Environmental Solid-State Cultivation Processes and Bioreactors

  • Chapter
  • First Online:
Environmental Biotechnology

Abstract

Solid-state cultivation involves the growth of microorganisms in beds of moist solid particles that have a minimum of free water between the particles. The chapter describes environmentally-related solid-state cultivation processes. For example, some processes use substrates that are residues of agriculture, forestry, or food-processing, thereby reducing the environmental impact of the residue. Other processes do not use residues, but produce products that have environmental applications. Still other processes use environmental-friendly biotransformations that have the potential to replace current industrial processes. Finally, some solid-state cultivation processes can be used to remove pollutants from soil or waste streams. Typically, environmental applications of solid-state cultivation involve large-scale processing of organic solids. The current chapter addresses the design and operation of bioreactors for these processes. It shows how the various bioreactor types can be classified according to the aeration strategy, namely whether the bed of solids is forcefully aerated or not, and according to the agitation strategy, namely the frequency of mixing of the bed of solids. It discusses the current state-of-the-art in optimizing the design and operation of the various bioreactor types, showing how mathematical models that combine microbial growth kinetics and heat and mass transfer phenomena are the most powerful tools that we have available for this task. The chapter concludes by highlighting the necessity to convert current mathematical models into user-friendly computer programs that can guide design and operation decisions for large-scale solid-state cultivation bioreactors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 245.03
Price includes VAT (Thailand)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 299.99
Price excludes VAT (Thailand)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 299.99
Price excludes VAT (Thailand)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mitchell DA, Lonsane BK (1992) In: Doelle HW, Mitchell DA, Rolz CE (eds) Solid substrate cultivation, Elsevier, London, pp 1–16

    Google Scholar 

  2. Pauli G (1998) Technol Forecast Soc 58:53–62

    Article  Google Scholar 

  3. Sun X, Zhang RH, Zhang YZ (2004) J Basic Microbiol 44:220–231

    Article  Google Scholar 

  4. Bai ZH, Zhang HX, Qi HY, Peng XW, Li BJ (2004) Bioresour Technol 95:49–52

    Article  Google Scholar 

  5. Uyar F, Baysal Z (2004) Process Biochem 39:1893–1898

    Article  Google Scholar 

  6. Wang CL, Li DF, Lu WQ, Wang YH, Lai CH (2004) Lett Appl Microbiol 39:369–375

    Article  Google Scholar 

  7. Ramachandran S, Patel AK, Nampoothiri KM, Francis F, Nagy V, Szakacs G, Pandey A (2004) Bioresour Technol 93:169–174

    Article  Google Scholar 

  8. Chen YN, Zeng GM, Paitoon PT, Hu TJ, Huang DL, Yu HY, Li JB, Liu HL (2004) Trans Nonferrous Met Soc China 14:98–103

    Google Scholar 

  9. Di Luccio M, Capra F, Ribeiro NP, Vargas GDLP, Freire DMG, de Oliveira D (2004) Appl Biochem Biotechnol 113:173–180

    Article  Google Scholar 

  10. Chawachart N, Khanongnuch C, Watanabe T, Lumyong S (2004) Fungal Divers 15:23–32

    Google Scholar 

  11. Nampoothiri KM, Baiju TV, Sandhya C, Sabu A, Szakacs G, Pandey A (2004) Process Biochem 39:1583–1590

    Article  Google Scholar 

  12. Saykhedkar SS, Singhal RS (2004) Biotechnol Prog 20:1280–1284

    Article  Google Scholar 

  13. Asagbra AE, Sanni AI, Oyewole OB (2005) World J Microbiol Biotechnol 21:107–114

    Article  Google Scholar 

  14. Topakas E, Kalogeris E, Kekos D, Macris BJ, Christakopoulos P (2004) Eng Life Sci 4:283–286

    Article  Google Scholar 

  15. Laufenberg G, Rosato P, Kunz B (2004) Eur J Lipid Sci Technol 106:207–217

    Article  Google Scholar 

  16. Ozyurt M, Deveci UD (2004) Fresenius Environ Bull 13:693–699

    Google Scholar 

  17. Ong LGA, Abd-Aziz S, Noraini S, Karim MIA, Hassan MA (2004) Appl Biochem Biotechnol 118:73–79

    Article  Google Scholar 

  18. Correia RTP, Mccue P, Magalhaes MMA, Macedo GR, Shetty K (2004) J Food Biochem 28: 404–418

    Article  Google Scholar 

  19. Larena I, de Cal A, Melgarejo P (2004) Int J Food Microbiol 94:161–167

    Article  Google Scholar 

  20. Jones EE, Weber FJ, Oostra J, Rinzema A, Mead A, Whipps JM (2004) Enzyme Microb Technol 34:196–207

    Article  Google Scholar 

  21. da Silva LG, Trugo LC, Terzi SD, Couri S (2005) Process Biochem 40:951–954

    Article  Google Scholar 

  22. Milagres AMF, Santos E, Piovan I, Roberto IC (2004) Process Biochem 39:1387–1391

    Article  Google Scholar 

  23. Heck JX, Flores SH, Hertz PF, Ayub MAZ (2005) Process Biochem 40:107–112

    Article  Google Scholar 

  24. Damaso MCT, de Castro AM, Castro RM, Andrade CMMC, Pereira N (2004) Appl Biochem Biotechnol 113:1003–1012

    Article  Google Scholar 

  25. Zhang XY, Zhao H, Zhang JN, Li ZH (2004) Bioresour Technol 95:31–33

    Article  Google Scholar 

  26. Vargas-Garcia MC, Lopez MJ, Suarez F, Moreno J (2005) Bioresour Technol 96:797–803

    Article  Google Scholar 

  27. Kang SW, Lee SH, Yoon CS, Kim SW (2005) Biotechnol Lett 27:135–139

    Article  Google Scholar 

  28. Thangavelu R, Palaniswami A, Velazhahan R (2004) Agric Ecosyst Environ 103:259–263

    Article  Google Scholar 

  29. Shrivastava R, Christian V, Vyas BRM (2005) Enzyme Microb Technol 36:333–337

    Article  Google Scholar 

  30. Unyayar A, Mamanci MA, Atacag H, Erkurt EA, Coral G (2005) Enzyme Microb Technol 36: 10–16

    Article  Google Scholar 

  31. Boer CG, Obici L, de Souza CGM, Peralta RM (2004) Bioresour Technol 94:107–112

    Article  Google Scholar 

  32. Couto SR, Rosales E, Gundin M, Sanroman MA (2004) J Food Eng 64:423–428

    Article  Google Scholar 

  33. Wolfaardt F, Taljaard JL, Jacobs A, Male JR, Rabie CJ (2004) Bioresour Technol 95:25–30

    Article  Google Scholar 

  34. Hakala TK, Maijala P, Konn J, Hatakka A (2004) Enzyme Microb Technol 34:255–263

    Article  Google Scholar 

  35. Berrocal MM, Rodriguez J, Hernandez M, Perez MI, Roncero MB, Vidal T, Ball, AS, Arias ME (2004) Bioresour Technol 94:27–31

    Article  Google Scholar 

  36. Machii Y, Hirai H, Nishida T (2004) FEMS Microbiol Lett 233:283–287

    Article  Google Scholar 

  37. Di Gennaro P, Collina E, Franzetti A, Lasagni M, Luridiana A, Pitea, D, Bestetti G (2005) Environ Sci Technol 39:325–330

    Article  Google Scholar 

  38. Manilla-Perez E, Poggi-Varaldo HM, Chavez-Gomez B, Esparza-Garcia F, Barrera-Cortes J (2004) Interciencia 29:515–520

    Google Scholar 

  39. Dzul-Puc JD, Esparza-Garcia F, Barajas-Aceves M, Rodriguez-Vazquez R (2005) Chemosphere 58:1–7

    Article  Google Scholar 

  40. Tychanowicz GK, Zilly A, de Souza CGM, Peralta RM (2004) Process Biochem 39:855–859

    Article  Google Scholar 

  41. Spigno G, de Faveri DM (2005) Biotechnol Bioeng 89:319–328

    Article  Google Scholar 

  42. Moe WM, Qi B (2004) Water Res 38:2259–2268

    Article  Google Scholar 

  43. Molla A, Fakhru’l-Razi A, Alam MZ (2004) Water Res 38:4143–4152

    Article  Google Scholar 

  44. Katsifas EA, Giannoutsou E, Lambraki M, Barla M, Karagouni AD (2004) J Ind Microbiol Biotechnol 31:57–62

    Article  Google Scholar 

  45. Pandey A, Soccoll CR, Mitchell D (2000) New developments in solid-state fermentation: I – Bioprocesses and products. Process Biochem 35:1153–1169

    Article  Google Scholar 

  46. Laufenberg G, Kunz B, Nystroem M (2003) Bioresour Technol 87:167–198

    Article  Google Scholar 

  47. Berrocal M, Ball AS, Huerta S, Barrasa JM, Hernandez M, Perez-Leblic ML, Arias ME (2000) Appl Microbiol Biotechnol 54:764–771

    Article  Google Scholar 

  48. Basu S, Gaur R, Gomes J, Sreekrishnan TR, Bisaria VS (2002) J Biosci Bioeng 93:25–30

    Article  Google Scholar 

  49. Milner RJ (2000) Biocontrol News Info 21(2):47N–50N

    Google Scholar 

  50. Camarotta MC, Freire DMG, Sant’Anna GL Jr, Russo C, Freire DDC, Castilho LR (2003) European Patent No. EP1337628

    Google Scholar 

  51. Jenkins D, Richard MG, Daigger GT (1993) Manual on the causes and control of activated sludge bulking and foaming 2nd ed. Lewis Publishers Inc., Chelsea, MI

    Google Scholar 

  52. Palma MB, Pinto AL, Gombert AK, Seitz KH, Kivatinitz SC, Castilho LR, Freire DMG (2000) Appl Biochem Biotechnol 84–86:1137–1145

    Article  Google Scholar 

  53. Cammarota MC, Teixeira GA, Freire DMG (2001) Biotechnol Lett 23:1591–1595

    Article  Google Scholar 

  54. Jung F, Cammarota MC, Freire DMG (2002) Biotechnol Lett 24:1797–1802

    Article  Google Scholar 

  55. Castilho LR, Polato CMS, Baruque EA, Sant’Anna GL Jr, Freire DMG (2000) Biochem Eng J 4:239–247

    Article  Google Scholar 

  56. Kulkarni N, Shendye A, Rao M (1999) FEMS Microbiol Rev 23:411–456

    Article  Google Scholar 

  57. Messner K, Srebotnik E (1994) FEMS Microbiol Rev 13:351–364

    Article  Google Scholar 

  58. Ottengraf SPP (1986) In: Rehm HJ, Reed G (eds) Biotechnology, vol 8. VHC, Weinheim, pp 425–451

    Google Scholar 

  59. Koning M, Cohrs I, Stegmann R (2001) In: Stegman R, Brunner G, Calmano W, Matz G (eds) Treatment of contaminated soil, Springer, Berlin, pp 399–414

    Chapter  Google Scholar 

  60. Mitchell DA, Berovic M, Krieger N (2000) Adv Biochem Eng/Biotechnol 68:61–13

    Article  Google Scholar 

  61. Roussos S, Raimbault M, Prebois J-P, Lonsane BK (1993) Appl Biochem Biotechnol 42:37–52

    Article  Google Scholar 

  62. Lüth P, Eiben U (1999) World Patent no. WO 99/57239

    Google Scholar 

  63. Sato K, Sudo S (1999) In: Demain AL, Davies JE (eds) Manual of industrial microbiology and biotechnology, 2nd edn. ASM Press, Washington DC, pp 61–79

    Google Scholar 

  64. Nagel FJI, Tramper J, Bakker MSN, Rinzema A (2001) Biotechnol Bioeng 72:231–243

    Article  Google Scholar 

  65. Moo-Young M, Moreira AR, Tengerdy RP (1983) In: Smith JE, Berry DR, Kristiansen B (eds) The filamentous fungi, vol 4. Edward Arnold, London, pp 117–144

    Google Scholar 

  66. Matsuno R, Adachi S, Uosaki H (1993) Biotechnol Adv 11:509–517

    Article  Google Scholar 

  67. Durand A, Chereau D (1988) Biotechnol Bioeng 31:476–486

    Article  Google Scholar 

  68. Durand A, Renaud R, Maratray J, Almanza S, Diez M (1996) J Sci Ind Res (India) 55:317–332

    Google Scholar 

  69. Xue M, Liu D, Zhang H, Qi H, Lei Z (1992) J Ferment Bioeng 73:203–205

    Article  Google Scholar 

  70. Schutyser MAI, Briels WJ, Rinzema A, Boom RM (2003) Biotechnol Bioeng 84:29–39

    Article  Google Scholar 

  71. Viccini G, Mitchell DA, Boit SD, Gern JC, da Rosa AS, Costa RM, Dalsenter FDH, von Meien OF, Krieger N (2001) Food Technol Biotechnol 39:271–294

    Google Scholar 

  72. Cooney CL, Wang DIC, Mateles RI (1968) Biotechnol Bioeng 11:269–281

    Article  Google Scholar 

  73. Ragheva Rao KSMS, Gowthaman MK, Ghildyal NP, Karanth NG (1993) Bioprocess Eng 8: 255–262

    Article  Google Scholar 

  74. Szewczyk KW (1993) Acta Biochim Pol 40(1):90–92

    Google Scholar 

  75. Rajagopalan S, Modak JM Chem Eng Sci (1994) 49:2187–2193

    Article  Google Scholar 

  76. Mitchell DA, Pandey A, Sangsurasak P, Krieger N (1999) Process Biochem 35:167–178

    Article  Google Scholar 

  77. Weber FJ, Tramper J, Rinzema A (1999) Biotechnol Bioeng 65:447–458

    Article  Google Scholar 

  78. Mitchell DA, von Meien OF (2000) Biotechnol Bioeng 68:127–135

    Article  Google Scholar 

  79. Mitchell DA, von Meien OF, Lima LFL Jr, Krieger N (2002) Food Technol Biotechnol 40:135–144

    Google Scholar 

  80. von Meien OF, Mitchell DA (2002) Biotechnol Bioeng 79:416–428

    Article  Google Scholar 

  81. Weber FJ, Oostra JP, Tramper J, Rinzema A (2002) Biotechnol Bioeng 77:381–393

    Article  Google Scholar 

  82. Schutyser MAI, Weber F, Rinzema A, Briels WJ, Boom R (2002) Biotechnol Bioeng 79:284–294

    Article  Google Scholar 

  83. Hardin MT, Mitchell DA, Howes T (2000) Biotechnol Bioeng 67:274–282

    Article  Google Scholar 

  84. Stuart DM, Mitchell DA (2003) J Chem Technol Biotechnol 78:1180–1192

    Article  Google Scholar 

  85. Kays WM, Bjorklund IS (1958) Trans ASME Ser C 80:70–78

    Google Scholar 

  86. Mitchell DA, Tongta A, Stuart DM, Krieger N (2002) Biotechnol Bioeng 80:114–122

    Article  Google Scholar 

  87. Tscheng SH, Watkinson AP (1979) Canadian J Chem Eng 57:433–443

    Article  Google Scholar 

  88. Hardin MT Howes T, Mitchell DA (2001) Biotechnol Bioeng 74:145–153

    Article  Google Scholar 

  89. Hardin MT, Howes T, Mitchell DA (2002) J Biotechnol 97:89–101

    Article  Google Scholar 

  90. Marsh AJ, Stuart DM, Mitchell DA, Howes T (2000) Biotechnol Lett 22:473–477

    Article  Google Scholar 

  91. Schutyser MA, Padding JT, Weber FJ, Briels WJ (2001) Biotechnol Bioeng 75:666–675

    Article  Google Scholar 

  92. Hardin MT, Howes T, Mitchell DA, Whittaker AK (2002) Biotechnol Lett 24:521–525

    Article  Google Scholar 

  93. de Reu JC, Zwietering MH, Rombouts FM, Nout MJR (1993) Appl Microbiol Biotechnol 40: 261–265

    Article  Google Scholar 

  94. dos Santos MM, da Rosa AS, Dal’Boit S Mitchell DA, Krieger N (2004) Bioresour Technol 93:261–268

    Article  Google Scholar 

  95. Agosin E, Pérez-Correa R, Fernández M, Solar I, Chiang L (1997) In: Wise DL (ed) Global environmental biotechnology, Kluwer Academic Publishers, Boston, pp 233–243

    Chapter  Google Scholar 

  96. Bellon-Maurel V, Orliac O, Christen P (2003) Process Biochem 38:881–896

    Article  Google Scholar 

  97. Penha y Lillo M, Pérez-Correa R, Agosin E, Latrille E (2001) Biotechnol Bioeng 76:44–51

    Article  Google Scholar 

  98. Sargantanis JG, Karim MN (1994) Ind Eng Chem Res 33:878–888

    Article  Google Scholar 

  99. Paján H, Pérez-Correa R, Solar I, Agosin E (1997) In: Wise DL (ed) Global environmental biotechnology, Kluwer Academic Publishers, Boston, pp 221–232

    Chapter  Google Scholar 

  100. Pérez-Correa R, Agosin E (1999) In: Flickinger MC, Drew SW (eds) Bioprocess technology: fermentation, biocatalysis and bioseparation, Wiley, New York pp 2429–2446

    Google Scholar 

  101. Penha y Lillo M, Pérez-Correa R, Latrille E, Fernández M, Acuña G, Agosin E (2000) Bioprocess Eng 22:291–297

    Article  Google Scholar 

  102. Mitchell DA, Krieger N, Berovic M (2006) Solid-state fermentation bioreactors: Fundamentals of design and operation. Springer-Verlag, Heidelberg

    Book  Google Scholar 

  103. Schutyser MAI, Weber FJ, Briels WJ Rinzema A, Boom RM (2003) Biotechnol Bioeng 82: 552–563

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mitchell, D.A. et al. (2010). Environmental Solid-State Cultivation Processes and Bioreactors. In: Wang, L., Ivanov, V., Tay, JH. (eds) Environmental Biotechnology. Handbook of Environmental Engineering, vol 10. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-140-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-140-0_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-58829-166-0

  • Online ISBN: 978-1-60327-140-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation