Conditioned Place Preference in Rodents and Humans

  • Protocol
  • First Online:
Animal Models of Behavioral Analysis

Part of the book series: Neuromethods ((NM,volume 50))

Abstract

Place conditioning is among the most commonly used procedures to assess drug reward in animals. The procedure is used to study acquisition of conditioning, extinction, and reinstatement, to compare across drugs and doses of drugs, and to examine interactions between drugs and environmental or organismic variables. Studies using the procedure have provided a rich source of data regarding contextual conditioning in rodents, and most recently, in humans. Despite its widespread use, the place preference procedure has also raised theoretical and practical questions. Some of the questions are related to the procedural details and methods used: methodological variations on the procedure can affect the outcome and interpretation. In this review, we will examine some of the important methodological considerations in place conditioning with drugs and discuss how these have bearing on the results and conclusions. First, we will discuss what is being measured with place conditioning. Second, we will review the key phases of the procedure and methodological variations in the procedure that can influence the outcome. Third, we will describe place conditioning in humans and the unique methodological issues that arise in applying the procedure to humans. Finally, we will discuss potential limitations and future directions related to drug-induced place conditioning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Garcia J, Kimeldorf DJ, Hunt EL (1957) Spatial avoidance in the rat as a result of exposure to ionizing radiation. Br J Radiol 30:318–321

    Article  PubMed  CAS  Google Scholar 

  2. Beach HD (1957) Morphine addiction in rats. Can J Psychol 11:104–112

    Article  PubMed  CAS  Google Scholar 

  3. Schechter MD, Calcagnetti DJ (1998) Continued trends in the conditioned place preference literature from 1992 to 1996, inclusive, with a cross-indexed bibliography. Neurosci Biobehav Rev 22:827–846

    Article  PubMed  CAS  Google Scholar 

  4. Tzschentke TM (2007) Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade. Addict Biol 12:227–462

    Article  PubMed  CAS  Google Scholar 

  5. Carlezon WA Jr (2003) Place conditioning to study drug reward and aversion. Methods Mol Med 84:243–249

    PubMed  CAS  Google Scholar 

  6. Heinrichs SC, Martinez JL Jr (1986) Modification of place preference conditioning in mice by systemically administered [Leu]enkephalin. Behav Brain Res 22:249–255

    Article  PubMed  CAS  Google Scholar 

  7. Schnur P, Morrell J (1990) Morphine conditioned place preference in the hamster. Pharmacol Biochem Behav 37:383–385

    Article  PubMed  CAS  Google Scholar 

  8. Pomerantz AS, Wertz J, Hepner B, Walso L, Piazza J (1992) Cocaine-induced conditioned place preferences in rhesus monkeys. Soc Neurosci Abstr 18:1572

    Google Scholar 

  9. Hughes RA, Baker MR, Rettig KM (1995) Cocaine-conditioned place preference in young precocial domestic fowl. Exp Clin Psychopharmacol 3:105–111

    Article  CAS  Google Scholar 

  10. Ninkovic J, Bally-Cuif L (2006) The zebrafish as a model system for assessing the reinforcing properties of drugs of abuse. Methods 39:262–274

    Article  PubMed  CAS  Google Scholar 

  11. Childs E, de Wit H (2009) Amphetamine-induced place preference in humans. Biol Psychiatry 65:900–904

    Article  PubMed  CAS  Google Scholar 

  12. Nomikos GG, Spyraki C (1988) Cocaine-induced place conditioning: importance of route of administration and other procedural variables. Psychopharmacology (Berl) 94:119–125

    Article  CAS  Google Scholar 

  13. Bardo MT, Rowlett JK, Harris MJ (1995) Conditioned place preference using opiate and stimulant drugs: a meta-analysis. Neurosci Biobehav Rev 19:39–51

    Article  PubMed  CAS  Google Scholar 

  14. Bardo MT, Neisewander JL (1986) Single-trial conditioned place preference using intravenous morphine. Pharmacol Biochem Behav 25:1101–1105

    Article  PubMed  CAS  Google Scholar 

  15. Bozarth MA, Wise RA (1982) Dissociation of the rewarding and physical dependence-producing properties of morphine. In: Harris LS (ed) Problems of drug dependence. National Institute on Drug Abuse, Rockville, MD, pp 171–177

    Google Scholar 

  16. Amalric M, Cline EJ, Martinez JL Jr, Bloom FE, Koob GF (1987) Rewarding properties of beta-endorphin as measured by conditioned place preference. Psychopharmacology (Berl) 91:14–19

    Article  CAS  Google Scholar 

  17. Mucha RF, Iversen SD (1984) Reinforcing properties of morphine and naloxone revealed by conditioned place preferences: a procedural examination. Psychopharmacology (Berl) 82:241–247

    Article  CAS  Google Scholar 

  18. Reid LD, Hunter GA, Beaman CM, Hubbell CL (1985) Toward understanding ethanol’s capacity to be reinforcing: a conditioned place preference following injections of ethanol. Pharmacol Biochem Behav 22: 483–487

    Article  PubMed  CAS  Google Scholar 

  19. Parker LA, Tomlinson T, Horn D, Erb SM (1994) Relative strength of place conditioning produced by cocaine and morphine assessed in a three-choice paradigm. Learn Motiv 25:83–94

    Article  Google Scholar 

  20. Carr GD, Fibiger HC, Phillips AG (1989) Conditioned place preference as a measure of drug reward. In: Liebman JM, Cooper SJ (eds) The neuropharmacological basis of reward. Clarendon Press, Oxford, pp 264–319

    Google Scholar 

  21. Schechter MD (1995) Cocaethylene produces conditioned place preference in rats. Pharmacol Biochem Behav 51: 549–552

    Article  PubMed  CAS  Google Scholar 

  22. Schenk S, Ellison F, Hunt T, Amit Z (1985) An examination of heroin conditioning in preferred and nonpreferred environments and in differentially housed mature and immature rats. Pharmacol Biochem Behav 22:215–220

    Article  PubMed  CAS  Google Scholar 

  23. Cervo L, Rossi C, Samanin R (1993) Clonidine-induced place preference is mediated by alpha 2-adrenoceptors outside the locus coeruleus. Eur J Pharmacol 238: 201–207

    Article  PubMed  CAS  Google Scholar 

  24. Costello NL, Carlson JN, Glick SD, Bryda M (1989) Dose-dependent and baseline-dependent conditioning with d-amphetamine in the place conditioning paradigm. Psychopharmacology (Berl) 99:244–247

    Article  CAS  Google Scholar 

  25. Li T, Yan CX, Hou Y, Cao W, Chen T, Zhu BF, Li SB (2008) Cue-elicited drug craving represses ERK activation in mice prefrontal association cortex. Neurosci Lett 448: 99–104

    Article  PubMed  CAS  Google Scholar 

  26. Miller CA, Marshall JF (2004) Altered prelimbic cortex output during cue-elicited drug seeking. J Neurosci 24:6889–6897

    Article  PubMed  CAS  Google Scholar 

  27. Mueller D, Stewart J (2000) Cocaine-induced conditioned place preference: reinstatement by priming injections of cocaine after extinction. Behav Brain Res 115:39–47

    Article  PubMed  CAS  Google Scholar 

  28. Li SM, Ren YH, Zheng JW (2002) Effect of 7-nitroindazole on drug-priming reinstatement of d-methamphetamine-induced conditioned place preference. Eur J Pharmacol 443:205–206

    Article  PubMed  CAS  Google Scholar 

  29. Shoblock JR, Wichmann J, Maidment NT (2005) The effect of a systemically active ORL-1 agonist, Ro 64-6198, on the acquisition, expression, extinction, and reinstatement of morphine conditioned place preference. Neuropharmacology 49:439–446

    Article  PubMed  CAS  Google Scholar 

  30. Botreau F, Paolone G, Stewart J (2006) d-Cycloserine facilitates extinction of a cocaine-induced conditioned place preference. Behav Brain Res 172:173–178

    Article  PubMed  CAS  Google Scholar 

  31. Paolone G, Botreau F, Stewart J (2009) The facilitative effects of d-cycloserine on extinction of a cocaine-induced conditioned place preference can be long lasting and resistant to reinstatement. Psychopharmacology (Berl) 202:403–409

    Article  CAS  Google Scholar 

  32. Malvaez M, Sanchis-Segura C, Vo D, Lattal KM, Wood MA (2010) Modulation of chromatin modification facilitates extinction of cocaine-induced conditioned place preference. Biol Psychiatry 67:36–43

    Article  Google Scholar 

  33. Mueller D, Perdikaris D, Stewart J (2002) Persistence and drug-induced reinstatement of a morphine-induced conditioned place preference. Behav Brain Res 136:389–397

    Article  PubMed  CAS  Google Scholar 

  34. Font L, Miquel M, Aragon CM (2008) Involvement of brain catalase activity in the acquisition of ethanol-induced conditioned place preference. Physiol Behav 93:733–741

    Article  PubMed  CAS  Google Scholar 

  35. Leao RM, Cruz FC, Planeta CS (2009) Exposure to acute restraint stress reinstates nicotine-induced place preference in rats. Behav Pharmacol 20:109–113

    Article  PubMed  CAS  Google Scholar 

  36. Sanchez CJ, Sorg BA (2001) Conditioned fear stimuli reinstate cocaine-induced conditioned place preference. Brain Res 908: 86–92

    Article  PubMed  CAS  Google Scholar 

  37. Parker LA, McDonald RV (2000) Reinstatement of both a conditioned place preference and a conditioned place aversion with drug primes. Pharmacol Biochem Behav 66: 559–561

    Article  PubMed  CAS  Google Scholar 

  38. Lu L, Chen H, Su W, Ge X, Yue W, Su F, Ma L (2005) Role of withdrawal in reinstatement of morphine-conditioned place preference. Psychopharmacology (Berl) 181: 90–100

    Article  CAS  Google Scholar 

  39. Ribeiro Do Couto B, Aguilar MA, Manzanedo C, Rodriguez-Arias M, Minarro J (2003) Reinstatement of morphine-induced conditioned place preference in mice by priming injections. Neural Plast 10:279–290

    Article  PubMed  CAS  Google Scholar 

  40. Leri F, Rizos Z (2005) Reconditioning of drug-related cues: a potential contributor to relapse after drug reexposure. Pharmacol Biochem Behav 80:621–630

    Article  PubMed  CAS  Google Scholar 

  41. Zavala AR, Weber SM, Rice HJ, Alleweireldt AT, Neisewander JL (2003) Role of the prelimbic subregion of the medial prefrontal cortex in acquisition, extinction, and reinstatement of cocaine-conditioned place preference. Brain Res 990:157–164

    Article  PubMed  CAS  Google Scholar 

  42. Itzhak Y, Martin JL (2002) Cocaine-induced conditioned place preference in mice: induction, extinction and reinstatement by related psychostimulants. Neuropsychopharmacology 26:130–134

    Article  PubMed  CAS  Google Scholar 

  43. Szumlinski KK, Price KL, Frys KA, Middaugh LD (2002) Unconditioned and conditioned factors contribute to the ‘reinstatement’ of cocaine place conditioning following extinction in C57BL/6 mice. Behav Brain Res 136:151–160

    Article  PubMed  CAS  Google Scholar 

  44. Maldonado C, Rodriguez-Arias M, Castillo A, Aguilar MA, Minarro J (2007) Effect of memantine and CNQX in the acquisition, expression and reinstatement of cocaine-induced conditioned place preference. Prog Neuropsychopharmacol Biol Psychiatry 31:932–939

    Article  PubMed  CAS  Google Scholar 

  45. Cruz FC, Marin MT, Planeta CS (2008) The reinstatement of amphetamine-induced place preference is long-lasting and related to decreased expression of AMPA receptors in the nucleus accumbens. Neuroscience 151:313–319

    Article  PubMed  CAS  Google Scholar 

  46. Biala G, Budzynska B (2006) Reinstatement of nicotine-conditioned place preference by drug priming: effects of calcium channel antagonists. Eur J Pharmacol 537:85–93

    Article  PubMed  CAS  Google Scholar 

  47. Kuzmin A, Sandin J, Terenius L, Ogren SO (2003) Acquisition, expression, and reinstatement of ethanol-induced conditioned place preference in mice: effects of opioid receptor-like 1 receptor agonists and naloxone. J Pharmacol Exp Ther 304:310–318

    Article  PubMed  CAS  Google Scholar 

  48. Daza-Losada M, Rodriguez-Arias M, Aguilar MA, Minarro J (2009) Acquisition and reinstatement of MDMA-induced conditioned place preference in mice pre-treated with MDMA or cocaine during adolescence. Addict Biol 14:447–456

    Article  PubMed  CAS  Google Scholar 

  49. Do Ribeiro Couto B, Aguilar MA, Rodriguez-Arias M, Minarro J (2005) Cross-reinstatement by cocaine and amphetamine of morphine-induced place preference in mice. Behav Pharmacol 16:253–259

    Article  PubMed  CAS  Google Scholar 

  50. Wang B, Luo F, Zhang WT, Han JS (2000) Stress or drug priming induces reinstatement of extinguished conditioned place preference. Neuroreport 11:2781–2784

    Article  PubMed  CAS  Google Scholar 

  51. Romieu P, Meunier J, Garcia D, Zozime N, Martin-Fardon R, Bowen WD, Maurice T (2004) The sigma1 (sigma1) receptor activation is a key step for the reactivation of cocaine conditioned place preference by drug priming. Psychopharmacology (Berl) 175:154–162

    Article  CAS  Google Scholar 

  52. Biala G, Budzynska B (2008) Calcium-dependent mechanisms of the reinstatement of nicotine-conditioned place preference by drug priming in rats. Pharmacol Biochem Behav 89:116–125

    Article  PubMed  CAS  Google Scholar 

  53. Katz JL, Higgins ST (2003) The validity of the reinstatement model of craving and relapse to drug use. Psychopharmacology (Berl) 168:21–30

    Article  CAS  Google Scholar 

  54. Epstein DH, Preston KL, Stewart J, Shaham Y (2006) Toward a model of drug relapse: an assessment of the validity of the reinstatement procedure. Psychopharmacology (Berl) 189:1–16

    Article  CAS  Google Scholar 

  55. Sinha R (2001) How does stress increase risk of drug abuse and relapse? Psychopharmacology (Berl) 158:343–359

    Article  CAS  Google Scholar 

  56. Stewart J (2000) Pathways to relapse: the neurobiology of drug- and stress-induced relapse to drug-taking. J Psychiatry Neurosci 25:125–136

    PubMed  CAS  Google Scholar 

  57. Shaham Y, Erb S, Stewart J (2000) Stress-induced relapse to heroin and cocaine seeking in rats: a review. Brain Res Brain Res Rev 33:13–33

    Article  PubMed  CAS  Google Scholar 

  58. Wang J, Fang Q, Liu Z, Lu L (2006) Region-specific effects of brain corticotropin-releasing factor receptor type 1 blockade on footshock-stress- or drug-priming-induced reinstatement of morphine conditioned place preference in rats. Psychopharmacology (Berl) 185:19–28

    Article  CAS  Google Scholar 

  59. Ribeiro Do Couto B, Aguilar MA, Manzanedo C, Rodriguez-Arias M, Armario A, Minarro J (2006) Social stress is as effective as physical stress in reinstating morphine-induced place preference in mice. Psychopharmacology (Berl) 185:459–470

    Article  CAS  Google Scholar 

  60. Ma YY, Chu NN, Guo CY, Han JS, Cui CL (2007) NR2B-containing NMDA receptor is required for morphine – but not stress-induced reinstatement. Exp Neurol 203:309–319

    Article  PubMed  CAS  Google Scholar 

  61. Lu L, Zhang B, Liu Z, Zhang Z (2002) Reactivation of cocaine conditioned place preference induced by stress is reversed by cholecystokinin-B receptors antagonist in rats. Brain Res 954:132–140

    Article  PubMed  CAS  Google Scholar 

  62. Sanchez CJ, Bailie TM, Wu WR, Li N, Sorg BA (2003) Manipulation of dopamine d1-like receptor activation in the rat medial prefrontal cortex alters stress- and cocaine-induced reinstatement of conditioned place preference behavior. Neuroscience 119: 497–505

    Article  PubMed  CAS  Google Scholar 

  63. Kreibich AS, Blendy JA (2004) cAMP response element-binding protein is required for stress but not cocaine-induced reinstatement. J Neurosci 24:6686–6692

    Article  PubMed  CAS  Google Scholar 

  64. Vezina P, Stewart J (1987) Conditioned locomotion and place preference elicited by tactile cues paired exclusively with morphine in an open field. Psychopharmacology (Berl) 91:375–380

    Article  CAS  Google Scholar 

  65. Bardo MT, Bevins RA (2000) Conditioned place preference: what does it add to our preclinical understanding of drug reward? Psychopharmacology (Berl) 153:31–43

    Article  CAS  Google Scholar 

  66. Mark GP, Hajnal A, Kinney AE, Keys AS (1999) Self-administration of cocaine increases the release of acetylcholine to a greater extent than response-independent cocaine in the nucleus accumbens of rats. Psychopharmacology (Berl) 143: 47–53

    Article  CAS  Google Scholar 

  67. Hemby SE, Co C, Koves TR, Smith JE, Dworkin SI (1997) Differences in extracellular dopamine concentrations in the nucleus accumbens during response-dependent and response-independent cocaine administration in the rat. Psychopharmacology (Berl) 133:7–16

    Article  CAS  Google Scholar 

  68. Costa VC, Xavier GF (2007) Atropine-induced, state-dependent learning for spatial information, but not for visual cues. Behav Brain Res 179:229–238

    Article  PubMed  CAS  Google Scholar 

  69. Shulz DE, Sosnik R, Ego V, Haidarliu S, Ahissar E (2000) A neuronal analogue of state-dependent learning. Nature 403: 549–553

    Article  PubMed  CAS  Google Scholar 

  70. Izquierdo I, Dias RD (1983) Memory as a state dependent phenomenon: role of ACTH and epinephrine. Behav Neural Biol 38: 144–149

    Article  PubMed  CAS  Google Scholar 

  71. Gauvin DV, Briscoe RJ, Goulden KL, Holloway FA (1994) Aversive attributes of ethanol can be attenuated by dyadic social interaction in the rat. Alcohol 11:247–251

    Article  PubMed  CAS  Google Scholar 

  72. Thiel KJ, Okun AC, Neisewander JL (2008) Social reward-conditioned place preference: a model revealing an interaction between cocaine and social context rewards in rats. Drug Alcohol Depend 96:202–212

    Article  PubMed  CAS  Google Scholar 

  73. Piazza PV, Deroche-Gamonent V, Rouge-Pont F, Le Moal M (2000) Vertical shifts in self-administration dose–response functions predict a drug-vulnerable phenotype predisposed to addiction. J Neurosci 20: 4226–4232

    PubMed  CAS  Google Scholar 

  74. Piazza PV, Deminiere JM, Le Moal M, Simon H (1989) Factors that predict individual vulnerability to amphetamine self-administration. Science 245:1511–1513

    Article  PubMed  CAS  Google Scholar 

  75. Orsini C, Buchini F, Piazza PV, Puglisi-Allegra S, Cabib S (2004) Susceptibility to amphetamine-induced place preference is predicted by locomotor response to novelty and amphetamine in the mouse. Psychopharmacology (Berl) 172:264–270

    Article  CAS  Google Scholar 

  76. Gong W, Neill DB, Justice JB Jr (1996) Locomotor response to novelty does not predict cocaine place preference conditioning in rats. Pharmacol Biochem Behav 53:191–196

    Article  PubMed  CAS  Google Scholar 

  77. Erb SM, Parker LA (1994) Individual differences in novelty-induced activity do not predict strength of amphetamine-induced place conditioning. Pharmacol Biochem Behav 48:581–586

    Article  PubMed  CAS  Google Scholar 

  78. Allen RM, Everett CV, Nelson AM, Gulley JM, Zahniser NR (2007) Low and high locomotor responsiveness to cocaine predicts intravenous cocaine conditioned place preference in male Sprague-Dawley rats. Pharmacol Biochem Behav 86:37–44

    Article  PubMed  CAS  Google Scholar 

  79. Shimosato K, Watanabe S (2003) Concurrent evaluation of locomotor response to novelty and propensity toward cocaine conditioned place preference in mice. J Neurosci Methods 128:103–110

    Article  PubMed  CAS  Google Scholar 

  80. Pelloux Y, Costentin J, Duterte-Boucher D (2009) Anxiety increases the place conditioning induced by cocaine in rats. Behav Brain Res 197:311–316

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Preparation of this chapter was supported by grants RO1DA02812 (HdW) and RO1DA09133 (HdW) from the National Institute on Drug Abuse, and by a grant to DM from the University of Wisconsin-Milwaukee Research Growth Initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harriet de Wit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Mueller, D., de Wit, H. (2011). Conditioned Place Preference in Rodents and Humans. In: Raber, J. (eds) Animal Models of Behavioral Analysis. Neuromethods, vol 50. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-883-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-883-6_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-882-9

  • Online ISBN: 978-1-60761-883-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation