Combinatorics of the Diagonal Harmonics

  • Chapter
  • First Online:
Recent Trends in Algebraic Combinatorics

Part of the book series: Association for Women in Mathematics Series ((AWMS,volume 16))

Abstract

The Shuffle Theorem, recently proven by Carlsson and Mellit, states that the bigraded Frobenius characteristic of the diagonal harmonics is equal to a weighted sum of parking functions. In this introduction to the topic, we discuss the theorem and connections between it and the well-known Macdonald polynomials. Furthermore, we describe important combinatorial bijections which imply various restatements of the theorem and play an important role in its proof. Finally, we briefly discuss the proof and describe various generalizations of the theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Armstrong, Hyperplane arrangements and diagonal harmonics, in 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011), pp. 39–50. Discrete Mathematics and Theoretical Computer Science (2011)

    Google Scholar 

  2. D. Armstrong, B. Rhoades, The Shi arrangement and the Ish arrangement. Trans. Am. Math. Soc. 364(3), 1509–1528 (2012)

    Article  MathSciNet  Google Scholar 

  3. D. Armstrong, N.A. Loehr, G.S. Warrington, Sweep maps: a continuous family of sorting algorithms. Adv. Math. 284, 159–185 (2015)

    Article  MathSciNet  Google Scholar 

  4. S. Assaf, Toward the Schur expansion of Macdonald polynomials. Electron. J. Combin. 25(2), Paper 2.44 (2018)

    Google Scholar 

  5. C.A. Athanasiadis, S. Linusson, A simple bijection for the regions of the Shi arrangement of hyperplanes. Discret. Math. 204(1–3), 27–39 (1999)

    Article  MathSciNet  Google Scholar 

  6. F. Bergeron, Multivariate diagonal coinvariant spaces for complex reflection groups. Adv. Math. 239, 97–108 (2013). ISSN 0001-8708

    Article  MathSciNet  Google Scholar 

  7. F. Bergeron, Algebraic Combinatorics and Coinvariant Spaces (CRC Press, Boca Raton, 2009)

    Book  Google Scholar 

  8. F. Bergeron, L.-F. Préville-Ratelle, Higher trivariate diagonal harmonics via generalized Tamari posets. J. Comb. 3(3), 317–341 (2012)

    MathSciNet  MATH  Google Scholar 

  9. F. Bergeron, A. Garsia, M. Haiman, G. Tesler, Identities and positivity conjectures for some remarkable operators in the theory of symmetric functions. Methods Appl. Anal. 6(3), 363–420 (1999)

    MathSciNet  MATH  Google Scholar 

  10. F. Bergeron, A. Garsia, E.S. Leven, G. **n, Compositional (km, kn)-shuffle conjectures. Int. Math. Res. Not. 2016(14), 4229–4270 (2015)

    Article  MathSciNet  Google Scholar 

  11. F. Bergeron, A. Garsia, E.S. Leven, G. **n, Some remarkable new plethystic operators in the theory of Macdonald polynomials. J. Comb. 7(4), 671–714 (2016)

    MathSciNet  MATH  Google Scholar 

  12. E. Carlsson, A. Mellit, A proof of the shuffle conjecture. J. Am. Math. Soc. 31(3), 661–697 (2018)

    Article  MathSciNet  Google Scholar 

  13. D. Foata, J. Riordan, Map**s of acyclic and parking functions. Aequ. Math. 10(1), 10–22 (1974)

    Article  MathSciNet  Google Scholar 

  14. A.M. Garsia, M. Haiman, Some natural bigraded \(S_n\)-modules and q, t-Kostka coefficients. Electron. J. Combin. 3 (1996)

    Google Scholar 

  15. A. Garsia, J. Haglund, A positivity result in the theory of Macdonald polynomials. Proc. Natl. Acad. Sci. 98(8), 4313–4316 (2001)

    Article  MathSciNet  Google Scholar 

  16. A.M. Garsia, J. Haglund, A proof of the q, t-Catalan positivity conjecture. Discret. Math. 256(3), 677–717 (2002)

    Article  MathSciNet  Google Scholar 

  17. A.M. Garsia, M. Haiman, A graded representation model for Macdonald’s polynomials. Proc. Natl. Acad. Sci. 90(8), 3607–3610 (1993)

    Article  MathSciNet  Google Scholar 

  18. A.M. Garsia, G. **n, M. Zabrocki, Hall-Littlewood operators in the theory of parking functions and diagonal harmonics. Int. Math. Res. Not. 2012(6), 1264–1299 (2011)

    Article  MathSciNet  Google Scholar 

  19. A.M. Garsia, G. **n, M. Zabrocki, A three shuffle case of the compositional parking function conjecture. J. Comb. Theory Ser. A 123(1), 202–238 (2014)

    Article  MathSciNet  Google Scholar 

  20. E. Gorsky, A. Negut, Refined knot invariants and Hilbert schemes. J. Math. Pures Appl. (9) 104(3), 403–435 (2015)

    Article  MathSciNet  Google Scholar 

  21. E. Gorsky, A. Oblomkov, J. Rasmussen, V. Shende, Torus knots and the rational DAHA. Duke Math. J. 163(14), 2709–2794 (2014)

    Article  MathSciNet  Google Scholar 

  22. E. Gorsky, M. Mazin, M. Vazirani, Affine permutations and rational slope parking functions. Trans. Am. Math. Soc. 368(12), 8403–8445 (2016)

    Article  MathSciNet  Google Scholar 

  23. J. Haglund, The combinatorics of knot invariants arising from the study of Macdonald polynomials. Recent Trends in Combinatorics (Springer, Berlin, 2016), pp. 579–600

    Chapter  Google Scholar 

  24. J. Haglund, J. Morse, M. Zabrocki, A compositional shuffle conjecture specifying touch points of the Dyck path. Canad. J. Math. 64(4), 822–844 (2012). ISSN 0008-414X

    Article  MathSciNet  Google Scholar 

  25. J. Haglund, G. **n, Lecture notes on the Carlsson-Mellit proof of the shuffle conjecture (2017), ar**v:1705.11064

  26. J. Haglund, A proof of the q, t-Schröder conjecture. Int. Math. Res. Not. 2004(11), 525–560 (2004)

    Article  Google Scholar 

  27. J. Haglund, The genesis of the Macdonald polynomial statistics. Séminaire Lotharingien de Combinatoire 54, B54Ao (2006)

    MathSciNet  MATH  Google Scholar 

  28. J. Haglund, The q, t-Catalan Numbers and the Space of Diagonal Harmonics, vol. 41 (American Mathematical Society, Providence, 2008)

    MATH  Google Scholar 

  29. J. Haglund, N. Loehr, A conjectured combinatorial formula for the Hilbert series for diagonal harmonics. Discret. Math. 298(1), 189–204 (2005)

    Article  MathSciNet  Google Scholar 

  30. J. Haglund, M. Haiman, N. Loehr, A combinatorial formula for Macdonald polynomials. J. Am. Math. Soc. 18(3), 735–761 (2005)

    Article  MathSciNet  Google Scholar 

  31. J. Haglund, J. Remmel, A.T. Wilson, The delta conjecture. Trans. Am. Math. Soc. 370(6), 4029–4057 (2018)

    Article  MathSciNet  Google Scholar 

  32. M. Haiman, Hilbert schemes, polygraphs and the Macdonald positivity conjecture. J. Am. Math. Soc. 14(4), 941–1006 (2001)

    Article  MathSciNet  Google Scholar 

  33. M. Haiman, Vanishing theorems and character formulas for the Hilbert scheme of points in the plane. Inventiones Math. 149(2), 371–407 (2002)

    Article  MathSciNet  Google Scholar 

  34. A. Hicks, E. Leven, A simpler formula for the number of diagonal inversions of an \((m, n)\)-parking function and a returning fermionic formula. Discrete Math. 338(3), 48–65 (2015)

    Google Scholar 

  35. A.S. Hicks, Two parking function bijections: a sharpening of the q, t-Catalan and Shröder theorems. Int. Math. Res. Not. 2012(13), 3064–3088 (2011)

    Article  Google Scholar 

  36. T. Hikita, Affine Springer fibers of type \(A\) and combinatorics of diagonal coinvariants. Adv. Math. 263, 88–122 (2014)

    Google Scholar 

  37. D.E. Knuth, Linear probing and graphs. Algorithmica 22(4), 561–568 (1998)

    Article  MathSciNet  Google Scholar 

  38. A.G. Konheim, B. Weiss, An occupancy discipline and applications. SIAM J. Appl. Math. 14(6), 1266–1274 (1966)

    Article  Google Scholar 

  39. A. Lascoux, B. Leclerc, J.-Y. Thibon, Ribbon tableaux, Hall-Littlewood functions, quantum affine algebras, and unipotent varieties. J. Math. Phys. 38(2), 1041–1068 (1997)

    Article  MathSciNet  Google Scholar 

  40. B. Leclerc, J.-Y. Thibon, Littlewood-Richardson coefficients and Kazhdan-Lusztig polynomials. Combinatorial Methods in Representation Theory, Advanced Studies in Pure Mathematics, vol. 28 (Citeseer, 1998)

    Google Scholar 

  41. N.A. Loehr, G.S. Warrington, Nested quantum Dyck paths and \(\nabla (s_\lambda )\). Int. Math. Res. Not. 5 (2008)

    Google Scholar 

  42. N.A. Loehr, Combinatorics of q, t-parking functions. Adv. Appl. Math. 34(2), 408–425 (2005)

    Article  MathSciNet  Google Scholar 

  43. N.A. Loehr, J.B. Remmel, A computational and combinatorial exposé of plethystic calculus. J. Algebr. Comb. 33(2), 163–198 (2011)

    Article  Google Scholar 

  44. I.G. Macdonald, Symmetric Functions and Hall Polynomials (Oxford University Press, Oxford, 1998)

    MATH  Google Scholar 

  45. A. Mellit, Toric braids and \((m, n) \)-parking functions (2016), ar**v:1604.07456

  46. A. Oblomkov, V. Shende, The Hilbert scheme of a plane curve singularity and the homfly polynomial of its link. Duke Math. J. 161(7), 1277–1303 (2012)

    Article  MathSciNet  Google Scholar 

  47. R. Pyke, The supremum and infimum of the poisson process. Ann. Math. Stat. 30(2), 568–576 (1959)

    Article  MathSciNet  Google Scholar 

  48. B. Rhoades, A.T. Wilson, Tail positive words and generalized coinvariant algebras. Electron. J. Combin. 24(3), Paper 3.21, 29 (2017)

    Google Scholar 

  49. B. Rhoades, Ordered set partition statistics and the delta conjecture. J. Comb. Theory Ser. A 154, 172–217 (2018)

    Article  MathSciNet  Google Scholar 

  50. M. Romero, The delta conjecture at \(q=1\). Trans. Am. Math. Soc. 369(10), 7509–7530 (2017)

    Google Scholar 

  51. B.E. Sagan, The Symmetric Group. Volume 203 of Graduate Texts in Mathematics (Springer, New York, 2001), 2nd edn. Representations, combinatorial algorithms, and symmetric functions

    Google Scholar 

  52. A. Schilling, M. Shimozono, D. White, Branching formula for q-Littlewood-Richardson coefficients. Adv. Appl. Math. 30(1–2), 258–272 (2003)

    Article  MathSciNet  Google Scholar 

  53. E. Sergel, A proof of the square paths conjecture. J. Comb. Theory Ser. A 152, 363–379 (2017)

    Article  MathSciNet  Google Scholar 

  54. N.J.A. Sloane, The on-line encyclopedia of integer sequences, http://oeis.org. Sequence A000272

  55. R.P. Stanley, Enumerative Combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, vol. 62 (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  56. R.P. Stanley, Hyperplane arrangements, interval orders, and trees. Proc. Natl. Acad. Sci. 93(6), 2620–2625 (1996)

    Article  MathSciNet  Google Scholar 

  57. H. Thomas, N. Williams, Swee** up zeta. Sel. Math. (2018)

    Google Scholar 

  58. A.T. Wilson, Torus link homology and the nabla operator. J. Comb. Theory Ser. A 154, 129–144 (2018)

    Article  MathSciNet  Google Scholar 

  59. C.H. Yan, Parking functions, Handbook of Enumerative Combinatorics, Discrete Mathematics and Applications (CRC Press, Boca Raton, FL, 2015), pp. 835–893

    Chapter  Google Scholar 

Download references

Acknowledgements

The author would like to express her gratitude for the many helpful remarks of the anonymous reviewer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Hicks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s) and the Association for Women in Mathematics

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hicks, A. (2019). Combinatorics of the Diagonal Harmonics. In: Barcelo, H., Karaali, G., Orellana, R. (eds) Recent Trends in Algebraic Combinatorics. Association for Women in Mathematics Series, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-030-05141-9_5

Download citation

Publish with us

Policies and ethics

Navigation