Permeability of Connexin Channels

  • Chapter
Connexins

Abstract

Because of the diversity of connexin isoforms and their combinations that can compose connexin channels, there is large diversity in the permeability properties of the channels. Unlike most ion channels, the relevant permeabilities extend from charge selectivity among atomic ions such as K+ and Ca2+, through the size and charge selectivity among nonbiological tracer molecules, to highly specific selectivities among cytoplasmic molecules. Distinct experimental approaches are used to define each of these types of selectivity. In general, permeability to current-carrying atomic ions is high, but is substantially charge-selective in some cases. In general, there is permeability to molecular tracers up to ~800 Da, with some channels having significantly lower cutoff thresholds, influenced by charge. Permeability to cytoplasmic molecules is less well explored, but seems to be highly variable and specific, often violating the size and charge selectivities suggested by studies using nonbiological tracers. The unitary channel conductances and the molecular permeabilities to tracer molecules and to cytoplasmic molecules do not correlate well with each other, and do not allow easy inferences or extrapolations about what biological molecules can permeate any particular form of connexin channel, and how well. In spite of this, even the sparse data obtained to date on cytoplasmic permeants gives clues as to the roles that connexin-specific permeabilities may play in biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Verselis VK, Veenstra RD. Gap junction channels: permeability and voltage gating. In: Hertzberg EL, editor. Gap Junctions. Stamford, CT: JAI Press, 2000:129–92.

    Google Scholar 

  2. Veenstra RD. Determining ionic permeabilities of gap junction channels. In: Bruzzone R, Giaume C, editors. Methods in Molecular Biology: Connexin Methods and Protocols. Totowa, NJ: Humana Press, 2001:293–311.

    Google Scholar 

  3. Veenstra RD. Ion permeation through connexin gap junction channels: effects on conductance and selectivity. In: Peracchia C, editor. Gap Junctions: Molecular Basis of Cell Communication in Health and Disease. San Diego: Academic Press, 2000:95–129.

    Google Scholar 

  4. Trexler EB, Bennett MVL, Bargiello TA, Verselis VK. Voltage gating and permeation in a gap junction hemichannel. Proc Natl Acad Sci USA. 1996;93:5836–41.

    CAS  PubMed  Google Scholar 

  5. Wang HZ, Veenstra RD. Monovalent ion selectivity sequences of the rat connexin43 gap junction channel. J Gen Physiol. 1997;109:491–507.

    CAS  PubMed  Google Scholar 

  6. Beblo DA, Veenstra RD. Monovalent cation permeation through the connexin40 gap junction channel. J Gen Physiol. 1997;109:509–22.

    CAS  PubMed  Google Scholar 

  7. Hu X, Ma M, Dahl G. Conductance of connexin hemichannels segregates with the first transmembrane segment. Biophys J. 2006;90:140–50.

    CAS  PubMed  Google Scholar 

  8. Borisova MP, Brutyan RA, Ermishkin LN. Mechanism of anion-cation selectivity of amphotericin B channels. J Membr Biol. 1986;90:13–20.

    CAS  PubMed  Google Scholar 

  9. Franciolini F, Nonner W. Anion-cation interactions in the pore of neuronal background chloride channels. J Gen Physiol. 1994;104:711–23.

    CAS  PubMed  Google Scholar 

  10. Franciolini F, Nonner W. A multi-ion permeation mechanism in neuronal background chloride channels. J Gen Physiol. 1994;104:725–46.

    CAS  PubMed  Google Scholar 

  11. Schirmer T, Keller TA, Wang Y-F, Rosenbusch JP. Structural basis for sugar translocation through maltoporin channels at 3.1 Å resolution. Science. 1995;267:512–14.

    CAS  PubMed  Google Scholar 

  12. Wang Y-F, Dutzler R, Rizkallah PJ, Rosenbusch JP, Schirmer T. Channel specificity: structural basis for sugar discrimination and differential flux rates in maltoporin. J Mol Biol. 1997;272:56–63.

    CAS  PubMed  Google Scholar 

  13. Harris AL. Emerging issues of connexin channels: biophysics fills the gap. Q Rev Biophys. 2001;34:325–472.

    CAS  PubMed  Google Scholar 

  14. Bevans CG, Kordel M, Rhee SK, Harris AL. Isoform composition of connexin channels determines selectivity among second messengers and uncharged molecules. J Biol Chem. 1998;273:2808–16.

    CAS  PubMed  Google Scholar 

  15. Locke D, Stein T, Davies C, Morris J, Harris AL, Evans WH, Monaghan P, Gusterson B. Altered permeability and modulatory character of connexin channels during mammary gland development. Exp Cell Res. 2004;298: 643–60.

    CAS  PubMed  Google Scholar 

  16. Locke D, Koreen IV, Liu JL, Harris AL. Reversible pore block of connexin channels by cyclodextrins. J Biol Chem. 2004;279:22883–92.

    Google Scholar 

  17. Sabirov RZ, Krasilnikov OV, Ternovsky VI, Merzliak PG. Relation between ionic channel conductance and conductivity of media containing different nonelectrolytes. A novel method of pore size determination. Gen Physiol Biophys. 1993;12:95–111.

    Google Scholar 

  18. Krasilnikov OV, Sabirov RZ, Ternovsky VI, Merzliak PG, Muratkhodjaev JN. A simple method for the determination of the pore radius of ion channels in planar lipid bilayer membranes. FEMS Microbiol Immunol. 1992;5:93–100.

    CAS  PubMed  Google Scholar 

  19. Bezrukov SM, Vodyanoy I. Probing alamethicin channels with water-soluble polymers. Effect on conductance of channel states. Biophys J. 1993;64:16–25.

    CAS  PubMed  Google Scholar 

  20. Oh S, Ri Y, Bennett MVL, Trexler EB, Verselis VK, Bargiello TA. Changes in permeability caused by connexin32 mutations underlie X-linked Charcot-Marie-Tooth disease. Neuron. 1997;19:927–38.

    CAS  PubMed  Google Scholar 

  21. Gong XQ, Nicholson BJ. Size selectivity between gap junction channels composed of different connexins. Cell Commun Adhes. 2001;8:187–92.

    CAS  PubMed  Google Scholar 

  22. Qu Y, Dahl G. Accessibility of Cx46 hemichannels for uncharged molecules and its modulation by voltage. Biophys J. 2004;86:1502–9.

    CAS  PubMed  Google Scholar 

  23. Ma M, Dahl G. Cosegregation of permeability and single-channel conductance in chimeric connexins. Biophys J. 2006;90:151–63.

    CAS  PubMed  Google Scholar 

  24. Bukauskas FF, Elfgang C, Willecke K, Weingart R. Heterotypic gap junction channels (connexin26–connexin32) violate the paradigm of unitary conductance. Pflügers Arch. 1995;429:870–2.

    CAS  PubMed  Google Scholar 

  25. Suchyna TM, Nitsche JM, Chilton MG, Harris AL, Veenstra RD, Nicholson BJ. Different ionic selectivities for connexins 26 and 32 produce rectifying gap junction channels. Biophys J. 1999;77:2968–87.

    CAS  PubMed  Google Scholar 

  26. Elfgang C, Eckert R, Lichtenbergfrate H, Butterweck A, Traub O, Klein RA, Hulser DF, Willecke K. Specific permeability and selective formation of gap junction channels in connexin-transfected HeLa cells. J Cell Biol. 1995;129:805–17.

    CAS  PubMed  Google Scholar 

  27. Cao FL, Eckert R, Elfgang C, Nitsche JM, Snyder SA, Hulser DF, Willecke K, Nicholson BJ. A quantitative analysis of connexin-specific permeability differences of gap junctions expressed in HeLa transfectants and Xenopus oocytes. J Cell Sci. 1998;111:31–43.

    CAS  PubMed  Google Scholar 

  28. Veenstra RD, Wang H-Z, Beblo DA, Chilton MG, Harris AL, Beyer EC, Brink PR. Selectivity of connexin-specific gap junctions does not correlate with channel conductance. Circ Res. 1995;77:1156–65.

    CAS  PubMed  Google Scholar 

  29. Edidin M, Zagyansky Y, Lardner TJ. Measurement of membrane protein lateral diffusion in single cells. Science. 1976;191:466–68.

    CAS  PubMed  Google Scholar 

  30. Peters R, Peters J, Tews KH, Bahr W. A microfluorometric study of translational diffusion in erythrocyte membranes. Biochim Biophys Acta. 1974;367:282–94.

    CAS  PubMed  Google Scholar 

  31. Axelrod D, Koppel DE, Schlessinger J, Elson E, Webb WW. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J. 1976;16: 1055–67.

    CAS  PubMed  Google Scholar 

  32. Koppel DE. Fluorescence redistribution after photobleaching: a new multipoint analysis of membrane translational dynamics. Biophys J. 1979;28:281–92.

    CAS  PubMed  Google Scholar 

  33. Deleze J, Delage B, Hentai-Ksibi O, Verrecchia F, Herve JC. Fluorescence recovery after photobleaching. In: Bruzzone R, Giaume C, editors. Methods in Molecular Biology: Connexin Methods and Protocols. Totowa, NJ: Humana Press, 2001:313–27.

    Google Scholar 

  34. Tsien RY, Pozzan T, Rink TJ. Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator. J Cell Biol. 1982;94:325–34.

    CAS  PubMed  Google Scholar 

  35. Goodall H, Johnson MH. Use of carboxyfluorescein diacetate to study formation of permeable channels between mouse blastomeres. Nature. 1982;292:524–6.

    Google Scholar 

  36. Rotman B, Papermaster BW. Membrane properties of living mammalian cells as studied by enzymatic hydrolysis of fluorogenic esters. Proc Natl Acad Sci USA. 1966;55:134–41.

    CAS  PubMed  Google Scholar 

  37. Abbaci M, Barberi-Heyob M, Stines JR, Blondel W, Dumas D, Guillemin F, Didelon J. Gap junctional intercellular communication capacity by gap-FRAP technique: a comparative study. Biotechnol J. 2007;2:50–61.

    CAS  PubMed  Google Scholar 

  38. Wade MH, Trosko JE, Schindler M. A fluorescence photobleaching assay of gap junction-mediated communication between human cells. Science. 1986;232:525–28.

    CAS  PubMed  Google Scholar 

  39. Suter S, Trosko JE, el-Fouly MH, Lockwood LR, Koestner A. Dieldrin inhibition of gap junctional intercellular communication in rat glial cells as measured by the fluorescence photobleaching and scrape loading/dye transfer assays. Fundam Appl Toxicol. 1987;9:785–94.

    CAS  PubMed  Google Scholar 

  40. Miller A. Quantitative junctional permeability measurements using the confocal microscope. Microscop Res Tech. 1995;31:387–95.

    CAS  Google Scholar 

  41. Miller AG, Hall JE. Junctional permeability measurements in the embryonic chick lens. Exp Eye Res. 1996;62:339–49.

    CAS  PubMed  Google Scholar 

  42. Wilders R, Jongsma HJ. Limitations of the dual voltage clamp method in assaying conductance and kinetics of gap junction channels. Biophys J. 1992;63:942–53.

    CAS  PubMed  Google Scholar 

  43. Ramanan SV, Mesimeris V, Brink PR. Ion flow in the bath and flux interactions between channels. Biophys J. 1994;66:989–95.

    CAS  PubMed  Google Scholar 

  44. Hall JE, Gourdie RG. Spatial organization of cardiac gap junctions can affect access resistance. Microscop Res Tech. 1995;31:446–51.

    CAS  Google Scholar 

  45. Ek-Vitorin JF, Burt JM. Quantification of gap junction selectivity. Am J Physiol Cell Physiol. 2005;289:C1535–46.

    CAS  PubMed  Google Scholar 

  46. Eckert R. Gap-junctional single-channel permeability for fluorescent tracers in mammalian cell cultures. Biophys J. 2006;91:565–79.

    CAS  PubMed  Google Scholar 

  47. Weber PA, Chang H-C, Spaeth KE, Nitsche JM, Nicholson BJ. The permeability of gap junction channels to probes of different size is dependent on connexin composition and permeant-pore affinities. Biophys J. 2004;87:958–73.

    CAS  PubMed  Google Scholar 

  48. Nitsche JM, Chang HC, Weber PA, Nicholson BJ. A transient diffusion model yields unitary gap junctional permeabilities from images of cell-to-cell fluorescent dye transfer between Xenopus oocytes. Biophys J. 2004;86:2058–77.

    CAS  PubMed  Google Scholar 

  49. Valiunas V, Beyer EC, Brink PR. Cardiac gap junction channels show quantitative differences in selectivity. Circ Res. 2002;91:104–11.

    CAS  PubMed  Google Scholar 

  50. Eckert R, Adams B, Kistler J, Donaldson P. Quantitative determination of gap junctional permeability in the lens cortex. J Membr Biol. 1999;169:91–102.

    CAS  PubMed  Google Scholar 

  51. Nicholson BJ, Weber PA, Cao F, Chang HC, Lampe P, Goldberg GS. The molecular basis of selective permeability of connexins is complex and includes both size and charge. Braz J Med Biol Res. 2000;33:369–78.

    CAS  PubMed  Google Scholar 

  52. Heyman NS, Burt JM. Hindered diffusion through an aqueous pore describes invariant dye selectivity of Cx43 junctions. Biophys J. 2008;94:840–54.

    Google Scholar 

  53. Verselis VK, White RL, Spray DC, Bennett MVL. Gap junctional conductance and permeability are linearly related. Science. 1986;234:461–4.

    CAS  PubMed  Google Scholar 

  54. Bukauskas FF, Kempf C, Weingart R. Cytoplasmic bridges and gap junctions in an insect cell line (Aedes albopictus). Exp Physiol. 1992;77:903–11.

    CAS  PubMed  Google Scholar 

  55. Valiunas V, Manthey D, Vogel R, Willecke K, Weingart R. Biophysical properties of mouse connexin30 gap junction channels studied in transfected human HeLa cells. J Physiol. 1999;519:631–44.

    CAS  PubMed  Google Scholar 

  56. Mills SL, Massey SC. A series of biotinylated tracers distinguishes three types of gap junction in retina. J Neurosci. 2000;20:8629–36.

    CAS  PubMed  Google Scholar 

  57. Hoshi H, O'Brien J, Mills SL. A novel fluorescent tracer for visualizing coupled cells in neural circuits of living tissue. J Histochem Cytochem. 2006;54:1169–76.

    CAS  PubMed  Google Scholar 

  58. Sotelo C, Alvarado-Mallart RM. Embryonic and adult neurons interact to allow Purkinje cell replacement in mutant cerebellum. Nature. 1987;327:421–3.

    CAS  PubMed  Google Scholar 

  59. Lewis CA, Stevens CF. Acetylcholine receptor channel ionic sensitivity: ions experience an aqueous environment. Proc Natl Acad Sci USA. 1983;80:6110–3.

    CAS  PubMed  Google Scholar 

  60. Qu Y, Dahl G. Function of the voltage gate of gap junction channels: selective exclusion of molecules. Proc Natl Acad Sci USA. 2002;99:697–702.

    CAS  PubMed  Google Scholar 

  61. Ek-Vitorin JF, King TJ, Heyman NS, Lampe PD, Burt JM. Selectivity of connexin 43 channels is regulated through protein kinase C-dependent phosphorylation. Circ Res. 2006;98:1498–505.

    CAS  PubMed  Google Scholar 

  62. Bukauskas FF, Bukauskiene A, Verselis VK. Conductance and permeability of the residual state of connexin43 gap junction channels. J Gen Physiol. 2002;119:171–85.

    CAS  PubMed  Google Scholar 

  63. Rackauskas M, Verselis VK, Bukauskas FF. Permeability of homotypic and heterotypic gap junction channels formed of cardiac connexins mCx30.2, Cx40, Cx43 and Cx45. Am J Physiol Heart Circ Physiol. 2007;293:H1729–36.

    Google Scholar 

  64. Yum SW, Zhang J, Valiunas V, Kanaporis G, Brink PR, White TW, Scherer SS. Human connexin26 and connexin30 form functional heteromeric and heterotypic channels. Am J Physiol Cell Physiol. 2007;293: C1032–48.

    Google Scholar 

  65. Sun J, Ahmad S, Chen S, Tang W, Zhang Y, Chen P, Lin X. Cochlear gap junctions coassembled from Cx26 and Cx30 show faster intercellular Ca2+ signaling than homomeric counterparts. Am J Physiol Cell Physiol. 2005;288:C613–23.

    Google Scholar 

  66. Martínez AD, Hayrapetyan V, Moreno AP, Beyer EC. Connexin43 and connexin45 form heteromeric gap junction channels in which individual components determine permeability and regulation. Circ Res. 2002;90:1100–7.

    Google Scholar 

  67. Lawrence TS, Beers WH, Gilula NB. Transmission of hormonal stimulation by cell-to-cell communication. Nature. 1978;272:501–6.

    CAS  PubMed  Google Scholar 

  68. Harris AL. Connexin channel permeability to cytoplasmic molecules. Prog Biophys Mol Biol. 2007;94:120–43.

    CAS  PubMed  Google Scholar 

  69. Pearson RA, Luneborg NL, Becker DL, Mobbs P. Gap junctions modulate interkinetic nuclear movement in retinal progenitor cells. J Neurosci. 2005;25:10803–14.

    Google Scholar 

  70. Veenstra RD. Size and selectivity of gap junction channels formed from different connexins. J Bioenerg Biomembr. 1996;28:327–37.

    CAS  PubMed  Google Scholar 

  71. Goldberg GS, Valiunas V, Brink PR. Selective permeability of gap junction channels. Biochim Biophys Acta. 2004;1662:96–101.

    CAS  PubMed  Google Scholar 

  72. Bedner P, Niessen H, Odermatt B, Kretz M, Willecke K, Harz H. Selective permeability of different connexin channels to the second messenger cyclic AMP. J Biol Chem. 2006;281:6673–81.

    CAS  PubMed  Google Scholar 

  73. Hernandez VH, Bortolozzi M, Pertegato V, Beltramello M, Giarin M, Zaccolo M, Pantano S, Mammano F. Unitary permeability of gap junction channels to second messengers measured by FRET microscopy. Nat Methods. 2007;4:353–58.

    CAS  PubMed  Google Scholar 

  74. Harris AL. Connexin channel permeability to cytoplasmic molecules. Prog Biophys Mol Biol. 2007;94:120–43.

    CAS  PubMed  Google Scholar 

  75. Henriksen Z, Hiken JF, Steinberg TH, Jorgensen NR. The predominant mechanism of intercellular calcium wave propagation changes during long-term culture of human osteoblast-like cells. Cell Calcium. 2006;39:435–44.

    CAS  PubMed  Google Scholar 

  76. Jorgensen NR, Henriksen Z, Sorensen OH, Eriksen EF, Civitelli R, Steinberg TH. Intercellular calcium signaling occurs between human osteoblasts and osteoclasts and requires activation of osteoclast P2X7 receptors. J Biol Chem. 2002;277:7574–80.

    CAS  PubMed  Google Scholar 

  77. Braet K, Paemeleire K, D'Herde K, Sanderson MJ, Leybaert L. Astrocyte-endothelial cell calcium signals conveyed by two signalling pathways. Eur J Neurosci. 2001;13:79–91.

    CAS  PubMed  Google Scholar 

  78. Boitano S, Dirksen ER, Sanderson MJ. Intercellular propagation of calcium waves mediated by inositol trisphosphate. Science. 1992;258:292–5.

    CAS  PubMed  Google Scholar 

  79. Homolya L, Steinberg TH, Boucher RC. Cell to cell communication in response to mechanical stress via bilateral release of ATP and UTP in polarized epithelia. J Cell Biol. 2000;150:1349–59.

    CAS  PubMed  Google Scholar 

  80. Sanderson MJ. Intercellular waves of communication. News Physiol Sci. 1996;11:262–9.

    Google Scholar 

  81. Giaume C, Venance L. Intercellular calcium signaling and gap junctional communication in astrocytes. Glia. 1998;24:50–64.

    CAS  PubMed  Google Scholar 

  82. Schuster S, Marhl M, Hofer T. Modelling of simple and complex calcium oscillations—from single-cell responses to intercellular signalling. Eur J Biochem. 2002;269:1333–55.

    CAS  PubMed  Google Scholar 

  83. Bennett MR, Buljan V, Farnell L, Gibson WG. Purinergic junctional transmission and propagation of calcium waves in spinal cord astrocyte networks. Biophys J. 2006;91: 3560–71.

    CAS  PubMed  Google Scholar 

  84. Scemes E, Giaume C. Astrocyte calcium waves: what they are and what they do. Glia. 2006;54:716–25.

    PubMed  Google Scholar 

  85. Bowser DN, Khakh BS. Vesicular ATP is the predominant cause of intercellular calcium waves in astrocytes. J Gen Physiol. 2007;129:485–91.

    CAS  PubMed  Google Scholar 

  86. Leybaert L, Paemeleire K, Strahonja A, Sanderson MJ. Inositol trisphosphate-dependent intercellular calcium signaling in and between astrocytes and endothelial cells. Glia. 1998;24:398–407.

    CAS  PubMed  Google Scholar 

  87. Venance L, Stella N, Glowinski J, Giaume C. Mechanism involved in initiation and propagation of receptor-induced intercellular calcium signaling in cultured rat astrocytes. J Neurosci. 1997;17:1981–92.

    CAS  PubMed  Google Scholar 

  88. Sáez JC, Connor JA, Spray DC, Bennett MVL. Hepatocyte gap junctions are permeable to the second messenger, inositol 1,4,5-trisphosphate, and to calcium ions. Proc Natl Acad Sci USA. 1989;86:2708–12.

    CAS  PubMed  Google Scholar 

  89. Christ GJ, Moreno AP, Melman A, Spray DC. Gap junction-mediated intercellular diffusion of Ca2+ in cultured human corporal smooth muscle cells. Am J Physiol. 1992;263:C373–83.

    CAS  PubMed  Google Scholar 

  90. Isakson BE, Ramos SI, Duling BR. Ca2+ and inositol 1,4,5-trisphosphate-mediated signaling across the myoendothelial junction. Circ Res. 2007;100:246–54.

    CAS  PubMed  Google Scholar 

  91. Sneyd J, Charles AC, Sanderson MJ. A model for the propagation of intercellular calcium waves. Am J Physiol. 1994;266:C293–302.

    CAS  PubMed  Google Scholar 

  92. Sneyd J, Wilkins M, Strahonja A, Sanderson MJ. Calcium waves and oscillations driven by an intercellular gradient of inositol (1,4,5)-triphosphate. Biophys Chem. 1998;72:101–9.

    CAS  PubMed  Google Scholar 

  93. Iacobas DA, Suadicani SO, Spray DC, Scemes E. A stochastic two-dimensional model of intercellular Ca2+ wave spread in glia. Biophys J. 2006;90:24–41.

    CAS  PubMed  Google Scholar 

  94. Hofer T, Venance L, Giaume C. Control and plasticity of intercellular calcium waves in astrocytes: a modeling approach. J Neurosci. 2002;22:4850–9.

    CAS  PubMed  Google Scholar 

  95. Hofer T. Model of intercellular calcium oscillations in hepatocytes: synchronization of heterogeneous cells. Biophys J. 1999;77:1244–56.

    CAS  PubMed  Google Scholar 

  96. Baranova A, Ivanov D, Petrash N, Pestova A, Skoblov M, Kelmanson I, Shagin D, Nazarenko S, Geraymovych E, Litvin O, Tiunova A, Born TL, Usman N, Staroverov D, Lukyanov S, Panchin Y. The mammalian pannexin family is homologous to the invertebrate innexin gap junction proteins. Genomics. 2004;83:706–16.

    CAS  PubMed  Google Scholar 

  97. Bruzzone R, Hormuzdi SG, Barbe MT, Herb A, Monyer H. Pannexins, a family of gap junction proteins expressed in brain. Proc Natl Acad Sci USA. 2003;100:13644–49.

    CAS  PubMed  Google Scholar 

  98. Barbe MT, Monyer H, Bruzzone R. Cell-cell communication beyond connexins: the pannexin channels. Physiology. 2006;21:103–14.

    CAS  PubMed  Google Scholar 

  99. Vanden Abeele F, Bidaux G, Gordienko D, Beck B, Panchin YV, Baranova AV, Ivanov DV, Skryma R, Prevarskaya N. Functional implications of calcium permeability of the channel formed by pannexin 1. J Cell Biol. 2006;174:535–46.

    CAS  PubMed  Google Scholar 

  100. Huang Y, Grinspan JB, Abrams CK, Scherer SS. Pannexin1 is expressed by neurons and glia but does not form gap functional gap junctions. Glia. 2006;55:46–56.

    Google Scholar 

  101. Penuela S, Bhalla R, Gong XQ, Cowan KN, Celetti SJ, Cowan BJ, Bai D, Shao Q, Laird DW. Pannexin 1 and pannexin 3 are glycoproteins that exhibit many distinct characteristics from the connexin family of gap junction proteins. J Cell Sci. 2007;120:3772–83.

    CAS  PubMed  Google Scholar 

  102. Locovei S, Bao L, Dahl G. Pannexin 1 in erythrocytes: function without a gap. Proc Natl Acad Sci USA. 2006;103:7655–9.

    CAS  PubMed  Google Scholar 

  103. Litvin O, Tiunova A, Connel-Alberts Y, Panchin Y, Baranova A. What is hidden in the pannexin treasure trove: the sneak peek and the guesswork. J Cell Mol Med. 2006;10:613–34.

    CAS  PubMed  Google Scholar 

  104. Dvoriantchikova G, Ivanov D, Pestova A, Shestopalov V. Molecular characterization of pannexins in the lens. Mol Vis. 2006;12:1417–26.

    CAS  PubMed  Google Scholar 

  105. Ray A, Zoidl G, Wahle P, Dermietzel R. Pannexin expression in the cerebellum. Cerebellum. 2006;5:189–92.

    CAS  PubMed  Google Scholar 

  106. Dahl G, Locovei S. Pannexin: to gap or not to gap, is that the question? IUBMB Life. 2006;58:409–19.

    CAS  PubMed  Google Scholar 

  107. Hernandez VH, Bortolozzi M, Pertegato V, Beltramello M, Giarin M, Pantano S, Mammano F. Unitary permeability of gap junction channels to second messengers measured by FRET microscopy and dual whole-cell recordings. Nat Methods. 2007;4:353–8.

    Google Scholar 

  108. Ponsioen B, Van Zeijl L, Moolenaar WH, Jalink K. Direct measurement of cyclic AMP diffusion and signaling through connexin43 gap junctional channels. Exp Cell Res. 2007;313:415–23.

    CAS  PubMed  Google Scholar 

  109. Goldberg GS, Lampe PD, Sheedy D, Stewart CC, Nicholson BJ, Naus CCG. Direct isolation and analysis of endogenous transjunctional ADP from Cx43 transfected C6 glioma cells. Exp Cell Res. 1998;239:82–92.

    CAS  PubMed  Google Scholar 

  110. Goldberg GS, Lampe PD, Nicholson BJ. Selective transfer of endogenous metabolites through gap junctions composed of different connexins. Nat Cell Biol. 1999;1:457–9.

    CAS  PubMed  Google Scholar 

  111. Goldberg GS, Lampe P. Capture of transjunctional metabolites. In: Bruzzone R, Giaume C, eds. Methods in Molecular Biology: Connexin Methods and Protocols. Totowa, NJ: Humana Press, 2001:329–40.

    Google Scholar 

  112. Goldberg GS, Moreno AP, Lampe PD. Gap junctions between cells expressing connexin 43 or 32 show inverse permselectivity to adenosine and ATP. J Biol Chem. 2002;277:36725–30.

    CAS  PubMed  Google Scholar 

  113. Alexander DB, Goldberg GS. Transfer of biologically important molecules between cells through gap junction channels. Curr Med Chem. 2003;10:2045–58.

    CAS  PubMed  Google Scholar 

  114. Spray DC, Ye Z-C, Ransom BR. Functional connexin ‘hemichannels’: a critical appraisal. Glia. 2006;54:758–73.

    PubMed  Google Scholar 

  115. Pelegrin P, Surprenant A. Pannexin-1 mediates large pore formation and interleukin-1β release by the ATP-gated P2X7 receptor. EMBO J. 2006;25:5071–82.

    CAS  PubMed  Google Scholar 

  116. Locovei S, Scemes E, Qiu F, Spray DC, Dahl G. Pannexin1 is part of the pore forming unit of the P2X(7) receptor death complex. FEBS Letts. 2007;581:483–8.

    CAS  Google Scholar 

  117. Alves LA, Coutinho-Silva R, Persechini PM, Spray DC, Savino W, Campos de Carvalho AC. Are there functional gap junctions or junctional hemichannels in macrophages? Blood. 1996;88:328–34.

    CAS  PubMed  Google Scholar 

  118. Surprenant A, Rassendren F, Kawashiima E, North RA, Buell G. The cytolytic P2z receptor for extracellular ATP identified as a P2x receptor (P2x7). Science. 1996;272: 735–8.

    CAS  PubMed  Google Scholar 

  119. Rassendren F, Buell GN, Virginio C, Collo G, North RA, Surprenant A. The permeabilizing ATP receptor, P2X7. J Biol Chem. 1997;272:5482–6.

    CAS  PubMed  Google Scholar 

  120. Virginio C, Church D, North RA, Surprenant A. Effects of divalent cations, protons and calmidazolium at the rat P2X7 receptor. Neuropharmacol. 1997;36:1285–94.

    CAS  Google Scholar 

  121. Duan S, Anderson CM, Keung EC, Chen Y, Swanson RA. P2X7 receptor-mediated release of excitatory amino acids from astrocytes. J Neurosci. 2003;23:1320–8.

    CAS  PubMed  Google Scholar 

  122. Bisaggio RD, Nihei OK, Persechini PM, Savino W, Alves LA. Characterization of P2 receptors in thymic epithelial cells. Cell Mol Biol. 2001;47:19–31.

    CAS  PubMed  Google Scholar 

  123. Ballerini P, Rathbone MP, Di Ioro P, et al. Rat astroglial P2Z (P2X7) receptors regulate intracellular calcium and purine release. Neuroreport. 1996;7:2533–37.

    CAS  PubMed  Google Scholar 

  124. Suadicani SO, Brosnan CF, Scemes E. P2X7 receptors mediate ATP release and amplification of astrocytic intercellular Ca2+ signaling. J Neurosci. 2006;26:1378–85.

    CAS  PubMed  Google Scholar 

  125. Parpura V, Scemes E, Spray DC. Mechanisms of glutamate release from astrocytes: gap junction ‘hemichannels’, purinergic receptors and exocytotic release. Neurochem Int. 2004;45:259–64.

    CAS  PubMed  Google Scholar 

  126. North RA. Molecular physiology of P2X receptors. Physiol Rev. 2002;82:1013–67.

    CAS  PubMed  Google Scholar 

  127. Bao L, Locovei S, Dahl G. Pannexin membrane channels are mechanosensitive conduits for ATP. FEBS Letts. 2004;572:65–8.

    CAS  Google Scholar 

  128. Ebihara L, Steiner E. Properties of a nonjunctional current expressed from a rat connexin46 cDNA in Xenopus oocytes. J Gen Physiol. 1993;102:59–74.

    CAS  PubMed  Google Scholar 

  129. Ebihara L. Xenopus connexin38 forms hemi-gap junctional channels in the nonjunctional plasma membrane of Xenopus oocytes. Biophys J. 1996;71:742–8.

    CAS  PubMed  Google Scholar 

  130. Ebihara L, Liu X, Pal JD. Effect of external magnesium and calcium on human connexin46 hemichannels. Biophys J. 2003;84:277–86.

    CAS  PubMed  Google Scholar 

  131. Beahm DL, Hall JE. Hemichannel and junctional properties of connexin 50. Biophys J. 2002;82:2016–31.

    CAS  PubMed  Google Scholar 

  132. Bruzzone R, Barbe MT, Jakob NJ, Monyer H. Pharmacological properties of homomeric and heteromeric pannexin hemichannels expressed in Xenopus oocytes. J Neurochem. 2005;92:1033–43.

    CAS  PubMed  Google Scholar 

  133. Wang J, Ma M, Locovei S, Keane RW, Dahl G. Modulation of membrane channel currents by gap junction protein mimetic peptides: size matters. Am J Physiol Cell Physiol. 2007;293:C1112–9.

    CAS  PubMed  Google Scholar 

  134. Cotrina ML, Lin JHC, Alves-Rodrigues A, Liu S, Li J, Azmi-Ghadimi H, Kang J, Naus CCG, Nedergaard M. Connexins regulate calcium signaling by controlling ATP release. Proc Natl Acad Sci USA. 1998;95:15735–40.

    CAS  PubMed  Google Scholar 

  135. Cotrina ML, Lin JHC, Lopez-Garcia JC, Naus CCG, Nedergaard M. ATP-mediated glia signaling. J Neurosci. 2000;20:2835–44.

    CAS  PubMed  Google Scholar 

  136. Genetos DC, Kephart CJ, Zhang Y, Yellowley CE, Donahue HJ. Oscillating fluid flow activation of gap junction hemichannels induces ATP release from MLO-Y4 osteocytes. J Cell Physiol. 2007;212:207–14.

    CAS  PubMed  Google Scholar 

  137. Naus CCG, Bond SL, Bechberger JF, Rushlow W. Identification of genes differentially expressed in C6 glioma cells transfected with connexin43. Brain Res Rev. 2000;32: 259–66.

    CAS  PubMed  Google Scholar 

  138. Iacobas DA, Urban-Maldonado M, Iacobas S, Scemes E, Spray DC. Array analysis of gene expression in connexin-43 null astrocytes. Physiol Genomics. 2003;15:177–90.

    CAS  PubMed  Google Scholar 

  139. Iacobas DA, Scemes E, Spray DC. Gene expression alterations in connexin null mice extend beyond the gap junction. Neurochem Int. 2004;45:243–50.

    CAS  PubMed  Google Scholar 

  140. Iacobas DA, Iacobas S, Li WE, Zoidl G, Dermietzel R, Spray DC. Genes controlling multiple functional pathways are transcriptionally regulated in connexin43 null mouse heart. Physiol Genomics. 2005;20:211–23.

    CAS  PubMed  Google Scholar 

  141. Sáez JC, Contreras JE, Bukauskas FF, Retamal MA, Bennett MV. Gap junction hemichannels in astrocytes of the CNS. Acta Physiol Scand. 2003;179:9–22.

    CAS  PubMed  Google Scholar 

  142. Goodenough DA, Paul DL. Beyond the gap: functions of unpaired connexon channels. Nat Rev Mol Cell Biol. 2003;4:285–94.

    CAS  PubMed  Google Scholar 

  143. Bennett MV, Contreras JE, Bukauskas FF, Sáez JC. New roles for astrocytes: gap junction hemichannels have something to communicate. Trends Neurosci. 2003;26: 610–17.

    CAS  PubMed  Google Scholar 

  144. Contreras JE, Sanchez HA, Veliz LP, Bukauskas FF, Bennett MV, Sáez JC. Role of connexin-based gap junction channels and hemichannels in ischemia-induced cell death in nervous tissue. Brain Res Brain Res Rev. 2004;47:290–303.

    CAS  PubMed  Google Scholar 

  145. Evans WH, De Vuyst E, Leybaert L. The gap junction cellular internet: connexin hemichannels enter the signalling limelight. Biochem J. 2006;397:1–14.

    CAS  PubMed  Google Scholar 

  146. Bosma MM. Anion channels with multiple conductance levels in a mouse B lymphocyte cell line. J Physiol. 1989;410:67–90.

    CAS  PubMed  Google Scholar 

  147. Sabirov RZ, Okada Y. Wide nanoscopic pore of maxi-anion channel suits its function as an ATP-conductive pathway. Biophys J. 2004;87:1672–85.

    CAS  PubMed  Google Scholar 

  148. Reisin IL, Prat AG, Abraham EH, Amara JF, Gregory RJ, Ausiello DA, Cantiello HF. The cystic fibrosis transmembrane conductance regulator is a dual ATP and chloride channel. J Biol Chem. 1994;269:20584–91.

    Google Scholar 

  149. Dermietzel R, Hwang TK, Buettner R, Hofer A, Dotzler E, Kremer M, Deutzmann R, Thinnes FP, Fishman GI, Spray DC, Siemen D. Cloning and in situ localization of a brain-derived porin that constitutes a large-conductance anion channel in astrocytic plasma membrane. Proc Natl Acad Sci USA. 1994;91:499–503.

    CAS  PubMed  Google Scholar 

  150. Okada SF, O'Neal WK, Huang P, Nicholas RA, Ostrowski LE, Craigen WJ, Lazarowski ER, Boucher RC. Voltage-dependent anion channel-1 (VDAC-1) contributes to ATP release and cell volume regulation in murine cells. J Gen Physiol. 2004;124:513–26.

    CAS  PubMed  Google Scholar 

  151. Rostovtseva TK, Colombini M. ATP flux is controlled by a voltage-gated channel from the mitochondrial outer membrane. J Biol Chem. 1996;271:28006–8.

    CAS  PubMed  Google Scholar 

  152. Takano T, Kang J, Jaiswal JK, Simon SM, Lin JH, Yu Y, Li Y, Yang J, Dienel G, Zielke HR, Nedergaard M. Receptor-mediated glutamate release from volume sensitive channels in astrocytes. Proc Natl Acad Sci USA. 2005;102:16466–71.

    CAS  PubMed  Google Scholar 

  153. Hisadome K, Koyama T, Kimura C, Droogmans G, Ito Y, Oike M. Volume-regulated anion channels serve as an auto/paracrine nucleotide release pathway in aortic endothelial cells. J Gen Physiol. 2002;119:511–20.

    CAS  PubMed  Google Scholar 

  154. Rutledge EM, Mongin AA, Kimelberg HK. Intracellular ATP depletion inhibits swelling-induced D-[3H]aspartate release from primary astrocyte cultures. Brain Res. 1999;842:39–45.

    CAS  PubMed  Google Scholar 

  155. Bader P, Weingart R. Pitfalls when examining gap junction hemichannels: interference from volume-regulated anion channels. Pflügers Arch. 2006;452:396–406.

    CAS  PubMed  Google Scholar 

  156. Bedner P, Niessen H, Odermatt B, Willecke K, Harz H. A method to determine the relative cAMP permeability of connexin channels. Exp Cell Res. 2003;291:25–35.

    CAS  PubMed  Google Scholar 

  157. Ponsioen B, Zhao J, Riedl J, Zwartkruis F, van der Krogt G, Zaccolo M, Moolenaar WH, Bos JL, Jalink K. Detecting cAMP-induced Epac activation by fluorescence resonance energy transfer: Epac as a novel cAMP sensor. EMBO Rep. 2004;5: 1176–80.

    CAS  PubMed  Google Scholar 

  158. Tanimura A, Nezu A, Morita T, Turner RJ, Tojyo Y. Fluorescent biosensor for quantitative real-time measurements of inositol 1,4,5-trisphosphate in single living cells. J Biol Chem. 2004;279:38095–8.

    CAS  PubMed  Google Scholar 

  159. Moreno AP, Fishman GI, Spray DC. Phosphorylation shifts unitary conductance and modifies voltage dependent kinetics of human connexin43 gap junction channels. Biophys J. 1992;62:51–3.

    CAS  PubMed  Google Scholar 

  160. Bao X, Lee SC, Reuss L, Altenberg GA. Change in permeant size selectivity by phosphorylation of connexin 43 gap-junctional hemichannels by PKC. Proc Natl Acad Sci USA. 2007;104:4919–24.

    CAS  PubMed  Google Scholar 

  161. Locke D, Koreen IV, Harris AL. Isoelectric points and post-translational modifications of connexin26 and connexin32. FASEB J. 2006;20:1221–3.

    CAS  PubMed  Google Scholar 

  162. Charpantier E, Cancela J, Meda P. β cells preferentially exchange cationic molecules via connexin 36 gap junction channels. Diabetologia. 2007;50:2332–41.

    CAS  PubMed  Google Scholar 

  163. Valiunas V, Polosina YY, Miller H, Potapova IA, Valiuniene L, Doronin S, Mathias RT, Robinson RB, Rosen MR, Cohen IS, Brink PR. Connexin-specific cell-to-cell transfer of short interfering RNA by gap junctions. J Physiol. 2005;568:459–68.

    CAS  PubMed  Google Scholar 

  164. Neijssen J, Herberts C, Drijfhout JW, Reits E, Janssen L, Neefjes J. Cross-presentation by intercellular peptide transfer through gap junctions. Nature. 2005;434:83–8.

    CAS  PubMed  Google Scholar 

  165. Mendoza-Naranjo A, Sáez PJ, Johansson CC, Ramirez M, Mandakovic D, Pereda C, Lopez MN, Kiessling R, Saez JC, Salazar-Onfray F. Functional gap junctions facilitate melanoma antigen transfer and cross-presentation between human dendritic cells. J Immunol. 2007;178:6949–57.

    CAS  PubMed  Google Scholar 

  166. Ayad WA, Locke D, Koreen IV, Harris AL. Heteromeric, but not homomeric, connexin channels are selectively permeable to inositol phosphates. J Biol Chem. 2006;281: 16727–39.

    CAS  PubMed  Google Scholar 

  167. Niessen H, Harz H, Bedner P, Kramer K, Willecke K. Selective permeability of different connexin channels to the second messenger inositol 1,4,5-trisphosphate. J Cell Sci. 2000;113:1365–72.

    CAS  PubMed  Google Scholar 

  168. Bacskai BJ, Hochner B, Mahaut-Smith M, Adams SR, Kaang BK, Kandel ER, Tsien RY. Spatially resolved dynamics of cAMP and protein kinase A subunits in Aplysia sensory neurons. Science. 1993;260:222–6.

    CAS  PubMed  Google Scholar 

  169. Kasai H, Petersen OH. Spatial dynamics of second messengers: IP3 and cAMP as long-range and associative messengers. Trends Neurosci. 1994;17:95–101.

    CAS  PubMed  Google Scholar 

  170. Wang SS-H, Alousi AA, Thompson SH. The lifetime of inositol 1,4,5-trisphosphate in single cells. J Gen Physiol. 1995;105:149–71.

    CAS  PubMed  Google Scholar 

  171. Fink CC, Slepchenko B, Moraru II, Schaff J, Watras J, Loew LM. Morphological control of inositol-1,4,5-trisphosphate-dependent signals. J Cell Biol. 1999;147: 929–36.

    Google Scholar 

  172. Allbritton NL, Meyer T, Stryer L. Range of messenger action of calcium and inositol 1,4,5-trisphosphate. Science. 1992;258:1812–5.

    CAS  PubMed  Google Scholar 

  173. Huang R-C, Gillette R. Kinetic analysis of cAMP-activated Na+ current in the molluscan neuron. J Gen Physiol. 1991;98:835–48.

    CAS  PubMed  Google Scholar 

  174. Ramanan SV, Brink PR, Christ GJ. Neuronal innervation, intracellular signal transduction and intercellular coupling: a model for syncytial tissue responses in the steady state. J Theor Biol. 1998;193:69–84.

    CAS  PubMed  Google Scholar 

  175. Hajnuczky G, Robb-Gaspers LD, Seitz MB, Thomas AP. Decoding of cytosolic calcium oscillations in the mitochondria. Cell. 1995;82:415–24.

    Google Scholar 

  176. Jafri MS, Keizer J. On the roles of Ca2+ diffusion, Ca2+ buffers, and the endoplasmic reticulum in IP3-induced Ca2+ waves. Biophys J. 1995;69:2139–53.

    CAS  PubMed  Google Scholar 

  177. Dupont G, Swillens S, Clair C, Tordjmann T, Combettes L. Hierarchical organization of calcium signals in hepatocytes: from experiments to models. Biochim Biophys Acta Mol Cell Res. 2000;1498:134–52.

    CAS  Google Scholar 

  178. Breitwieser GE. Calcium sensing receptors and calcium oscillations: calcium as a first messenger. Curr Top Devel Biol. 2006;73:85–114.

    CAS  Google Scholar 

  179. Nathanson MH, Burgstahler AD, Mennone A, Fallon MB, Gonzalez CB, Sáez JC. Ca2+ waves are organized among hepatocytes in the intact organ. Am J Physiol. 1995;32:G167–71.

    Google Scholar 

  180. Robb-Gaspers LD, Thomas AP. Coordination of Ca2+ signaling by intercellular propagation of Ca2+ waves in the intact liver. J Biol Chem. 1995;270:8102–7.

    CAS  PubMed  Google Scholar 

  181. D'Andrea P, Vittur F. Gap junctions mediate intercellular calcium signaling in cultured articular chondrocytes. Cell Calcium. 1996;20:389–97.

    PubMed  Google Scholar 

  182. Rottingen JA, Camerer E, Mathiesen I, Prydz H, Iversen JG. Synchronized Ca2+ oscillations induced in Madin-Darby canine kidney cells by bradykinin and thrombin but not by ATP. Cell Calcium. 1997;21:195–211.

    CAS  PubMed  Google Scholar 

  183. Tordjmann T, Berthon B, Claret M, Combettes L. Coordinated intercellular calcium waves induced by noradrenaline in rat hepatocytes: dual control by gap junction permeability and agonist. EMBO J. 1997;16:5398–407.

    CAS  PubMed  Google Scholar 

  184. Dupont G, Tordjmann T, Clair C, Swillens S, Claret M, Combettes L. Mechanism of receptor-oriented intercellular calcium wave propagation in hepatocytes. FASEB J. 2000;14:279–89.

    CAS  PubMed  Google Scholar 

  185. Ravier MA, Guldenagel M, Charollais A, G**ovci A, Caille D, Söhl G, Wollheim CB, Willecke K, Henquin JC, Meda P. Loss of connexin36 channels alters β-cell coupling, islet synchronization of glucose-induced Ca2+ and insulin oscillations, and basal insulin release. Diabetes. 2005;54:1798–807.

    CAS  PubMed  Google Scholar 

  186. Haddock RE, Grayson TH, Brackenbury TD, Meaney KR, Neylon CB, Sandow SL, Hill CE. Endothelial coordination of cerebral vasomotion via myoendothelial gap junctions containing connexins 37 and 40. Am J Physiol Heart Circ Physiol. 2006;291:H2047–56.

    CAS  PubMed  Google Scholar 

  187. Rooney T, Sass E, Thomas AP. Characterization of cytosolic calcium oscillations induced by phenylephrine and vasopressin in single fura-2 loaded hepatocytes. J Biol Chem. 1989;264:17131–41.

    CAS  PubMed  Google Scholar 

  188. Hofer T, Politi A, Heinrich R. Intercellular Ca2+ wave propagation through gap-junctional Ca2+ diffusion: a theoretical study. Biophys J. 2001;80:75–87.

    CAS  PubMed  Google Scholar 

  189. De Blasio BF, Iversen JG, Rottingen JA. Intercellular calcium signalling in cultured renal epithelia: a theoretical study of synchronization mode and pacemaker activity. Eur Biophys J. 2004;33:657–70.

    PubMed  Google Scholar 

  190. Perc M, Marhl M. Local dissipation and coupling properties of cellular oscillators: a case study on calcium oscillations. Bioelectrochem. 2004;62:1–10.

    CAS  Google Scholar 

  191. Tsaneva-Atanasova K, Zimliki CL, Bertram R, Sherman A. Diffusion of calcium and metabolites in pancreatic islets: killing oscillations with a pitchfork. Biophys J. 2006;90:3434–46.

    CAS  PubMed  Google Scholar 

  192. Ullah G, Jung P, Cornell-Bell AH. Anti-phase calcium oscillations in astrocytes via inositol (1,4,5)-trisphosphate regeneration. Cell Calcium. 2006;39:197–208.

    CAS  PubMed  Google Scholar 

  193. Dutzler R, Wang Y-F, Rizkallah PJ, Rosenbusch JP, Schirmer T. Crystal structures of various maltooligosaccharides bound to maltoporin reveal a specific sugar translocation pathway. Structure. 1996;4:127–34.

    CAS  PubMed  Google Scholar 

  194. Nikaido H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev. 2003;67:593–656.

    CAS  PubMed  Google Scholar 

  195. Rostovtseva TK, Bezrukov SM. ATP transport though a single mitochondrial channel, VDAC, studied by current fluctuation analysis. Biophys J. 1998;74:2365–73.

    CAS  PubMed  Google Scholar 

  196. Rostovtseva TK, Komarov A, Bezrukov SM, Colombini M. VDAC channels differentiate between natural metabolites and synthetic molecules. J Membr Biol. 2002;187: 147–56.

    CAS  PubMed  Google Scholar 

  197. Rostovtseva TK, Komarov A, Bezrukov SM, Colombini M. Dynamics of nucleotides in VDAC channels: structure-specific noise generation. Biophys J. 2002;82:193–205.

    CAS  PubMed  Google Scholar 

  198. Komarov A, Deng D, Craigen WJ, Colombini M. New insights into the mechanism of permeation through large channels. Biophys J. 2005;89:3950–9.

    CAS  PubMed  Google Scholar 

  199. Delcour AH. Solute uptake through general porins. Front Biosci. 2003;8:d1055–71.

    CAS  PubMed  Google Scholar 

  200. Danelon C, Nestorovich EM, Winterhalter M, Ceccarelli M, Bezrukov SM. Interaction of zwitterionic penicillins with the OmpF channel facilitates their translocation. Biophys J. 2006;90:1617–27.

    CAS  PubMed  Google Scholar 

  201. Nestorovich EM, Danelon C, Winterhalter M, Bezrukov SM. Designed to penetrate: time-resolved interaction of single antibiotic molecules with bacterial pores. Proc Natl Acad Sci USA. 2002;99:9789–94.

    CAS  PubMed  Google Scholar 

  202. Cheley S, Gu L-Q, Bayley H. Stochastic sensing of nanomolar inositol 1,4,5-trisphosphate with an engineered pore. Chem Biol. 2002;9:829–38.

    CAS  PubMed  Google Scholar 

  203. Berezhkovskii AM, Bezrukov SM. Optimizing transport of metabolites through large channels: molecular sieves with and without binding. Biophys J. 2005;88:L17–9.

    CAS  PubMed  Google Scholar 

  204. Bauer WR, Nadler W. Molecular transport through channels and pores: effects of in-channel interactions and blocking. Proc Natl Acad Sci USA. 2006;103:11446–51.

    CAS  PubMed  Google Scholar 

  205. Schwarz G, Danelon C, Winterhalter M. On translocation through a membrane channel via an internal binding site: kinetics and voltage dependence. Biophys J. 2003;84:2990–8.

    CAS  PubMed  Google Scholar 

  206. Berezhkovskii AM, Bezrukov SM. Channel-facilitated membrane transport: constructive role of particle attraction to the channel pore. Chem Phys. 2005;319:343–9.

    Google Scholar 

  207. Beltramello M, Piazza V, Bukauskas FF, Pozzan T, Mammano F. Impaired permeability to Ins(1,4,5)P3 in a mutant connexin underlies recessive hereditary deafness. Nature Cell Biol. 2005;7:63–9.

    CAS  PubMed  Google Scholar 

  208. Skerrett IM, Aronowitz J, Shin JH, Cymes G, Kasperek E, Cao FL, Nicholson BJ. Identification of amino acid residues lining the pore of a gap junction channel. J Cell Biol. 2002;159:349–59.

    CAS  PubMed  Google Scholar 

  209. Zhang Y, Tang W, Ahmad S, Sipp JA, Chen P, Lin X. Gap junction-mediated intercellular biochemical coupling in cochlear supporting cells is required for normal cochlear functions. Proc Natl Acad Sci USA. 2005;102:15201–6.

    CAS  PubMed  Google Scholar 

  210. Valiunas V, Niessen H, Willecke K, Weingart R. Electrophysiological properties of gap junction channels in hepatocytes isolated from connexin32-deficient and wild-type mice. Pflügers Arch. 1999;437:846–56.

    CAS  PubMed  Google Scholar 

  211. Vogel R, Valiunas V, Weingart R. Subconductance states of Cx30 gap junction channels: data from transfected HeLa cells versus data from a mathematical model. Biophys J. 2006;91:2337–48.

    CAS  PubMed  Google Scholar 

  212. Valiunas V, Weingart R. Electrical properties of gap junction hemichannels identified in transfected HeLa cells. Pflügers Arch. 2000;440:366–79.

    CAS  PubMed  Google Scholar 

  213. Abrams CK, Freidin MM, Verselis VK, Bargiello TA, Kelsell DP, Richard G, Bennett MV, Bukauskas FF. Properties of human connexin 31, which is implicated in hereditary dermatological disease and deafness. Proc Natl Acad Sci USA. 2006;103:5213–18.

    CAS  PubMed  Google Scholar 

  214. Kreuzberg MM, Söhl G, Kim JS, Verselis VK, Willecke K, Bukauskas FF. Functional properties of mouse connexin30.2 expressed in the conduction system of the heart. Circ Res. 2005;96:1169–77.

    CAS  PubMed  Google Scholar 

  215. Bukauskas FF, Kreuzberg MM, Rackauskas M, Bukauskiene A, Bennett MV, Verselis VK, Willecke K. Properties of mouse connexin 30.2 and human connexin 31.9 hemichannels: implications for atrioventricular conduction in the heart. Proc Natl Acad Sci USA. 2006;103:9726–31.

    CAS  PubMed  Google Scholar 

  216. Srinivas M, Rozental R, Kojima T, Dermietzel R, Mehler M, Condorelli DF, Kessler JA, Spray DC. Functional properties of channels formed by the neuronal gap junction protein connexin36. J Neurosci. 1999;19:9848–55.

    CAS  PubMed  Google Scholar 

  217. Teubner B, Degen J, Söhl G, Guldenagel M, Bukauskas FF, Trexler EB, Verselis VK, De Zeeuw CI, Lee CG, Kozak CA, Petrasch-Parwez E, Dermietzel R, Willecke K. Functional expression of the murine connexin 36 gene coding for a neuron-specific gap junctional protein. J Membr Biol. 2000;176:249–62.

    CAS  PubMed  Google Scholar 

  218. Veenstra RD, Wang HZ, Beyer EC, Ramanan SV, Brink PR. Connexin37 forms high conductance gap junction channels with subconductance state activity and selective dye and ionic permeabilities. Biophys J. 1994;66:1915–28.

    CAS  PubMed  Google Scholar 

  219. Kumari SS, Varadaraj K, Valiunas V, Ramanan SV, Christensen EA, Beyer EC, Brink PR. Functional expression and biophysical properties of polymorphic variants of the human gap junction protein connexin37. Biochem Biophys Res Commun. 2000;274:216–24.

    CAS  PubMed  Google Scholar 

  220. Bukauskas FF, Elfgang C, Willecke K, Weingart R. Biophysical properties of gap junction channels formed by mouse connexin40 in induced pairs of transfected HeLa cells. Biophys J. 1995;68:2289–98.

    CAS  PubMed  Google Scholar 

  221. Hellmann P, Winterhager E, Spray DC. Properties of connexin40 gap junction channels endogenously expressed and exogenously overexpressed in human choriocarcinoma cell lines. Pflügers Arch. 1996;432:501–9.

    CAS  PubMed  Google Scholar 

  222. Fishman GI, Spray DC, Leinwand LA. Molecular characterization and functional expression of the human cardiac gap junction channel. J Cell Biol. 1990;111:589–98.

    CAS  PubMed  Google Scholar 

  223. Fishman GI, Moreno AP, Spray DC, Leinwand LA. Functional analysis of human cardiac gap junction channel mutants. Proc Natl Acad Sci USA. 1991;88:3525–9.

    CAS  PubMed  Google Scholar 

  224. Moreno AP, Sáez JC, Fishman GI, Spray DC. Human connexin43 gap junction channels. Regulation of unitary conductances by phosphorylation. Circ Res. 1994;74:1050–7.

    CAS  PubMed  Google Scholar 

  225. Spray DC, Moreno AP, Campos de Carvalho AC. Biophysical properties of the human cardiac gap junction channel. Braz J Med Biol Res. 1993;26:541–52.

    Google Scholar 

  226. Traub O, Eckert R, Lichtenberg-Frate H, Elfgang C, Bastide B, Scheidtmann KH, Hülser DF, Willecke K. Immunochemical and electrophysiological characterization of murine connexin40 and -43 in mouse tissues and transfected human cells. Eur J Cell Biol. 1994;64:101–12.

    CAS  PubMed  Google Scholar 

  227. Veenstra RD, Wang HZ, Beyer EC, Brink PR. Selective dye and ionic permeability of gap junction channels formed by connexin45. Circ Res. 1994;75:483–90.

    CAS  PubMed  Google Scholar 

  228. Moreno AP, Laing JG, Beyer EC, Spray DC. Properties of gap junction channels formed of connexin 45 endogenously expressed in human hepatoma (SKHep1) cells. Am J Physiol. 1995;37:C356–65.

    Google Scholar 

  229. Kwak BR, Hermans MMP, deJonge HR, Lohmann SM, Jongsma HJ, Chanson M. Differential regulation of distinct types of gap junction channels by similar phosphorylating conditions. Mol Biol Cell. 1995;6:1707–19.

    CAS  PubMed  Google Scholar 

  230. Valiunas V. Biophysical properties of connexin-45 gap junction hemichannels studied in vertebrate cells. J Gen Physiol. 2002;119:147–64.

    CAS  PubMed  Google Scholar 

  231. Verselis VK, Trexler EB, Bukauskas FF. Connexin hemichannels and cell-cell channels: comparison of properties. Braz J Med Biol Res. 2000;33:379–89.

    CAS  PubMed  Google Scholar 

  232. Trexler EB, Bukauskas FF, Kronengold J, Bargiello TA, Verselis VK. The first extracellular loop domain is a major determinant of charge selectivity in connexin46 channels. Biophys J. 2000;79:3036–51.

    CAS  PubMed  Google Scholar 

  233. Hopperstad MG, Srinivas M, Spray DC. Properties of gap junction channels formed by Cx46 alone and in combination with Cx50. Biophys J. 2000;79:1954–66.

    CAS  PubMed  Google Scholar 

  234. Sakai R, Elfgang C, Vogel R, Willecke K, Weingart R. The electrical behaviour of rat connexin46 gap junction channels expressed in transfected HeLa cells. Pflügers Arch. 2003;446:714–27.

    CAS  PubMed  Google Scholar 

  235. Pfahnl A, Dahl G. Localization of a voltage gate in connexin46 gap junction hemichannels. Biophys J. 1998;75:2323–31.

    CAS  PubMed  Google Scholar 

  236. Teubner B, Odermatt B, Guldenagel M, Söhl G, Degen J, Bukauskas FF, Kronengold J, Verselis VK, Jung YT, Kozak CA, Schilling K, Willecke K. Functional expression of the new gap junction gene connexin47 transcribed in mouse brain and spinal cord neurons. J Neurosci. 2001;21:1117–26.

    CAS  PubMed  Google Scholar 

  237. Srinivas M, Costa M, Gao Y, Fort A, Fishman GL, Spray DC. Voltage dependence of macroscopic and unitary currents of gap junction channels formed by mouse connexin50 expressed in rat neuroblastoma cells. J Physiol. 1999;517:673–89.

    CAS  PubMed  Google Scholar 

  238. Srinivas M, Hopperstad MG, Spray DC. Quinine blocks specific gap junction channel subtypes. Proc Natl Acad Sci USA. 2001;98:10942–7.

    CAS  PubMed  Google Scholar 

  239. Xu X, Berthoud VM, Beyer EC, Ebihara L. Functional role of the carboxyl terminal domain of human connexin 50 in gap junctional channels. J Membr Biol. 2002;186:101–12.

    CAS  PubMed  Google Scholar 

  240. Manthey D, Bukauskas FF, Lee CG, Kozak CA, Willecke K. Molecular cloning and functional expression of the mouse gap junction gene connexin-57 in human HeLa cells. J Biol Chem. 1999;274:14716–23.

    CAS  PubMed  Google Scholar 

  241. Lin X, Fenn E, Veenstra RD. An amino-terminal lysine residue of rat connexin40 that is required for spermine block. J Physiol. 2006;570:251–69.

    CAS  PubMed  Google Scholar 

  242. Brink PR, Ramanan SV. A model for the diffusion of fluorescent probes in the septate giant axon of earthworm. Biophys J. 1985;48:299–309.

    CAS  PubMed  Google Scholar 

  243. Beltramello M, Bicego M, Piazza V, Ciubotaru CD, Mammano F, D'Andrea P. Permeability and gating properties of human connexins 26 and 30 expressed in HeLa cells. Biochem Biophys Res Commun. 2003;305:1024–33.

    CAS  PubMed  Google Scholar 

  244. Dong L, Liu X, Li H, Vertel BM, Ebihara L. Role of the N-terminus in permeability of chicken connexin45.6 gap junctional channels. J Physiol. 2006;576:787–99.

    CAS  PubMed  Google Scholar 

  245. Becker DL, Mobbs P. Connexin α 1 and cell proliferation in the develo** chick retina. Exp Neurol. 1999;158:261–3.

    CAS  Google Scholar 

  246. Heinz WF, Hoh JH. Relative surface charge density map** with the atomic force microscope. Biophys J. 1999;76:528–38.

    CAS  PubMed  Google Scholar 

  247. Manthey D, Banach K, Desplantez T, Lee CG, Kozak CA, Traub O, Weingart R, Willecke K. Intracellular domains of mouse connexin26 and-30 affect diffusional and electrical properties of gap junction channels. J Membr Biol. 2001;181:137–48.

    Google Scholar 

Download references

Acknowledgments

Work in the authors' lab included in this chapter was supported by National Institutes of Health (NIH) grants RO1 GM36044, R21 DC07470, R01 NS056509, T32 HL069752, and National Aeronautics and Space Administration (NASA) grant NNJ06HD91G. The authors regret not being able to cite all of the published work that bears on connexin channel permeability.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew L. Harris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Harris, A.L., Locke, D. (2009). Permeability of Connexin Channels. In: Harris, A.L., Locke, D. (eds) Connexins. Humana Press. https://doi.org/10.1007/978-1-59745-489-6_7

Download citation

Publish with us

Policies and ethics

Navigation