunswick, NJ, 1994), vol. 157 (1996), pp. 193–197

    Google Scholar 

  43. Gelfand, I. M., Krob, D., Lascoux, A., Leclerc, B., Retakh, V. S., & Thibon, J.-Y. (1995). Noncommutative symmetric functions. Adv. Math., 112(2), 218–348.

    Article  MathSciNet  MATH  Google Scholar 

  44. Gessel, I. M. (1984). Multipartite P-partitions and inner products of skew Schur functions. Contemp. Math., 34, 289–301.

    Article  MathSciNet  MATH  Google Scholar 

  45. I.M. Gessel, A historical survey of \(P\)-partitions, The Mathematical Legacy of Richard P. Stanley (American Mathematical Society, Providence, 2016), pp. 169–188

    Google Scholar 

  46. D. Grinberg, Dual creation operators and a dendriform algebra structure on the quasisymmetric functions. Can. J. Math. 69(1), 21–53 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  47. D. Grinberg, V. Reiner, Hopf algebras in combinatorics (2014), ar**v:1409.8356

  48. M. Guay-Paquet, A modular relation for the chromatic symmetric functions of (3+1)-free posets (2013), ar**v:1306.2400

  49. M. Guay-Paquet, A second proof of the Shareshian–Wachs conjecture, by way of a new Hopf algebra (2016), ar**v:1601.05498

  50. Haglund, J. (2004). A combinatorial model for the Macdonald polynomials. Proc. Natl. Acad. Sci. USA, 101(46), 16127.

    Article  MathSciNet  MATH  Google Scholar 

  51. J. Haglund, The genesis of the Macdonald polynomial statistics. Sém. Lothar. Comb. 54A, Art. B54Ao, 16 (2005/07)

    Google Scholar 

  52. J. Haglund, The \( q\),\(t\)-Catalan Numbers and the Space of Diagonal Harmonics, vol. 41. University Lecture Series (American Mathematical Society, Providence, 2008)

    Google Scholar 

  53. J. Haglund, A.T. Wilson, Macdonald polynomials and chromatic quasisymmetric functions (2017)

    Google Scholar 

  54. Haglund, J., Haiman, M., & Loehr, N. (2004). A combinatorial formula for Macdonald polynomials. J. Am. Math. Soc., 18, 735–761.

    Article  MathSciNet  MATH  Google Scholar 

  55. Haglund, J., Haiman, M., & Loehr, N. (2005). Combinatorial theory of Macdonald polynomials I: proof of Haglund’s formula. Proc. Natl. Acad. Sci., 102(8), 2690.

    Article  MathSciNet  MATH  Google Scholar 

  56. Haglund, J., Haiman, M., & Loehr, N. (2008). A combinatorial formula for nonsymmetric Macdonald polynomials. Am. J. Math., 130(2), 359–383.

    Article  MathSciNet  MATH  Google Scholar 

  57. Haglund, J., Luoto, K., Mason, S., & van Willigenburg, S. (2011). Quasisymmetric Schur functions. J. Comb. Theory Ser. A, 118(2), 463–490.

    Article  MathSciNet  MATH  Google Scholar 

  58. Haglund, J., Luoto, K., Mason, S., & van Willigenburg, S. (2011). Refinements of the Littlewood-Richardson rule. Trans. Am. Math. Soc., 363(3), 1665–1686.

    Article  MathSciNet  MATH  Google Scholar 

  59. M. Haiman, Hilbert, schemes, polygraphs and the Macdonald positivity conjecture. J. Am. Math. Soc. 14(4), 941–1006 (electronic) (2001)

    Google Scholar 

  60. Hazewinkel, M. (2001). The algebra of quasi-symmetric functions is free over the integers. Adv. Math., 164(2), 283–300.

    Article  MathSciNet  MATH  Google Scholar 

  61. M. Hazewinkel, Symmetric functions, noncommutative symmetric functions, and quasisymmetric functions. Acta Appl. Math. 75(1–3), 55–83 (2003) (Monodromy and differential equations (Moscow, 2001))

    Google Scholar 

  62. Hazewinkel, M. (2010). Explicit polynomial generators for the ring of quasisymmetric functions over the integers. Acta Appl. Math., 109(1), 39–44.

    Article  MathSciNet  MATH  Google Scholar 

  63. M. Hazewinkel, N. Gubareni, V.V. Kirichenko, Algebras, Rings and Modules. Volume 168 of Mathematical Surveys and Monographs (American Mathematical Society, Providence, 2010) (Lie algebras and Hopf algebras)

    Google Scholar 

  64. Hersh, P., & Hsiao, S. K. (2009). Random walks on quasisymmetric functions. Adv. Math., 222(3), 782–808.

    Article  MathSciNet  MATH  Google Scholar 

  65. Hivert, F. (1998). Analogues non-commutatifs et quasi-symétriques des fonctions de Hall-Littlewood, et modules de Demazure d’une algèbre enveloppante quantique dégénérée. C. R. Acad. Sci. Paris Sér. I Math., 326(1), 1–6.

    Article  MathSciNet  MATH  Google Scholar 

  66. Hivert, F. (2000). Hecke algebras, difference operators, and quasi-symmetric functions. Adv. Math., 155(2), 181–238.

    Article  MathSciNet  MATH  Google Scholar 

  67. Hoffman, M. E. (2015). Quasi-symmetric functions and mod \(p\) multiple harmonic sums. Kyushu J. Math., 69(2), 345–366.

    Article  MathSciNet  MATH  Google Scholar 

  68. S.K. Hsiao, T.K. Petersen, The Hopf algebras of type B quasisymmetric functions and peak functions (2006), ar**v:math/0610976

  69. Hsiao, S. K., & Karaali, G. (2011). Multigraded combinatorial Hopf algebras and refinements of odd and even subalgebras. J. Algebr. Comb., 34(3), 451–506.

    Article  MathSciNet  MATH  Google Scholar 

  70. Hsiao, S. K., & Kyle Petersen, T. (2010). Colored posets and colored quasisymmetric functions. Ann. Comb., 14(2), 251–289.

    Article  MathSciNet  MATH  Google Scholar 

  71. Huang, J. (2014). 0-Hecke algebra actions on coinvariants and flags. J. Algebr. Comb., 40(1), 245–278.

    Article  MathSciNet  MATH  Google Scholar 

  72. Huang, J. (2015). 0-Hecke algebra action on the Stanley-Reisner ring of the Boolean algebra. Ann. Comb., 19(2), 293–323.

    Article  MathSciNet  MATH  Google Scholar 

  73. Huang, J. (2016). A tableau approach to the representation theory of 0-Hecke algebras. Ann. Comb., 20(4), 831–868.

    Article  MathSciNet  MATH  Google Scholar 

  74. Joni, S. A., & Rota, G.-C. (1979). Coalgebras and bialgebras in combinatorics. Stud. Appl. Math., 61(2), 93–139.

    Article  MathSciNet  MATH  Google Scholar 

  75. Knuth, D. E. (1970). Permutations, matrices, and generalized young tableaux. Pac. J. Math., 34(3), 709–727.

    Article  MathSciNet  MATH  Google Scholar 

  76. D. Krob, J.-Y. Thibon, Noncommutative symmetric functions. IV. Quantum linear groups and Hecke algebras at \(q=0\). J. Algebr. Comb. 6(4), 339–376 (1997)

    Google Scholar 

  77. A. Lascoux, M.P. Schützenberger, Polynômes de Schubert. C. R. Acad. Sci. Paris Sér. I Math. 294(13), 447–450 (1982)

    Google Scholar 

  78. A. Lascoux, M.-P. Schützenberger, Keys & standard bases, in Invariant Theory and Tableaux (Minneapolis, MN, 1988). Volume 19 of IMA Volumes in Mathematics and its Applications (Springer, New York, 1990), pp. 125–144

    Google Scholar 

  79. Lauve, A., & Mason, S. K. (2011). QSym over Sym has a stable basis. J. Comb. Theory Ser. B, 118(5), 1661–1673.

    Article  MathSciNet  MATH  Google Scholar 

  80. E. Leven, Two special cases of the rational shuffle conjecture, in 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), Discrete Mathematics & Theoretical Computer Science Proceedings, AT. (Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2014), pp. 789–800

    Google Scholar 

  81. Li, Y. (2016). Toward a polynomial basis of the algebra of peak quasisymmetric functions. J. Algebr. Comb., 44(4), 931–946.

    Article  MathSciNet  MATH  Google Scholar 

  82. Littlewood, D. E. (1961). On certain symmetric functions. Proc. Lond. Math. Soc., 3(11), 485–498.

    Article  MathSciNet  MATH  Google Scholar 

  83. Loehr, N. A., & Warrington, G. S. (2012). Quasisymmetric expansions of Schur-function plethysms. Proc. Am. Math. Soc., 140(4), 1159–1171.

    Article  MathSciNet  MATH  Google Scholar 

  84. M. Lothaire, Combinatorics on Words. Cambridge Mathematical Library (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  85. K. Luoto, S. Mykytiuk, S. van Willigenburg, An Introduction to Quasisymmetric Schur Functions. Springer Briefs in Mathematics (Springer, New York, 2013)

    Google Scholar 

  86. I.G. Macdonald, A new class of symmetric functions. Sémin. Lothar. Comb. 20 (1988)

    Google Scholar 

  87. I.G. Macdonald, Symmetric functions and Hall polynomials, 2nd edn. Oxford Mathematical Monographs (The Clarendon Press, Oxford University Press, New York, 1995)

    Google Scholar 

  88. I.G. Macdonald, Symmetric Functions and Orthogonal Polynomials, vol. 12. University Lecture Series (American Mathematical Society, Providence, 1998)

    Google Scholar 

  89. C. Malvenuto, Produits et coproduits des fonctions quasi-symétriques et de l’alg‘ebre des descentes. PhD thesis, Laboratoire de Combinatoire et d’Informatique Mathématique UQAM (1994)

    Google Scholar 

  90. Malvenuto, C., & Reutenauer, C. (1995). Duality between quasi-symmetric functions and the Solomon descent algebra. J. Algebr., 177(3), 967–982.

    Article  MathSciNet  MATH  Google Scholar 

  91. S. Mason, A decomposition of Schur functions and an analogue of the Robinson-Schensted-Knuth algorithm. Sémin. Lothar. Comb. 57, B57e (2008)

    Google Scholar 

  92. Mason, S. (2009). An explicit construction of type A Demazure atoms. J. Algebr. Comb., 29(3), 295–313.

    Article  MathSciNet  MATH  Google Scholar 

  93. P.-L. Méliot, Representation Theory of Symmetric Groups. Discrete Mathematics and its Applications (Boca Raton) (CRC Press, Boca Raton, 2017)

    Google Scholar 

  94. Murnaghan, F. D. (1937). On the representations of the symmetric group. Am. J. Math., 59(3), 437–488.

    Article  MATH  Google Scholar 

  95. Nakayama, T. (1941). On some modular properties of irreducible representations of a symmetric group I. Jpn. J. Math., 18, 89–108.

    MathSciNet  Google Scholar 

  96. Norton, P. N. (1979). \(0\)-Hecke algebras. J. Austral. Math. Soc. Ser. A, 27(3), 337–357.

    Article  MathSciNet  MATH  Google Scholar 

  97. Novelli, J.-C., Thibon, J.-Y., & Williams, L. K. (2010). Combinatorial Hopf algebras, noncommutative Hall-Littlewood functions, and permutation tableaux. Adv. Math., 224(4), 1311–1348.

    Article  MathSciNet  MATH  Google Scholar 

  98. Novelli, J.-C., Tevlin, L., & Thibon, J.-Y. (2013). On some noncommutative symmetric functions analogous to Hall-Littlewood and Macdonald polynomials. Int. J. Algebr. Comput., 23(4), 779–801.

    Article  MathSciNet  MATH  Google Scholar 

  99. Opdam, E. M. (1995). Harmonic analysis for certain representations of graded Hecke algebras. Acta Math., 175(1), 75–121.

    Article  MathSciNet  MATH  Google Scholar 

  100. T. Kyle Petersen, A note on three types of quasisymmetric functions. Electron. J. Comb. 12, Research Paper 61, 10 (2005)

    Google Scholar 

  101. T. Kyle Petersen, Enriched, \(P\)-partitions and peak algebras. Adv. Math. 209(2), 561–610 (2007)

    Google Scholar 

  102. D. Qiu, J. Remmel, Schur function expansions and the rational shuffle conjecture. Sém. Lothar. Comb. 78B, Art. 83, 13 (2017)

    Google Scholar 

  103. Radford, D. E. (1979). A natural ring basis for the shuffle algebra and an application to group schemes. J. Algebra, 58(2), 432–454.

    Article  MathSciNet  MATH  Google Scholar 

  104. Ram, A., & Yip, M. (2011). A combinatorial formula for Macdonald polynomials. Adv. Math., 226(1), 309–331.

    Article  MathSciNet  MATH  Google Scholar 

  105. Reiner, V., & Shimozono, M. (1995). Key polynomials and a flagged Littlewood-Richardson rule. J. Comb. Theory Ser. A, 70(1), 107–143.

    Article  MathSciNet  MATH  Google Scholar 

  106. Remmel, J. B., & Whitney, R. (1984). Multiplying Schur functions. J. Algorithms, 5(4), 471–487.

    Article  MathSciNet  MATH  Google Scholar 

  107. C. Reutenauer, Free Lie Algebras, vol. 7. London Mathematical Society Monographs. New Series (The Clarendon Press, Oxford University Press, New York, 1993)

    Google Scholar 

  108. B.E. Sagan, The Symmetric Group. Volume 203 of Graduate Texts in Mathematics, 2nd edn. (Springer, New York, 2001)

    Book  MATH  Google Scholar 

  109. S. Sahi, Nonsymmetric, Koornwinder polynomials and duality. Ann. Math. (2) 150(1), 267–282 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  110. Schensted, C. (1961). Longest increasing and decreasing subsequences. Can. J. Math., 13, 179–191.

    Article  MathSciNet  MATH  Google Scholar 

  111. Schmitt, W. R. (1994). Incidence Hopf algebras. J. Pure Appl. Algebra, 96(3), 299–330.

    Article  MathSciNet  MATH  Google Scholar 

  112. Scott, D., & Suppes, P. (1958). Foundational aspects of theories of measurement. J. Symb. Log., 23, 113–128.

    Article  MathSciNet  MATH  Google Scholar 

  113. Shareshian, J., & Wachs, M. L. (2010). Eulerian quasisymmetric functions. Adv. Math., 225(6), 2921–2966.

    Article  MathSciNet  MATH  Google Scholar 

  114. J. Shareshian, M.L. Wachs, Chromatic quasisymmetric functions and Hessenberg varieties, in Configuration Spaces. Volume 14 of CRM Series. Ed. Norm. (Pisa, 2012), pp. 433–460

    Google Scholar 

  115. Shareshian, J., & Wachs, M. L. (2016). Chromatic quasisymmetric functions. Adv. Math., 295, 497–551.

    Article  MathSciNet  MATH  Google Scholar 

  116. Solomon, L. (1976). A Mackey formula in the group ring of a Coxeter group. J. Algebra, 41(2), 255–264.

    Article  MathSciNet  MATH  Google Scholar 

  117. R.P. Stanley, Ordered Structures and Partitions. Memoirs of the American Mathematical Society, No. 119 (American Mathematical Society, Providence, 1972)

    Article  Google Scholar 

  118. Stanley, R. P. (1995). A symmetric function generalization of the chromatic polynomial of a graph. Adv. Math., 111(1), 166–194.

    Article  MathSciNet  MATH  Google Scholar 

  119. R.P. Stanley, Enumerative combinatorics, 62 of Cambridge Studies in Advanced Mathematics, vol. 2 (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  120. Stanley, R. P. (2001). Generalized riffle shuffles and quasisymmetric functions. Ann. Comb., 5(3–4), 479–491.

    Article  MathSciNet  MATH  Google Scholar 

  121. Stanley, R. P., & Stembridge, J. R. (1993). On immanants of Jacobi-Trudi matrices and permutations with restricted position. J. Comb. Theory Ser. A, 62(2), 261–279.

    Article  MathSciNet  MATH  Google Scholar 

  122. Stembridge, J. R. (1997). Enriched \(P\)-partitions. Trans. Am. Math. Soc., 349(2), 763–788.

    Article  MathSciNet  MATH  Google Scholar 

  123. Tewari, V. V., & van Willigenburg, S. J. (2015). Modules of the 0-Hecke algebra and quasisymmetric Schur functions. Adv. Math., 285, 1025–1065.

    Article  MathSciNet  MATH  Google Scholar 

  124. Yip, M. (2012). A Littlewood-Richardson rule for Macdonald polynomials. Math. Z., 272(3–4), 1259–1290.

    Article  MathSciNet  MATH  Google Scholar 

  125. A.V. Zelevinsky, Representations of Finite Classical Groups, vol. 869. Lecture Notes in Mathematics (Springer, Berlin, 1981)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

I am very grateful to Hélène Barcelo, Gizem Karaali, and Rosa Orellana for inviting me to produce this chapter. I would also like to thank Ed Allen, Susanna Fishel, Josh Hallam, Jim Haglund, and John Shareshian for helpful feedback along the way. Finally, I greatly appreciate the insightful comments from a diligent anonymous referee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah K. Mason .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s) and the Association for Women in Mathematics

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mason, S.K. (2019). Recent Trends in Quasisymmetric Functions. In: Barcelo, H., Karaali, G., Orellana, R. (eds) Recent Trends in Algebraic Combinatorics. Association for Women in Mathematics Series, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-030-05141-9_7

Download citation

Publish with us

Policies and ethics

Navigation