Artificial Intelligence and WebGIS for Disaster and Emergency Management

  • Chapter
  • First Online:
WebGIS for Disaster Management and Emergency Response

Part of the book series: Advances in Science, Technology & Innovation ((ASTI))

Abstract

GIS problems are often subject to what is known as curse of dimensionality, which means that the state space grows rapidly when the number of parameters increases. However, the use of intelligent algorithms reduces considerably the size of the state space and helps to quickly find the optimal configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ashish, N., Eguchi, R., Hegde, R., et al. (2007). Situational awareness technologies for disaster response. In H. Chen, et al. (Ed.), Terrorism informatics: Knowledge management and data mining for homeland security.

    Google Scholar 

  • Atkinson, P., & Tatnall, A. (1997). Neural networks in remote sensing. International Journal of Remote Sensing, 18(4), 699–709.

    Article  Google Scholar 

  • Beres, M., Foresti, L., Tapia, R., & Kanevski, M. (2008). Frost risk map** using neural networks and GIS decision models. Geophysical Research Abstracts, 10 (2008).

    Google Scholar 

  • Bischof, H., Schneider, W., & Pinz, A. J. (1992). Multispectral classification of landsat images using neural networks. IEEE Transactions on Geosciences and Remote Sensing, 30(3), 482–490.

    Article  Google Scholar 

  • Bloodsworth, P., & Greenwood, S. (2005). COSMOA an ontology-centric multi-agent systems for coordinating medical responses to large-scale disasters. In M. Lytras (Ed.), Semantic Web Factbook—2005 Edition, 1st edn. AIS SIGSEMIS and Open Research Society Publications. ISSN: 1556-2301, May 2006.

    Google Scholar 

  • Brondino, N. C. M., & da Silva, A. N. R. (1999, September). Combining artificial neural networks and GIS for land valuation process. Paper presented at the 6th International Conference on CUPUM, Venezia, Italy, 8–11 September.

    Google Scholar 

  • Burrough, P. A. (1986). Principles of geographic information systems for land resource assessment. Monographs on Soil and Resources Survey No. 12. New York: Oxford Science Publications.

    Article  Google Scholar 

  • Civco, D. L. (1993). Artificial neural networks for landcover classification and map**. International Journal of Geographical Information Systems, 7(2), 173–186.

    Article  Google Scholar 

  • Collins, C. B., Beck, J. M., Bridges, S. M., Rushing, J. A., & Graves, S. J. (2017). Deep learning for multisensor image resolution enhancement (pp. 37–44). ACM Press. https://doi.org/10.1145/3149808.3149815.

  • Dantas, A., Yamamoto, K., Lamar, M. V., Yamashita, Y. (2000). Neural network for travel demand forecast using GIS and remote sensing. In Proceeding of international joint conference on neural networks (IJCNN’00) (vol. 4).

    Google Scholar 

  • German, G., & Gahegan, M. (1996). Neural network architectures for the classification of temporal image sequences. Computers & Geosciences, 22(9), 969–979.

    Article  Google Scholar 

  • Hall, G. B., & Morgan, (2001). Spatial decision support system: Spatial aspect project. Canada: University of Waterloo. Unpublished.

    Google Scholar 

  • Kohonen, T. (1997). Self-organizing maps. Berlin: Springer.

    Book  Google Scholar 

  • Lees, B. G., & Ritman, K. (1991). Decision tree and rule induction approach to integration of remotely sensed and GIS data in map** vegetation in disturbed or hilly environments. Environmental Management, 15, 823–831.

    Article  Google Scholar 

  • Li, H., Liu, J., & Zhou, X. (2018). Intelligent map reader: A framework for topographic map understanding with deep learning and gazetteer. IEEE Access, 6, 25363–25376. https://doi.org/10.1109/ACCESS.2018.2823501.

    Article  Google Scholar 

  • Lin, Y., Chiang, Y.-Y., Pan, F., Stripelis, D., Ambite, J. L., Eckel, S. P., & Habre, R. (2017). Mining public datasets for modeling intra-city PM2.5 concentrations at a fine spatial resolution. In Proceedings of the 25th ACM SIGSPATIAL international conference on advances in geographic information systems (pp. 1–10). Los Angeles Area, CA.

    Google Scholar 

  • Mann, S., & Benwell, G. L. (1996). The integration of ecological, neural and spatial modeling for monitoring and prediction for semi-arid landscapes. Computers & Geosciences, 22(9), 1003–1012.

    Article  Google Scholar 

  • Massaguer, D., Balasubramanian, V., Mehrotra, S., & Venkatasubramanian, N. (2006). Multiagent simulation of disaster response. In AAMAS’06, 8–12 May 2006, Japan.

    Google Scholar 

  • Mccloy, K. R. (2006). Resource management information systems: Remote sensing, GIS and modelling, 2nd edn. CRC Press.

    Google Scholar 

  • Moon, T., & Hagishima, H. (2001, July). Integrated simulation system of GIS and ANN for land price appraisal. Paper presented at the 7th International Conference on CUPUM, University of Hawaii, Honolulu, 18–21 July.

    Google Scholar 

  • Openshaw, S., & Openshaw, C. (1997). Artificial intelligence in geography. Chichester: Wiley.

    Google Scholar 

  • Pijanowski, B. C., Brown, D. G., Shellito, B. A., & Manik, G. A. (2002). Using neural networks and GIS to forecast land use changes: A land transformation model. Computers, Environment and Urban Systems, 26(6), 553–575.

    Article  Google Scholar 

  • Schurr, N., Marecki, J., Kasinadhuni, N., Tambe, M., Lewis, J. P., & Scerri, P. (2005). The DEFACTO system for human omnipresence to coordinate agent teams: The future of disaster response. In AAMAS’05. Utrecht, Netherlands.

    Google Scholar 

  • Shah, B., & Choset, H. (2003). In C. H. Lee, & Y. K. Kwak (Eds.), Survey on urban search and rescue robotics. Pittsburgh, PA: CMU, 15213.

    Google Scholar 

  • Thurston, J. (2002). GIS & artificial neural networks: Does your GIS think? GIS Vision Magazine, February 2002.

    Google Scholar 

  • VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y. (2018). emerging trends in geospatial artificial intelligence (geoAI): Potential applications for environmental epidemiology. Environmental Health, 17(1). https://doi.org/10.1186/s12940-018-0386-x.

  • Wang, F. (1994). The use of artificial neural networks in a geographical information system for agricultural land-suitability assessment. Environment and Planning, 26, 265–284.

    Article  Google Scholar 

  • Yanar, T. A., & Akyürek, Z. (2006). The enhancement of the cell-based GIS analyses with fuzzy processing capabilities. Information Sciences, 176, 1067–1085.

    Article  Google Scholar 

  • Yen, J., & Langari, R. (1999). Fuzzy logic: Intelligence, control, and information. Prentice Hall.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rifaat Abdalla .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abdalla, R., Esmail, M. (2019). Artificial Intelligence and WebGIS for Disaster and Emergency Management. In: WebGIS for Disaster Management and Emergency Response. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-030-03828-1_6

Download citation

Publish with us

Policies and ethics

Navigation