Severe Convective Storms—An Overview

  • Chapter
Severe Convective Storms

Part of the book series: Meteorological Monographs ((METEOR))

Abstract

In general, convection, refers to the transport of some property by fluid movement, most often with reference to heat transport. As such, it is one of the three main processes by which heat is transported: radiation, conduction, and convection. Meteorologists typically use the term convection to refer to heat transport by the vertical component of the flow associated with buoyancy. Transport of heat (or any other property) by the nonbuoyant part of the atmospheric flow is usually called advection by meterologists; advection can be either horizontal or vertical.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Anderson, B., and S. Wamsley, 1996: Reflection of the hearts. The Big Thompson Canyon Flood of July 31, 1976, G. Wamsley and L. Roesener, Eds., CandM Press, 272 pp.

    Google Scholar 

  • Barnes, S. L., 1978: Oklahoma thunderstorms on 29–30 April 1970. Part I: Morphology of a tornadic storm. Mon. Wea. Rev., 106, 673–684.

    Article  Google Scholar 

  • Barnes, S. L., and C. W. Newton, 1983: Thunderstorms in the synoptic setting. Thunderstorm Morphology and Dynamics, E. Kessler, Ed., University of Oklahoma, 75–112.

    Google Scholar 

  • Barnston, A. G., W. L. Woodley, J. A. Flueck, and M. H. Brown, 1983: The Florida Area Cumulus Experiment’s second phase (FACE-2). Part I: The experimental design, implementation and basic data. J. Climate Appl. Meteor., 22, 1504–1528.

    Article  Google Scholar 

  • Bartels, D. L., and R. A. Maddox, 1991: Midlevel cyclonic vortices generated by mesoscale convective systems. Mon. Wea. Rev., 119, 104–118.

    Article  Google Scholar 

  • Blyth, A. M., 1993: Entrainment in cumulus clouds. J. Appl. Meteor., 32, 626–641.

    Article  Google Scholar 

  • Boccippio, D. J., 1995: A diagnostic analysis of the VVP single-Doppler retrieval technique. J. Atmos. Oceanic Technol., 12, 230–248.

    Article  Google Scholar 

  • Bosart, L. F., and F. Sanders, 1981: The Johnstown flood of July 1977: A long-lived convective system. J. Atmos. Sci., 38, 1616–1642.

    Article  Google Scholar 

  • Bosart, L. F., and G. M. Lackmann, 1995: Postlandfall tropical cyclone reintensification in a weakly baroclinic environment: A case study of Hurricane David (September 1979). Mon. Wea. Rev., 123, 3268–3291.

    Article  Google Scholar 

  • Brock, F. V., K. C. Crawford, R. L. Elliott, G. W. Cuperus, S. J. Stadler, H. L. Johnson, and M. D. Eilts, 1995: The Oklahoma mesonet: A technical overview. J. Atmos. Oceanic Technol., 12, 5–19.

    Article  Google Scholar 

  • Brooks, H. E., and C. A. Doswell III, 1993: Extreme winds in high-precipitation supercells. Preprints, 17th Conf. on Severe Local Storms, St. Louis, MO, Amer. Meteor. Soc., 173–177.

    Google Scholar 

  • Brooks, H. E., and C. A. Doswell III, 1996: A comparison between measures-oriented and distributions-oriented approaches to forecast verification. Wea. Forecasting, 11, 288–303.

    Article  Google Scholar 

  • Brooks, H. E., and L. J. Wicker, 1993: STORMTIPE: A forecast-ing experiment using a three-dimensional cloud model. Wea. Forecasting, 8, 352–362.

    Article  Google Scholar 

  • Brooks, H. E., and R. B. Wilhelmson, 1994: The role of midtro-pospheric winds in the evolution and maintenance of low-level mesocyclones. Mon. Wea. Rev., 122, 126–136.

    Article  Google Scholar 

  • Brooks, H. E., E. N. Rasmussen, and S. Lasher-Trapp, 1995: Detailed observations of complex dryline structure in Oklahoma on 14 April, 1994. Preprints, 14th Conf. on Weather Analysis and Forecasting, Vienna, VA, Amer. Meteor. Soc., 62–67.

    Google Scholar 

  • Browning, K. A., 1964: Airflow and precipitation trajectories within severe local storms which travel to the right of the winds. J. Atmos. Sci., 21, 634–639.

    Article  Google Scholar 

  • Browning, K. A., 1977: The structure and mechanism of hailstorms. Hail: A Review of Hail Science and Hail Suppression, Meteor. Monogr., No. 38, Amer. Meteor. Soc., 1–39.

    Google Scholar 

  • Byers, H. R., 1965: Elements of Cloud Physics. University of Chicago Press, 191 pp.

    Google Scholar 

  • Byers, H. R., and R. R. Braham Jr., 1949: The Thunderstorm. U.S. Government Printing Office, Washington, D.C., 287 pp.

    Google Scholar 

  • Caracena, F., J. McCarthy, and J. A. Flueck, 1983: Forecasting the likelihood of microbursts along the front range of Colorado. Preprints, 13th Conf. on Severe Local Storms, Tulsa, OK, Amer. Meteor. Soc., 261–264.

    Google Scholar 

  • Carr, F. H., P. L. Spencer, C. A. Doswell III, and J. D. Powell, 1995: A comparison of two objective analysis techniques for profiler time-height data. Mon. Wea. Rev., 123, 2165–2180.

    Article  Google Scholar 

  • Charba, J. P., 1979: Two to six hour severe local storm probabilities: An operational forecasting system. Mon. Wea. Rev., 107, 268–282.

    Article  Google Scholar 

  • Chesters, D. L., L. W. Uccellini, and A. Mostek, 1982: VISSR Atmospheric Sounder (VAS) simulation experiment for a severe storm environment. Mon. Wea. Rev., 110, 198–216.

    Article  Google Scholar 

  • Christian, H. J., R. J. Blakeslee, and S. L. Goodman, 1989: The detection of lightning from geostationary orbit. J. Geophys. Res., 94, 13 329–13 337.

    Google Scholar 

  • Colquhoun, J. R., 1987: A decision tree method of forecasting thunderstorms, severe thunderstorms, and tornadoes. Wea. Forecasting, 2, 337–345.

    Article  Google Scholar 

  • Colquhoun, J. R., 1995: The Sydney supercell thunderstorm? Weather, 50, 15–18.

    Article  Google Scholar 

  • Davies-Jones, R., 1991: The frontogenetical forcing of secondary circulations. Part I: The duality and generalization of the Q vector. J. Atmos. Sci., 48, 497–509.

    Article  Google Scholar 

  • Colquhoun, J. R., D. Burgess, and M. Foster, 1990: Test of helicity as a forecast parameter. Preprints, 16th Conf. on Severe Local Storms, Kananaskis Park, AB, Canada, Amer. Meteor. Soc., 588–592.

    Google Scholar 

  • Davis, C. A., and M. L. Weisman, 1994: Balanced dynamics of mesoscale vortices produced in simulated convective systems. J. Atmos. Sci., 51, 2005–2030.

    Article  Google Scholar 

  • Deardorff, J. W., 1980: Cloud top entrainment instability. J. Atmos. Sci., 37, 131–147.

    Article  Google Scholar 

  • Dessens, J., and J. T. Snow, 1993: Comparative description of tornadoes in France and the United States. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., No. 79, Amer. Geophys. Union, 427–434.

    Chapter  Google Scholar 

  • Doswell, C. A., III, 1985: The operational meteorology of convective weather. Vol. II: Storm scale analysis. NOAA Tech. Memo. ERL ESG-15, NTIS PB85–226959, 240 pp.

    Google Scholar 

  • Doswell, C. A., 1987: The distinction between large-scale and mesoscale contribution to severe convection: A case study example. Wea. Forecasting, 2, 3–16.

    Article  Google Scholar 

  • Doswell, C. A., 1991: Comments on “Mesoscale convective patterns of the southern High Plains.” Bull. Amer. Meteor. Soc., 72, 389–390.

    Google Scholar 

  • Doswell, C. A., 1994: Flash flood-producing convective storms: Current understanding and research. Proc. U.S.-Spain Workshop on Natural Hazards, Barcelona, Spain, National Science Foundation, 97–107.

    Google Scholar 

  • Doswell, C. A., 1999: Seeing supercells as heavy rain producers. Preprints, 13th Conf. on Hydrology, Dallas, TX, Amer. Meteor. Soc., 73–76.

    Google Scholar 

  • Doswell, C. A., and D. W. Burgess, 1988: On some issues of United States tornado climatology. Mon. Wea. Rev., 116, 495–501.

    Article  Google Scholar 

  • Doswell, C. A., and D. W. Burgess, 1993: Tornadoes and tornadic storms: A review of conceptual models. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., No. 79, Amer. Geophys. Union, 161–172.

    Chapter  Google Scholar 

  • Doswell, C. A., and E. N. Rasmussen, 1994: The effect of neglecting the virtual temperature correction on CAPE calculations. Wea. Forecasting, 9, 625–629.

    Article  Google Scholar 

  • Doswell, C. A., J. T. Schaefer, D. W. McCann, T. W. Schlatter, and H. B. Wobus, 1982: Thermodynamic analysis procedures at the National Severe Storms Forecast Center. Preprints, Ninth Conf. on Weather Forecasting and Analysis, Seattle, WA, Amer. Meteor. Soc., 304–309.

    Google Scholar 

  • Doswell, C. A., D. L. Keller, and S. J. Weiss, 1990: An analysis of the temporal and spatial variation of tornado and severe thunder- storm watch verification. Preprints, 16th Conf. on Severe Local Storms, Kananaskis Park, AB, Canada, Amer. Meteor. Soc., 294–299.

    Google Scholar 

  • Doswell, C. A., R. H. Johns, and S. J. Weiss, 1993: Tornado forecasting: A review. The Tornado: Its Structure, Dynamics, Hazards, and Prediction, Geophys. Monogr., No. 79, Amer. Geophys. Union, 557–571.

    Chapter  Google Scholar 

  • Doswell, C. A., H. E. Brooks, and R. A. Maddox, 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560–581.

    Article  Google Scholar 

  • Doswell, C. A., A. R. Moller, and H. E. Brooks, 1999: Storm spotting and public awareness since the first tornado forecasts of 1948. Wea. Forecasting, 14, 544–557.

    Article  Google Scholar 

  • Durran, D. R., 1986: Mountain waves. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 472–492.

    Chapter  Google Scholar 

  • Eilts, M. D., and Coauthors, 1996: Severe weather warning decision support system. Preprints, 18th Conf. on Severe Local Storms, San Francisco, CA, Amer. Meteor. Soc., 536–540.

    Google Scholar 

  • Emanuel, K. A., 1981: A similarity theory for unsaturated down-drafts within clouds. J. Atmos. Sci., 38, 1541–1557.

    Article  Google Scholar 

  • Emanuel, K. A., 1985: Frontal circulations in the presence of small moist symmetric instability. J. Atmos. Sci., 42, 1062–1071.

    Article  Google Scholar 

  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

    Google Scholar 

  • Eom, J., 1975: Analysis of the internal gravity wave occurrence of April 19, 1970 in the Midwest. Mon. Wea. Rev., 103, 217–226.

    Article  Google Scholar 

  • FEMA, 1999: Midwest tornadoes of May 3, 1999: Observations, recommendations and technical guidance. Building Performance Assessment Rep. FEMA-342, Federal Emergency Management Agency, Washington, D.C., 189 pp.

    Google Scholar 

  • Foote, G. B., and C. A. Knight, 1979: Results of a randomized hail suppression experiment in northeast Colorado. Part I: Design and conduct of the experiment. J. Appl. Meteor., 18, 1526–1537.

    Article  Google Scholar 

  • Foote, G. B., and H. W. Frank, 1983: Case study of a hailstorm in Colorado. Part III: Airflow from triple-Doppler measurements. J. Atmos. Sci., 40, 686–707.

    Article  Google Scholar 

  • Forbes, G. S., 1981: On the reliability of hook echoes as tornado indicators. Mon. Wea. Rev., 109, 1457–1466.

    Article  Google Scholar 

  • Forbes, G. S., and R. Wakimoto, 1983: A concentrated outbreak of tornadoes, downbursts and microbursts, and implications regarding vortex classification. Mon. Wea. Rev., 111, 220–235.

    Article  Google Scholar 

  • Fovell, R. G., and P. S. Dailey, 1995: The temporal behavior of numerically simulated multicell-type storms. Part I: Modes of behavior. J. Atmos. Sci., 52, 2073–2095.

    Article  Google Scholar 

  • Friedman, R. M., 1999: Constituting the polar front, 1919–1920. The Life Cycle of Extratropical Cyclones, M. A. Shapiro and S. Granas, Eds., Amer. Meteor. Soc., 29–39.

    Chapter  Google Scholar 

  • Fritsch, J. M., 1975: Cumulus dynamics: Local compensating subsidence and its implications for cumulus parameterization. Pure Appl. Geophys., 113, 851–867.

    Article  Google Scholar 

  • Fujita, T. T., 1955: Results of detailed synoptic studies of squall lines. Tellus, 4, 405–436.

    Article  Google Scholar 

  • Fujita, T. T., 1963: Analytical mesometeorology: A review. Severe Local Storms, Meteor. Monogr., No. 27, Amer. Meteor. Soc., 77125.

    Google Scholar 

  • Fujita, T. T., 1971: Proposed characterization of tornadoes and hurri-canes by area and intensity. SMRP Research Paper 91, University of Chicago, Chicago, IL, 42 pp.

    Google Scholar 

  • Fujita, T. T., 1975: New evidence from April 3–4, 1974 tornadoes. Preprints, Ninth Conf. on Severe Local Storms, Norman, OK, Amer. Meteor. Soc., 248–255.

    Google Scholar 

  • Fujita, T. T., 1981: Tornadoes and downbursts in the context of general-ized planetary scales. J. Atmos. Sci., 38, 1511–1534.

    Article  Google Scholar 

  • Fujita, T. T., and F. Caracena, 1977: An analysis of three weather-related aircraft accidents. Bull. Amer. Meteor. Soc., 58, 1164–1181.

    Article  Google Scholar 

  • Gage, K. S., and B. B. Balsley, 1978: Doppler radar probing of the clear atmosphere. Bull. Amer. Meteor. Soc., 59, 1074–1093.

    Article  Google Scholar 

  • Galway, J. G., 1977: Some climatological aspects of tornado outbreaks. Mon. Wea. Rev., 105, 477–484.

    Article  Google Scholar 

  • Galway, J. G., 1989: The evolution of severe thunderstorm criteria within the Weather Service. Wea. Forecasting, 4, 585–592.

    Article  Google Scholar 

  • Grazulis, T. P., 1993: Significant Tornadoes, 1680–1991. Environmental Films, St. Johnsbury, VT, 1326 pp.

    Google Scholar 

  • Hales, J. E., Jr., 1993: Biases in the severe thunderstorm data base: Ramifications and solutions. Preprints, 13th Conf. on Weather Analysis and Forecasting, Vienna, VA, Amer. Meteor. Soc., 504–507.

    Google Scholar 

  • Hane, C. E., and P. S. Ray, 1985: Pressure and buoyancy fields derived from Doppler radar data in a tornadic thunderstorm. J. Atmos. Sci., 42, 18–35.

    Article  Google Scholar 

  • Hess, S. L., 1959: Introduction to Theoretical Meteorology. Holt, Rhinehart and Winston, 362 pp.

    Google Scholar 

  • Hilger, D. W., and J. F. W. Purdom, 1990: Clustering of satellite sounding radiances to enhance mesoscale meteorological retrievals. J. Appl. Meteor., 29, 1344–1351.

    Article  Google Scholar 

  • Hoffman, E. G., L. F. Bosart, and D. Keyser, 1995: Large-amplitude inertia-gravity wave environments: Vertical structure and evolution. Preprints, 15th Conf. on Weather Analysis and Forecasting, Norfolk, VA, Amer. Meteor. Soc., 245–248.

    Google Scholar 

  • Hooke, W. H., 1986: Gravity waves. Mesoscale Meteorology and Forecasting, P. Ray, Ed., Amer. Meteor. Soc., 272–288.

    Chapter  Google Scholar 

  • Hoskins, B. J., and F. P. Bretherton, 1972: Atmospheric frontogenesis models: Mathematical formulation and solution. J. Atmos. Sci., 29, 11–37.

    Article  Google Scholar 

  • House, D. C., 1959: The mechanics of instability line formation. J. Meteor., 16, 108–120.

    Article  Google Scholar 

  • House, D. C., 1963: Forecasting tornadoes and severe thunderstorms. Severe Local Storms, Meteor. Monogr., No. 27, Amer. Meteor. Soc., 141–155.

    Google Scholar 

  • Houze, R. A., Jr., W. Schmid, R. G. Fovell, and H. H. Schiesser, 1993: Hailstorms in Switzerland: Left movers, right movers, and false hooks. Mon. Wea. Rev., 121, 3345–3370.

    Article  Google Scholar 

  • Jameson, A. R., and D. B. Johnson, 1990: Cloud microphysics and radar. Radar in Meterology, D. Atlas, Ed., Amer. Meteor. Soc., 323–340.

    Google Scholar 

  • Johns, R. H., and W. D. Hirt, 1987: Derechos: Widespread convec-tively induced windstorms. Wea. Forecasting, 2, 32–49.

    Article  Google Scholar 

  • Johns, R. H., and C. A. Doswell III, 1992: Severe local storms forecast-ing. Wea. Forecasting, 7, 588–612.

    Article  Google Scholar 

  • Kamburova, P. L., and F. H. Ludlam, 1962: Rainfall evaporation in thunderstorm downdraughts. Quart. J. Roy. Meteor. Soc., 88, 510–518.

    Google Scholar 

  • Kelly, D. L., J. T. Schaefer, R. P. McNulty, C. A. Doswell III, and R. F. Abbey Jr., 1978: An augmented tornado climatology. Mon. Wea. Rev., 106, 1172–1183.

    Article  Google Scholar 

  • Kelly, D. L., and C. A. Doswell III, 1985: Climatology of nontornadic severe thunderstorm events in the United States. Mon. Wea. Rev., 113, 1997–2014.

    Article  Google Scholar 

  • Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulations. Meteor. Monogr., No. 32, Amer. Meteor. Soc., 84 pp.

    Google Scholar 

  • Klemp, J. B., and D. K. Lilly, 1975: The dynamics of wave-induced downslope winds. J. Atmos. Sci., 32, 320–339.

    Article  Google Scholar 

  • Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 1070–1096.

    Article  Google Scholar 

  • Koppel, L. L., L. F. Bosart, and D. Keyser, 2000: A 25-yr climatology of large-amplitude hourly surface pressure changes over the conterminous United States. Mon. Wea. Rev., 128, 51–68.

    Article  Google Scholar 

  • Krzysztofowicz, R., W. J. Drzal, T. R. Drake, J. C. Weyman, and L. A. Giordano, 1993: Probabilistic quantitative precipitation forecasts for river basins. Wea. Forecasting, 8, 424–439.

    Article  Google Scholar 

  • Laing, A. G., and J. M. Fritsch, 1997: The global population of mesoscale convective complexes. Quart. J. Roy. Meteor. Soc., 123, 389–405.

    Article  Google Scholar 

  • Lanicci, J. M., T. N. Carlson, and T. T. Warner, 1987: Sensitivity of the Great Plains severe-storm environment to soil-moisture distribution. Mon. Wea. Rev., 115, 2660–2673.

    Article  Google Scholar 

  • Larson, L. W., and Coauthors, 1995: Operational responsibilities of the National Weather Service river and flood program. Wea. Forecasting, 10, 465–476.

    Article  Google Scholar 

  • Levine, J., 1959: Spherical vortex theory of bubble-like motion in cumulus clouds. J. Meteor., 16, 653–662.

    Article  Google Scholar 

  • Lilly, D. K., and T. Gal-Chen, 1990: Can dryline mixing create buoyancy? J. Atmos. Sci., 47, 1170–1171.

    Article  Google Scholar 

  • Lindzen, R. S., and K. K. Tung, 1976: Banded convective activity and ducted gravity waves. Mon. Wea. Rev., 104, 1602–1617.

    Article  Google Scholar 

  • Locatelli, J. D., M. T. Stoelinga, and P. V. Hobbs, 1998: Structure and evolution of winter cyclones in the central United States and their effects on the distribution of precipitation. Part V: Thermodynamic and dual-Doppler radar analysis of a squall line associated with a cold front aloft. Mon. Wea. Rev., 126, 860–875.

    Article  Google Scholar 

  • Lopez, R. E., R. L. Holle, T. A. Heitkamp, M. Boyson, M. Cherington, and K. Langford, 1993: The underreporting of lighting injuries and deaths. Preprints, 17th Conf. on Severe Local Storms/Conf. on Atmospheric Electricity, St. Louis, MO, Amer. Meteor. Soc., 775–778.

    Google Scholar 

  • Lorenz, E. N., 1993: The Essence of Chaos. University of Washington, 227 pp.

    Google Scholar 

  • Ludlam, F. H., 1963: Severe local storms: A review. Severe Local Storms, Meteor. Monogr., No. 27, Amer. Meteor. Soc., 1–30.

    Google Scholar 

  • Lynn, B. H., W.-K. Tao, and P. J. Wetzel, 1998: A study of landscape-generated deep moist convection. Mon. Wea. Rev., 126, 928–942.

    Article  Google Scholar 

  • MacGorman, D. R., and W. D. Rust, 1998: The Electrical Nature of Storms. Oxford University Press, 422 pp.

    Google Scholar 

  • Maddox, R. A., 1980: Mesoscale convective complexes. Bull. Amer. Meteor. Soc., 61, 1374–1387.

    Article  Google Scholar 

  • Maddox, R. A., and C. A. Doswell III, 1982: An examination of jet stream configurations, 500 mb vorticity advection and low-level thermal advection patterns during extended periods of intense convection. Mon. Wea. Rev., 110, 184–197.

    Article  Google Scholar 

  • Maddox, R. A., and D. E. Forsyth, 1994: Comments on “National Weather Service warning performance based on the WSR-88D.” Bull. Amer. Meteor. Soc., 75, 21–75.

    Google Scholar 

  • Maddox, R. A., L. R. Hoxit, and C. F. Chappell, 1980: A study of tornadic thunderstorms interactions with thermal boundaries. Mon. Wea. Rev., 108, 1866–1877.

    Google Scholar 

  • Marshall, T. P., 1993: Lessons learned from analyzing tornado damage. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., No. 79, Amer. Geophys. Union, 495–499.

    Chapter  Google Scholar 

  • Marwitz, J. D., 1972a: The structure and motion of severe hailstorms. Part I: Superce11 storms. J. Appl. Meteor., 11, 166–179.

    Article  Google Scholar 

  • Marwitz, J. D., 1972b: The structure and motion of severe hailstorms. Part II Multi-cell storms. J. Appl. Meteor., 11, 180–188.

    Google Scholar 

  • Marwitz, J. D., 1972c: The structure and motion of severe hailstorms. Part III: Severely sheared storms. J. Appl. Meteor., 11, 189–201.

    Google Scholar 

  • Mass, C. F., and M. D. Albright, 1989: Origin of the Catalina eddy. Mon. Wea. Rev., 117, 2406–2436.

    Article  Google Scholar 

  • Matejka, T., and R. C. Srivastrava, 1991: An improved version of the extended VAD analysis of single-Doppler radar data. J. Atmos. Oceanic Technol., 8, 435–466.

    Article  Google Scholar 

  • McCaul, E. W., Jr., 1993: Observations and simulation of hurricane-spawned tornadic storms. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., No. 79, Amer. Geophys. Union, 119–142.

    Chapter  Google Scholar 

  • McDonald, J. R., 1993: Damage mitigation and occupant safety. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., No. 79, Amer. Geophys. Union, 523–528.

    Chapter  Google Scholar 

  • McWilliams, J. C., and P. R. Gent, 1980: Intermediate models of planetary circulations in the atmosphere and ocean. J. Atmos. Sci., 37, 1657–1678.

    Article  Google Scholar 

  • Mehta, K. C., 1976: Windspeed estimates: Engineering analyses. Proc. Symp. on Tornadoes, Lubbock, TX, Texas Tech. University, 89–103.

    Google Scholar 

  • Menard, R. D., and J. M. Fritsch, 1989: A mesoscale convective complex-generated inertial stable warm core vortex. Mon. Wea. Rev., 117, 1237–1261.

    Article  Google Scholar 

  • Miller, R. C., 1972: Notes on the analysis and severe-storm forecasting procedures of the Air Force Global Weather Central. AWS Tech. Rep. 200 (rev.), Headquarters, Air Weather Service, Scott Air Force Base, IL, 190 pp.

    Google Scholar 

  • Minor, J. E., and K. C. Mehta, 1979: Wind damage observations and implications. J. Struc. Div. Amer. Soc. Civ. Eng., 105, 2279–2291.

    Google Scholar 

  • Moran, K. P., D. B. Wuertz, R. G. Strauch, N. L. Abshire, and D. C. Law, 1991: Temperature sounding with wind profiler radars. J. Atmos. Oceanic Technol., 8, 606–611.

    Article  Google Scholar 

  • Murphy, A. H., 1993: What is a good forecast? An essay on the nature of goodness in forecasting. Wea. Forecasting, 8, 281–293.

    Article  Google Scholar 

  • Murphy, A. H., and R. L. Winkler, 1987: A general framework for forecast verification. Mon. Wea. Rev., 115, 1330–1338.

    Article  Google Scholar 

  • National Weather Service, 1991: Shadyside, Ohio, flash floods—June 14, 1990. Natural Disaster Survey Rep., 124 pp. [Available from NOAA/National Weather Service, 1325 East-West Highway, Silver Spring, MD 20910.]

    Google Scholar 

  • Neiman, P. J., and M. A. Shapiro, 1989: Retrieving horizontal temperature gradients and advections from single-station wind profiler observations. Wea. Forecasting, 4, 222–233.

    Article  Google Scholar 

  • Neiman, P. J., P. T. May, and M. A. Shapiro, 1992: Radio acoustic sounding system (RASS) and wind profiler observations of lower- and midtropospheric weather systems. Mon. Wea. Rev., 120, 2298–2313.

    Article  Google Scholar 

  • Newton, C. W., 1950: Structure and mechanism of the pre-frontal squall line. J. Meteor., 7, 210–222.

    Article  Google Scholar 

  • Newton, C. W., 1963: Dynamics of severe convective storms. Severe Local Storms, Meteor. Monogr., No. 27, Amer. Meteor. Soc., 33–58.

    Google Scholar 

  • Ninomiya, K., 1971: Mesoscale modification of synoptic situations from thunderstorm development as revealed by ATS III and aerological data. J. Appl. Meteor., 10, 1103–1121.

    Article  Google Scholar 

  • Nolen, R. H., 1959: A radar pattern associated with tornadoes. Bull. Amer. Meteor. Soc., 40, 277–279.

    Google Scholar 

  • Olson, D. A., N. W. Junker, and B. Korty, 1995: Evaluation of 33 years of quantitative precipitation forecasting at the NMC. Wea. Forecasting, 10, 498–511.

    Article  Google Scholar 

  • Orlanski, I., 1975: A rational subdivision of scales for atmospheric processes. Bull. Amer. Meteor. Soc., 56, 527–530.

    Google Scholar 

  • Orville, R. E., and R. W. Henderson, 1986: Global distribution of midnight lightning: September 1977 to August 1978. Mon. Wea. Rev., 114, 2640–2653.

    Article  Google Scholar 

  • Paluch, I. R., 1979: The entrainment mechanism in Colorado cumuli. J. Atmos. Sci., 36, 2467–2478.

    Article  Google Scholar 

  • Pan, Z., E. Takle, M. Segal, and R. Turner, 1996: Influences of model parameterization schemes on the response of rainfall to soil moisture in the central United States. Mon. Wea. Rev., 124, 1786–1802.

    Article  Google Scholar 

  • Peltier, W. R., and T. L. Clark, 1979: The evolution and stability of finite-amplitude mountain waves. Part II: Surface wave drag and severe downslope windstorms. J. Atmos. Sci., 36, 1498 1529.

    Google Scholar 

  • Polger, P. D., 1994: Reply to “Comments.” Bull. Amer. Meteor. Soc., 75, 2175–2176.

    Article  Google Scholar 

  • Polger, P. D., B. S. Goldsmith, R. C. Przywarty, and J. R. Bocchieri, 1994: National Weather Service warning performance based on the WSR-88D. Bull. Amer. Meteor. Soc., 75, 203–214.

    Article  Google Scholar 

  • Przybylinski, R. W., 1995: The bow echo: Observations, numerical simulations, and severe weather detection methods. Wea. Forecasting, 10, 203–217.

    Article  Google Scholar 

  • Purdom, J. F. W., 1976: Some uses of high-resolution GOES imagery in the mesoscale forecasting of convection and its behavior. Mon. Wea. Rev., 104, 1474–1483.

    Article  Google Scholar 

  • Rasmussen, E. N., J. M. Straka, R. Davies-Jones, C. A. Doswell III, F. H. Carr, M. D. Eilts, and D. R. MacGorman, 1994: Verification of the Origins of Rotation in Tornadoes Experiment: VORTEX. Bull. Amer. Meteor. Soc., 75, 995–1006.

    Article  Google Scholar 

  • Reap, R. M., and D. S. Foster, 1979: Automated 12–36 hour probability forecasts of thunderstorms and severe local storms. J. Appl. Meteor., 18, 1304–1315.

    Article  Google Scholar 

  • Renno, N. O., and E. R. Williams, 1995: Quasi-Lagrangian measurements in convective boundary layer plumes and their implications for the calculation of CAPE. Mon. Wea. Rev., 123, 2733–2742.

    Article  Google Scholar 

  • Rhea, J. 0., 1966: A study of thunderstorm formation along dry lines. J. Appl. Meteor., 5, 59–63.

    Google Scholar 

  • Rust, W. D., and T. C. Marshall, 1996: On abandoning the thunderstorm tripole charge paradigm. J. Geophys. Res., 101, 23 49923 504.

    Google Scholar 

  • Ryzhkov, A., and D. Zrnié, 1994: Precipitation observed in Oklahoma mesoscale convective systems with a polarimetric radar. J. Appl. Meteor., 33, 455–464.

    Article  Google Scholar 

  • Ryzhkov, A., and D. Zrnié, 1996: Assessment of rainfall measurement that uses specific differential phase. J. Appl. Meteor., 35, 20802090.

    Google Scholar 

  • Sanders, F., and C. A. Doswell III, 1995: A case for detailed surface analysis. Bull. Amer. Meteor. Soc., 76, 505–521.

    Article  Google Scholar 

  • Saunders, C. P. R., 1993: A review of thunderstorm electrification processes. J. Appl. Meteor., 32, 642–655.

    Article  Google Scholar 

  • Schaefer, J. T., 1975: Nonlinear biconstituent diffusion: A possible trigger of convection. J. Atmos. Sci., 32, 2278–2284.

    Article  Google Scholar 

  • Schaefer, J. T., 1986: Severe thunderstorm forecasting: A historical per-spective. Wea. Forecasting, 1, 164–189.

    Article  Google Scholar 

  • Schlesinger, R. E., 1975: A three-dimensional numerical model of an isolated deep convective cloud: Preliminary results. J. Atmos. Sci., 32, 934–957.

    Article  Google Scholar 

  • Schultz, D. M., P. N. Schumacher, and C. A. Doswell III, 2000: The intracacies of instabilities. Mon. Wea. Rev., 128, 4143–4148.

    Article  Google Scholar 

  • Schumann, U., and C.-H. Moeng, 1991: Plume budgets in clear and cloudy convective boundary layers. J. Atmos. Sci., 48, 1758 1770.

    Google Scholar 

  • Schwartz, B., and S. G. Benjamin, 1995: A comparison of temperature and wind measurements from ACARS-equipped aircraft and rawinsondes. Wea. Forecasting, 10, 528–544.

    Article  Google Scholar 

  • Scorer, R. S., and F. H. Ludlam, 1953: Bubble theory of penetrative convection. Quart. J. Roy. Meteor. Soc., 79, 94–103.

    Article  Google Scholar 

  • Segal, M., R. W. Arritt, C. Clark, R. Rabin, and J. M. Brown, 1995: Scaling evaluation of the effect of surface characteristics on potential for deep convection over uniform terrain. Mon. Wea. Rev., 123, 383–400.

    Article  Google Scholar 

  • Sherwood, S. C., 2000: On moist instability. Mon. Wea. Rev., 128, 4139–4142.

    Article  Google Scholar 

  • Shortley, G., and D. Williams, 1961: Elements of Physics. Prentice-Hall, 928 pp.

    Google Scholar 

  • Simpson, J., 1971: On cumulus entrainment and one-dimensional models. J. Atmos. Sci., 28, 449–455.

    Article  Google Scholar 

  • Simpson, J., 1972: Reply to comments. J. Atmos. Sci., 29, 220–225.

    Article  Google Scholar 

  • Smull, B. F., 1995: Convectively induced mesoscale weather systems in the tropical and warm-season midlatitude atmosphere. Rev. Geophys., 33 (Suppl.), 897–906.

    Article  Google Scholar 

  • Smull, B. F., and R. A. Houze Jr., 1987: Rear inflow in squall lines with trailing stratiform precipitation. Mon. Wea. Rev., 115, 28692889.

    Google Scholar 

  • Spencer, P. L., F. H. Carr, and C. A. Doswell III, 1996: Investigation of an amplifying and a decaying wave using a network of wind profilers. Mon. Wea. Rev., 124, 209–223.

    Article  Google Scholar 

  • Spencer, R. W., H. M. Goodman, and R. E. Hood, 1989: Precipitation retrieval over land and ocean with the SSM/I: Identification and characteristics of the scattering signal. J. Atmos. Oceanic Technol., 6, 254–273.

    Article  Google Scholar 

  • Squires, P., 1958: Penetrative downdraughts in cumuli. Tellus, 10, 381–393.

    Article  Google Scholar 

  • Squires, P., and J. S. Turner, 1962: An entraining jet model for cumulonimbus updraughts. Tellus, 14, 422–434.

    Article  Google Scholar 

  • Stoelinga, M. T., J. D. Locatelli, and P. V. Hobbs, 2000: Structure and evolution of winter cyclones in the central United States and their effects on the distribution of precipitation. Part IV: A mesoscale modeling study of the initiation of convective rainbands. Mon. Wea. Rev., 128, 3481–3500.

    Article  Google Scholar 

  • Stommel, H., 1947: Entrainment of air into a cumulus cloud. J. Meteor., 4, 91–94.

    Article  Google Scholar 

  • Turner, J. S., 1962: The starting plume in neutral surroundings. J. Fluid Mech., 13, 356–368.

    Article  Google Scholar 

  • Turner, J. S., 1973: Buoyancy Effects in Fluids. Cambridge University Press, 367 pp. Uccellini, L. W., 1975: A case study of apparent gravity wave initiation of severe convective storms. Mon. Wea. Rev., 103, 497–513.

    Google Scholar 

  • Velasco, I., and J. M. Fritsch, 1987: Mesoscale convective com- plexes in the Americas. J. Geophys. Res., 92, 9591–9613.

    Article  Google Scholar 

  • Vonnegut, B., 1963: Some facts and speculations concerning the origin and role of thunderstorm electricity. Severe Local Storms, Meteor. Monogr., No. 27, Amer. Meteor. Soc., 224–241.

    Google Scholar 

  • Vonnegut, B., 1994: The atmospheric electricity paradigm. Bull. Amer. Meteor. Soc., 75, 53–61.

    Article  Google Scholar 

  • Wakimoto, R. M., 1985: Forecasting dry microburst activity over the High Plains. Mon. Wea. Rev., 113, 1131–1143.

    Article  Google Scholar 

  • Ware, R. H., and Coauthors, 2000: SuomiNet: A real-time national GPS network for atmospheric research and education. Bull. Amer. Meteor. Soc., 81, 677–694.

    Article  Google Scholar 

  • Warner, J., 1970: On steady-state one-dimensional models of cumulus convection. J. Atmos. Sei., 27, 1035–1040.

    Article  Google Scholar 

  • Warner, J., 1972: Comments on “On cumulus entrainment and one-dimensional models.” J. Atmos. Sei., 29, 218–219.

    Article  Google Scholar 

  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504–520.

    Article  Google Scholar 

  • Weisman, M. L., and J. B. Klemp, 1984: The structure and classification of numerically simulated convective storms in directionally-varying wind shears. Mon. Wea. Rev., 112, 2479–2498.

    Article  Google Scholar 

  • Weisman, M. L., and J. B. Klemp, 1986: Characteristics of isolated convective storms. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 331–358.

    Book  Google Scholar 

  • Wetzel, P. J., W. R. Cotton, and R. L. McAnelly, 1983: A long-lived mesoscale convective complex. Part II: Evolution and structure of the mature complex. Mon. Wea. Rev., 111, 1919–1937.

    Article  Google Scholar 

  • Wilczak, J. M., and J. W. Glendening, 1988: Observations and mixed-layer modeling of a terrain-induced mesoscale gyre: The Denver cyclone. Mon. Wea. Rev., 116, 2688–2711.

    Article  Google Scholar 

  • Williams, E. R., 1985: Large-scale charge separation in thunderclouds. J. Geophys. Res., 90, 6013–6025.

    Article  Google Scholar 

  • Williams, E. R., and R. M. Lhermitte, 1983: Radar test of the precipitation hypothesis for thunderstorm electrification. J. Geophys. Res., 88, 10 984–10 992.

    Google Scholar 

  • Williams, R. T., and J. Plotkin, 1968: Quasi-geostrophic frontogenesis. J. Atmos. Sei., 25, 201–206.

    Article  Google Scholar 

  • Xu, Q., 1987: The existence and stability of steady circulations in a conditionally symmetrically unstable basic flow. J. Atmos. Sei., 44, 3020–3029.

    Article  Google Scholar 

  • Young, G., 1988: Convection in the atmospheric boundary layer. Earth-Sci. Rev., 25, 179–188.

    Article  Google Scholar 

  • Zehr, R. M., J. F. W. Purdom, J. F. Weaver, and R. N. Green. 1988: Use of VAS data to diagnose the mesoscale environment of convective storms. Wea. Forecasting, 3, 33–49.

    Article  Google Scholar 

  • Ziegler, C. L., W. J. Martin, R. A. Pielke, and R. L. Walko, 1995: A modeling study of the dryline. J. Atmos. Sei., 52, 263–285.

    Article  Google Scholar 

  • Zipser, E. J., 1982: Use of a conceptual model of the life-cycle of mesoscale convective systems to improve very short-range forecasts. Nowcasting, K. A. Browning, Ed., Academic Press, 191–204.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 American Meteorological Society

About this chapter

Cite this chapter

Doswell, C.A. (2001). Severe Convective Storms—An Overview. In: Doswell, C.A. (eds) Severe Convective Storms. Meteorological Monographs. American Meteorological Society, Boston, MA. https://doi.org/10.1007/978-1-935704-06-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-935704-06-5_1

  • Publisher Name: American Meteorological Society, Boston, MA

  • Online ISBN: 978-1-935704-06-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation