Autophagy and Cell Death

  • Chapter
  • First Online:
Essentials of Apoptosis

Abstract

Autophagy is an evolutionarily conserved biological phenomenon related to protein degradation and organelle turnover. Three types of autophagy have been defined: macroautophagy, microautophagy, and chaperone-mediated autophagy, which differ the way of in the delivery of substrates to the lysosome. In macroautophagy, substrates are wrapped in a double membrane structure, called the autophagosome. The formation of the autophagosome and its fusion with the lysosome are genetically controlled by a series of autophagy molecules and are activated in response to a number of environmental cues. Much has yet to be learned about the signaling pathway and the molecular mechanisms about this process. Autophagy is important to multiple cellular functions, particularly for nutrient and energy balance, and the turnover of cellular substances. The relationship of autophagy with cell death is complicated and may be context-dependent. Whereas the nature of autophagic death has yet to be carefully defined, it seems that autophagy may, in fact, be a key regulator of both apoptosis and necrosis. In this context, the roles of macroautophagy in both prosurvival and prodeath have been identified. Understanding the circumstance in which autophagy affects cell functions and therefore cell viability is critical for the future intervention of this process to control cancer, tissue injury, and other disease processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 174.06
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. De Duve C, Wattiaux R. Functions of lysosomes. Annu Rev Physiol 1966;28(1):435–92.

    Article  PubMed  Google Scholar 

  2. Seglen PO, Bohley P. Autophagy and other vacuolar protein degradation mechanisms. Experientia 1992;48(2):158–72.

    Article  PubMed  CAS  Google Scholar 

  3. Ohsumi Y. Molecular dissection of autophagy: Two ubiquitin-like systems. Nat Rev Mol Cell Biol 2001;2(3):211–6.

    Article  PubMed  CAS  Google Scholar 

  4. Levine B, Klionsky DJ. Development by self-digestion: Molecular mechanisms and biological functions of autophagy. Dev Cell 2004;6(4):463–77.

    Article  PubMed  CAS  Google Scholar 

  5. Meijer AJ, Codogno P. Regulation and role of autophagy in mammalian cells. Int J Biochem Cell Biol 2004;36(12):2445–62.

    Article  PubMed  CAS  Google Scholar 

  6. Cuervo AM. Autophagy: In sickness and in health. Trends Cell Biol 2004;14(2):70–7.

    Article  PubMed  CAS  Google Scholar 

  7. Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature 2008;451(7182):1069–75.

    Article  PubMed  CAS  Google Scholar 

  8. Clark SL, Jr. Cellular differentiation in the kidneys of newborn mice studied with the electron microscope. J Cell Biol 1957;3(3):349–62.

    Article  Google Scholar 

  9. Lum JJ, DeBerardinis RJ, Thompson CB. Autophagy in metazoans: Cell survival in the land of plenty. Nat Rev Mol Cell Biol 2005;6(6):439–48.

    Article  PubMed  CAS  Google Scholar 

  10. Mizushima N, Ohsumi Y, Yoshimori T. Autophagosome formation in mammalian cells. Cell Struct Funct 2002;27(6):421–9.

    Article  PubMed  Google Scholar 

  11. Klionsky DJ, Cregg JM, Dunn WA, Jr., et al. A unified nomenclature for yeast autophagy-related genes. Dev Cell 2003;5(4):539–45.

    Article  PubMed  CAS  Google Scholar 

  12. Tsukada M, Ohsumi Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett 1993;333(1–2):169–74.

    Article  PubMed  CAS  Google Scholar 

  13. Klionsky DJ. Autophagy: From phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol2007;8(11):931–7.

    Article  PubMed  CAS  Google Scholar 

  14. Suzuki K, Ohsumi Y. Molecular machinery of autophagosome formation in yeast, Saccharomyces cerevisiae. FEBS Lett 2007;581(11):2156–61.

    Article  PubMed  CAS  Google Scholar 

  15. **e Z, Klionsky DJ. Autophagosome formation: Core machinery and adaptations. Nat Cell Biol 2007;9(10):1102–9.

    Article  PubMed  CAS  Google Scholar 

  16. Kabeya Y, Mizushima N, Ueno T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 2000;19(21):5720–8.

    Article  PubMed  CAS  Google Scholar 

  17. Fujita N, Itoh T, Fukuda M, Noda T, Yoshimori T. The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol Biol Cell 2008;19(5):2092–100.

    Article  PubMed  CAS  Google Scholar 

  18. Pattingre S, Tassa A, Qu X, et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 2005;122(6):927–39.

    Article  PubMed  CAS  Google Scholar 

  19. Maria Fimia G, Stoykova A, Romagnoli A, et al. Ambra1 regulates autophagy and development of the nervous system. Nature 2007;447(7148):1121–5.

    Google Scholar 

  20. Maiuri MC, Le Toumelin G, Criollo A, et al. Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. EMBO J 2007;26(10):2527–39.

    Article  PubMed  CAS  Google Scholar 

  21. Oberstein A, Jeffrey PD, Shi Y. Crystal structure of the Bcl-XL-Beclin 1 peptide complex: Beclin 1 is a novel BH3-only protein. J Biol Chem 2007;282(17):13123–32.

    Article  PubMed  CAS  Google Scholar 

  22. Liang C, Feng P, Ku B, et al. Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat Cell Biol 2006;8(7):688–99.

    Article  PubMed  CAS  Google Scholar 

  23. Takahashi Y, Coppola D, Matsushita N, et al. Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat Cell Biol 2007;9(10):1142–51.

    Article  PubMed  CAS  Google Scholar 

  24. Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M, Ohsumi Y. Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol 2000;150(6):1507–13.

    Article  PubMed  CAS  Google Scholar 

  25. Kundu M, Lindsten T, Yang CY, et al. Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood 2008;112(4):1493–502.

    Google Scholar 

  26. Sarkar S, Ravikumar B, Floto RA, Rubinsztein DC. Rapamycin and mTOR-independent autophagy inducers ameliorate toxicity of polyglutamine-expanded huntingtin and related proteinopathies. Cell Death Differ 2009;16(1):46–56.

    Google Scholar 

  27. Mammucari C, Milan G, Romanello V, et al. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 2007;6(6):458–71.

    Article  PubMed  CAS  Google Scholar 

  28. Zhao J, Brault JJ, Schild A, et al. FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab 2007;6(6):472–83.

    Article  PubMed  CAS  Google Scholar 

  29. Guo K, Searfoss G, Krolikowski D, et al. Hypoxia induces the expression of the pro-apoptotic gene BNIP3. Cell Death Differ 2001;8(4):367–76.

    Article  PubMed  CAS  Google Scholar 

  30. Bruick RK. Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. Proc Natl Acad Sci USA 2000;97(16):9082–7.

    Article  PubMed  CAS  Google Scholar 

  31. Polager S, Ofir M, Ginsberg D. E2F1 regulates autophagy and the transcription of autophagy genes. Oncogene 2008;27(35):4860–4.

    Google Scholar 

  32. Crighton D, Wilkinson S, O'Prey J, et al. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 2006;126(1):121–34.

    Article  PubMed  CAS  Google Scholar 

  33. Tasdemir E, Chiara Maiuri M, Morselli E, et al. A dual role of p53 in the control of autophagy. Autophagy 2008;4(6).

    Google Scholar 

  34. Yorimitsu T, Klionsky DJ. Eating the endoplasmic reticulum: Quality control by autophagy. Trends Cell Biol 2007;17(6):279–85.

    Article  PubMed  CAS  Google Scholar 

  35. Kouroku Y, Fujita E, Tanida I, et al. ER stress (PERK/eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ 2007;14(2):230–9.

    Article  PubMed  CAS  Google Scholar 

  36. Ogata M, Hino S-i, Saito A, et al. Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol 2006;26(24):9220–31.

    Article  PubMed  CAS  Google Scholar 

  37. Ding WX, Yin XM. Sorting, recognition and activation of the misfolded protein degradation pathways through macroautophagy and the proteasome. Autophagy 2008;4(2):141–50.

    PubMed  CAS  Google Scholar 

  38. Ding WX, Ni HM, Gao W, et al. Differential effects of endoplasmic reticulum stress-induced autophagy on cell survival. J Biol Chem 2007;282(7):4702–10.

    Article  PubMed  CAS  Google Scholar 

  39. Ding WX, Ni HM, Gao W, et al. Linking of autophagy to ubiquitin-proteasome system is important for the regulation of endoplasmic reticulum stress and cell viability. Am J Pathol 2007;171(2):513–24.

    Article  PubMed  CAS  Google Scholar 

  40. Hoyer-Hansen M, Bastholm L, Szyniarowski P, et al. Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2. Mol Cell 2007;25(2):193–205.

    Article  PubMed  CAS  Google Scholar 

  41. Sakaki K, Wu J, Kaufman RJ. Protein kinase Ctheta is required for autophagy in response to stress in the endoplasmic reticulum. J Biol Chem 2008;283(22):15370–80.

    Article  PubMed  CAS  Google Scholar 

  42. Qu X, Zou Z, Sun Q, et al. Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell 2007;128(5):931–46.

    Article  PubMed  CAS  Google Scholar 

  43. Shintani T, Klionsky DJ. Autophagy in health and disease: A double-edged sword. Science 2004;306(5698):990–5.

    Article  PubMed  CAS  Google Scholar 

  44. Lum JJ, Bauer DE, Kong M, et al. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 2005;120(2):237–48.

    Article  PubMed  CAS  Google Scholar 

  45. Kuma A, Hatano M, Matsui M, et al. The role of autophagy during the early neonatal starvation period. Nature 2004;432(7020):1032–6.

    Article  PubMed  CAS  Google Scholar 

  46. Mizushima N. Autophagy: Process and function. Genes Dev 2007;21(22):2861–73.

    Article  PubMed  CAS  Google Scholar 

  47. Levine B. Cell biology: Autophagy and cancer. Nature 2007;446(7137):745–7.

    Article  PubMed  CAS  Google Scholar 

  48. Mathew R, Karantza-Wadsworth V, White E. Role of autophagy in cancer. Nat Rev Cancer 2007;7(12):961–7.

    Article  PubMed  CAS  Google Scholar 

  49. Qu X, Yu J, Bhagat G, et al. Promotion of tumorigenesis by heterozygous disruption of the Beclin 1 autophagy gene. J Clin Invest 2003;112(12):1809–20.

    PubMed  CAS  Google Scholar 

  50. Liang XH, Jackson S, Seaman M, et al. Induction of autophagy and inhibition of tumorigenesis by Beclin 1. Nature 1999;402(6762):672–6.

    Article  PubMed  CAS  Google Scholar 

  51. Zhang Y, Qi H, Taylor R, Xu W, Liu LF, ** S. The role of autophagy in mitochondria maintenance: Characterization of mitochondrial functions in autophagy-deficient S. cerevisiae strains. Autophagy 2007;3(4):337–46.

    PubMed  CAS  Google Scholar 

  52. Karantza-Wadsworth V, Patel S, Kravchuk O, et al. Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes Dev 2007;21(13):1621–35.

    Article  PubMed  CAS  Google Scholar 

  53. Debnath J, Baehrecke EH, Kroemer G. Does autophagy contribute to cell death? Autophagy 2005;1(2):66–74.

    Article  PubMed  CAS  Google Scholar 

  54. Baehrecke EH. Autophagy: Dual roles in life and death? Nat Rev Mol Cell Biol 2005;6(6):505–10.

    Article  PubMed  CAS  Google Scholar 

  55. Kroemer G, El-Deiry WS, Golstein P, et al. Classification of cell death: Recommendations of the nomenclature committee on cell death. Cell Death Differ 2005;12(Suppl 2):1463–7.

    Article  PubMed  CAS  Google Scholar 

  56. Bursch W. The autophagosomal-lysosomal compartment in programmed cell death. Cell Death Differ 2001;8(6):569–81.

    Article  PubMed  CAS  Google Scholar 

  57. Schiaffino S, Mammucari C, Sandri M. The role of autophagy in neonatal tissues: Just a response to amino acid starvation? Autophagy 2008;4(5).

    Google Scholar 

  58. Scott RC, Schuldiner O, Neufeld TP. Role and regulation of starvation-induced autophagy in the Drosophila fat body. Dev Cell 2004;7(2):167–78.

    Article  PubMed  CAS  Google Scholar 

  59. Rusten TE, Lindmo K, Juhasz G, et al. Programmed autophagy in the Drosophila fat body is induced by ecdysone through regulation of the PI3K pathway. Dev Cell 2004;7(2):179–92.

    Article  PubMed  CAS  Google Scholar 

  60. Boya P, Gonzalez-Polo RA, Casares N, et al. Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol 2005;25(3):1025–40.

    Article  PubMed  CAS  Google Scholar 

  61. Noda T, Ohsumi Y. Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J Biol Chem 1998;273(7):3963–6.

    Article  PubMed  CAS  Google Scholar 

  62. ** S, DiPaola RS, Mathew R, White E. Metabolic catastrophe as a means to cancer cell death. J Cell Sci 2007;120(Pt 3):379–83.

    Article  PubMed  CAS  Google Scholar 

  63. Amaravadi RK, Yu D, Lum JJ, et al. Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest 2007;117(2):326–36.

    Article  PubMed  CAS  Google Scholar 

  64. Carew JS, Nawrocki ST, Kahue CN, et al. Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr-Abl-mediated drug resistance. Blood 2007;110(1):313–22.

    Article  PubMed  CAS  Google Scholar 

  65. Melendez A, Talloczy Z, Seaman M, Eskelinen EL, Hall DH, Levine B. Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 2003;301(5638):1387–91.

    Article  PubMed  CAS  Google Scholar 

  66. Talloczy Z, Jiang W, Virgin HW, et al. Regulation of starvation- and virus-induced autophagy by the eIF2alpha kinase signaling pathway. Proc Natl Acad Sci USA 2002;99(1):190–5.

    Article  PubMed  CAS  Google Scholar 

  67. Tasdemir E, Maiuri MC, Galluzzi L, et al. Regulation of autophagy by cytoplasmic p53. Nat Cell Biol 2008;10(6):676–87.

    Article  PubMed  CAS  Google Scholar 

  68. Degenhardt K, Mathew R, Beaudoin B, et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 2006;10(1):51–64.

    Article  PubMed  CAS  Google Scholar 

  69. Wu YT, Tan HL, Huang Q, et al. Autophagy plays a protective role during zVAD-induced necrotic cell death. Autophagy 2008;4(4):457–66.

    PubMed  CAS  Google Scholar 

  70. Berry DL, Baehrecke EH. Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila. Cell 2007;131(6):1137–48.

    Article  PubMed  CAS  Google Scholar 

  71. Yousefi S, Perozzo R, Schmid I, et al. Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol 2006;8(10):1124–32.

    Article  PubMed  CAS  Google Scholar 

  72. Shimizu S, Kanaseki T, Mizushima N, et al. Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol 2004;6(12):1221–8.

    Article  PubMed  CAS  Google Scholar 

  73. Moretti L, Attia A, Kim KW, Lu B. Crosstalk between Bak/Bax and mTOR signaling regulates radiation-induced autophagy. Autophagy 2007;3(2):142–4.

    PubMed  CAS  Google Scholar 

  74. Azad MB, Chen Y, Henson ES, et al. Hypoxia induces autophagic cell death in apoptosis-competent cells through a mechanism involving BNIP3. Autophagy 2008;4(2):195–204.

    PubMed  CAS  Google Scholar 

  75. Koike M, Shibata M, Tadakoshi M, et al. Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic-ischemic injury. Am J Pathol 2008;172(2):454–69.

    Article  PubMed  CAS  Google Scholar 

  76. Pyo JO, Jang MH, Kwon YK, et al. Essential roles of Atg5 and FADD in autophagic cell death: Dissection of autophagic cell death into vacuole formation and cell death. J Biol Chem 2005;280(21):20722–9.

    Article  PubMed  CAS  Google Scholar 

  77. Espert L, Denizot M, Grimaldi M, et al. Autophagy is involved in T cell death after binding of HIV-1 envelope proteins to CXCR4. J Clin Invest 2006;116(8):2161–72.

    Article  PubMed  CAS  Google Scholar 

  78. Ullman E, Fan Y, Stawowczyk M, Chen HM, Yue Z, Zong WX. Autophagy promotes necrosis in apoptosis-deficient cells in response to ER stress. Cell Death Differ 2008;15(2):422–5.

    Article  PubMed  CAS  Google Scholar 

  79. Chen Y, McMillan-Ward E, Kong J, Israels SJ, Gibson SB. Oxidative stress induces autophagic cell death independent of apoptosis in transformed and cancer cells. Cell Death Differ 2008;15(1):171–82.

    Article  PubMed  CAS  Google Scholar 

  80. Samara C, Syntichaki P, Tavernarakis N. Autophagy is required for necrotic cell death in Caenorhabditis elegans. Cell Death Differ 2008;15(1):105–12.

    Article  PubMed  CAS  Google Scholar 

  81. Tracy K, Macleod KF. Regulation of mitochondrial integrity, autophagy and cell survival by BNIP3. Autophagy 2007;3(6):616–9.

    PubMed  CAS  Google Scholar 

  82. Wan G, Zhaorigetu S, Liu Z, Kaini R, Jiang Z, Hu CA. Apolipoprotein l1, a novel BH3-only lipid binding protein, induces autophagic cell death. J Biol Chem 2008;283(31):21540–9.

    Google Scholar 

  83. Rashmi R, Pillai SG, Vijayalingam S, Ryerse J, Chinnadurai G. BH3-only protein BIK induces caspase-independent cell death with autophagic features in Bcl-2 null cells. Oncogene 2008;27(10):1366–75.

    Article  PubMed  CAS  Google Scholar 

  84. Yanagisawa H, Miyashita T, Nakano Y, Yamamoto D. HSpin1, a transmembrane protein interacting with Bcl-2/Bcl-xL, induces a caspase-independent autophagic cell death. Cell Death Differ 2003;10(7):798–807.

    Article  PubMed  CAS  Google Scholar 

  85. Levine B, Sinha S, Kroemer G. Bcl-2 family members: Dual regulators of apoptosis and autophagy. Autophagy 2008;4(5):600–6.

    PubMed  CAS  Google Scholar 

  86. Saeki K, Yuo A, Okuma E, et al. Bcl-2 down-regulation causes autophagy in a caspase-independent manner in human leukemic HL60 cells. Cell Death Differ 2000;7(12):1263–9.

    Article  PubMed  CAS  Google Scholar 

  87. Hashimoto D, Ohmuraya M, Hirota M, et al. Involvement of autophagy in trypsinogen activation within the pancreatic acinar cells. J Cell Biol 2008;181(7):1065–72.

    Article  PubMed  CAS  Google Scholar 

  88. Kang C, Avery L. To be or not to be, the level of autophagy is the question: Dual roles of autophagy in the survival response to starvation. Autophagy 2008;4(1):82–4.

    PubMed  Google Scholar 

  89. Wang Y, Singh R, Massey AC, et al. Loss of macroautophagy promotes or prevents fibroblast apoptosis depending on the death stimulus. J Biol Chem 2008;283(8):4766–77.

    Article  PubMed  CAS  Google Scholar 

  90. Boyd JM, Malstrom S, Subramanian T, et al. Adenovirus E1B 19 kDa and Bcl-2 proteins interact with a common set of cellular proteins. Cell 1994;79(2):341–51.

    Article  PubMed  CAS  Google Scholar 

  91. Chen G, Ray R, Dubik D, et al. The E1B 19 K/Bcl-2-binding protein Nip3 is a dimeric mitochondrial protein that activates apoptosis. J Exp Med 1997;186(12):1975–83.

    Article  PubMed  CAS  Google Scholar 

  92. Ray R, Chen G, Vande Velde C, et al. BNIP3 heterodimerizes with Bcl-2/Bcl-X(L) and induces cell death independent of a Bcl-2 homology 3 (BH3) domain at both mitochondrial and nonmitochondrial sites. J Biol Chem 2000;275(2):1439–48.

    Article  PubMed  CAS  Google Scholar 

  93. Graham RM, Thompson JW, Wei J, Bishopric NH, Webster KA. Regulation of Bnip3 death pathways by calcium, phosphorylation, and hypoxia-reoxygenation. Antioxid Redox Signal 2007;9(9):1309–15.

    Article  PubMed  CAS  Google Scholar 

  94. Lee H, Paik SG. Regulation of BNIP3 in normal and cancer cells. Mol Cells 2006;21(1):1–6.

    Article  PubMed  CAS  Google Scholar 

  95. Baetz D, Regula KM, Ens K, et al. Nuclear factor-kappaB-mediated cell survival involves transcriptional silencing of the mitochondrial death gene BNIP3 in ventricular myocytes. Circulation 2005;112(24):3777–85.

    Article  PubMed  CAS  Google Scholar 

  96. Tracy K, Dibling BC, Spike BT, Knabb JR, Schumacker P, Macleod KF. BNIP3 is an RB/E2F target gene required for hypoxia-induced autophagy. Mol Cell Biol 2007;27(17):6229–42.

    Article  PubMed  CAS  Google Scholar 

  97. Daido S, Kanzawa T, Yamamoto A, Takeuchi H, Kondo Y, Kondo S. Pivotal role of the cell death factor BNIP3 in ceramide-induced autophagic cell death in malignant glioma cells. Cancer Res 2004;64(12):4286–93.

    Article  PubMed  CAS  Google Scholar 

  98. Kanzawa T, Zhang L, **ao L, Germano IM, Kondo Y, Kondo S. Arsenic trioxide induces autophagic cell death in malignant glioma cells by upregulation of mitochondrial cell death protein BNIP3. Oncogene 2005;24(6):980–91.

    Article  PubMed  CAS  Google Scholar 

  99. Hamacher-Brady A, Brady NR, Logue SE, et al. Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy. Cell Death Differ 2007;14(1):146–57.

    Article  PubMed  CAS  Google Scholar 

  100. Diwan A, Krenz M, Syed FM, et al. Inhibition of ischemic cardiomyocyte apoptosis through targeted ablation of Bnip3 restrains postinfarction remodeling in mice. J Clin Invest 2007;117(10):2825–33.

    Article  PubMed  CAS  Google Scholar 

  101. Zhang H, Bosch-Marce M, Shimoda LA, et al. Mitochondrial autophagy is a HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 2008;282(16):10892–903.

    Article  CAS  Google Scholar 

  102. Schweers RL, Zhang J, Randall MS, et al. NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc Natl Acad Sci USA 2007;104(49):19500–5.

    Article  PubMed  CAS  Google Scholar 

  103. Sandoval H, Thiagarajan P, Dasgupta SK, et al. Essential role for Nix in autophagic maturation of erythroid cells. Nature 2008;454(7201):232–5.

    Article  PubMed  CAS  Google Scholar 

  104. Li Y, Wang Y, Kim E, et al. Bnip3 mediates the hypoxia-induced inhibition on mammalian target of rapamycin by interacting with Rheb. J Biol Chem 2007;282(49):35803–13.

    Article  PubMed  CAS  Google Scholar 

  105. Bocharov EV, Pustovalova YE, Pavlov KV, et al. Unique dimeric structure of BNip3 transmembrane domain suggests membrane permeabilization as a cell death trigger. J Biol Chem 2007;282(22):16256–66.

    Article  PubMed  CAS  Google Scholar 

  106. Kubli DA, Ycaza JE, Gustafsson AB. Bnip3 mediates mitochondrial dysfunction and cell death through Bax and Bak. Biochem J 2007;405(3):407–15.

    Article  PubMed  CAS  Google Scholar 

  107. Kubasiak LA, Hernandez OM, Bishopric NH, Webster KA. Hypoxia and acidosis activate cardiac myocyte death through the Bcl-2 family protein BNIP3. Proc Natl Acad Sci USA 2002;99(20):12825–30.

    Article  PubMed  CAS  Google Scholar 

  108. Webster KA, Discher DJ, Kaiser S, Hernandez O, Sato B, Bishopric NH. Hypoxia-activated apoptosis of cardiac myocytes requires reoxygenation or a pH shift and is independent of p53. J Clin Invest 1999;104(3):239–52.

    Article  PubMed  CAS  Google Scholar 

  109. Yu L, Alva A, Su H, et al. Regulation of an ATG7-Beclin 1 program of autophagic cell death by caspase-8. Science 2004;304(5676):1500–2.

    Article  PubMed  CAS  Google Scholar 

  110. Perlmutter DH. The role of autophagy in alpha-1-antitrypsin deficiency: A specific cellular response in genetic diseases associated with aggregation-prone proteins. Autophagy 2006;2(4):258–63.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **ao-Ming Yin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gao, W., Kang, JH., Liao, Y., Li, M., Yin, XM. (2009). Autophagy and Cell Death. In: Dong, Z., Yin, XM. (eds) Essentials of Apoptosis. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-381-7_30

Download citation

Publish with us

Policies and ethics

Navigation