Local Gene Therapy for Cancer

  • Chapter
Regional Cancer Therapy

Abstract

Cancer is an important problem in public health worldwide. Gene therapy has the potential for improved treatment of cancer patients, particularly if used in combination with other, conventional therapies. To date, many strategies of gene therapy have been explored, including correction of mutant genes, immunstimulation, prodrug activation, interference of oncogene expression, and genetically modified oncolytic viruses. Although the preclinical results of gene therapy have shown promise for some cancers, cancer gene therapy is still at an early stage of clinical development and has not yet shown a significant therapeutic benefit for patients. The main obstacles to the introduction of gene therapy for patients are poor selectivity in vector targeting, inefficient gene transfer, and great difficulties in systemic application. Owing to the complex nature of targeted vector delivery to the tumor, strategies for gene therapy have focused their efforts on the development of local gene transfer to treat tumors locally for the benefit of the patient. This is not the answer for the treatment of a metastasizing systemic disease; however, it represents an important step toward the clinical applicability of cancer gene therapy. Furthermore, local control of tumor growth and progression could contribute to better control of the disease and improved quality of life for the patient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 199.99
Price excludes VAT (Thailand)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 199.99
Price excludes VAT (Thailand)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cho KR, Vogelstein B. Genetic alterations in the adenoma-carcinoma sequence. Cancer 1992;70: 1727–1731.

    Article  PubMed  CAS  Google Scholar 

  2. Roth JA, Nguyen D, Lawrence DD, et al. Retrovirus-mediated wild-type p53 gene transfer to tumors of patients with lung cancer. Nature Med 1996;2:985–991.

    Article  PubMed  CAS  Google Scholar 

  3. Moolten FL. Drug sensitivity (“suicide”) genes for selective cancer chemotherapy. Cancer Gene Ther 1994;1:279–287.

    PubMed  CAS  Google Scholar 

  4. Huber BE, Austin EA, Richards CA, Davis ST, Good SS. Metabolism of 5-fluorocytosine to 5-fluorouracil in human colorectal tumor cells transduced with cytosine deaminase gene: significant antitumor effects when only a small percentage of tumor cells express cytosine deaminase. Proc Natl Acad Sci U S A 1994;91:8302–8306.

    Article  PubMed  CAS  Google Scholar 

  5. Burrows FJ, Gore M, Smiley WR, et al. Purified herpes simplex virus thymidine kinase retroviral particles: III. Characterization of bystander killing mechanisms in transfected tumor cells. Cancer Gene Ther 2002;9:87–95.

    Article  PubMed  CAS  Google Scholar 

  6. Rasmussen H, Rasmussen C, Lempicki M, et al. TNFerade Biologic: preclinical toxicology of a novel adenovector with a radiation-inducible promoter carrying the human tumor necrosis factor alpha gene. Cancer Gene Ther 2002;9:951–957.

    Article  PubMed  CAS  Google Scholar 

  7. Walther W, Stein U. Therapeutic genes for cancer gene therapy. Mol Biotechnol 1999;13:21–28.

    Article  PubMed  CAS  Google Scholar 

  8. Siders WM, Halloran PJ, Fenton RG. Melanoma-specific cytotoxicity induced by a tyrosinase promoter-enhancer/herpes simplex virus thymidine kinase adenovirus. Cancer Gene Ther 1998;5: 281–291.

    PubMed  CAS  Google Scholar 

  9. Peng XY, Won JH, Rutherford T, et al. The use of the L-plastin promoter for adenoviral-mediated, tumor-specific gene expression in ovarian and bladder cancer cell lines. Cancer Res 2001;61: 4405–4413.

    PubMed  CAS  Google Scholar 

  10. Stackhouse MA, Buchsbaum DJ, Kancharla SR, et al. Specific membrane receptor gene expression targeted with radiolabeled peptide employing the erbB-2 and DF3 promoter elements in adenoviral vectors. Cancer Gene Ther 1999;6: 209–219.

    Article  PubMed  CAS  Google Scholar 

  11. Shinoura N, Saito K, Yoshida Y, et al. Adenovirus-mediated transfer of bax with caspase-8 controlled by myelin basic protein promoter exerts an enhanced cytotoxic effect in gliomas. Cancer Gene Ther 2000;7:739–748.

    Article  PubMed  CAS  Google Scholar 

  12. Zhu ZB, Makhija SK, Lu B, et al. Incorporating the survivin promoter in an infectivity enhanced CRAd-analysis of oncolysis and anti-tumor effects in vitro and in vivo. Int J Oncol 2005;27:237–246.

    PubMed  Google Scholar 

  13. Song JS, Kim HP, Yoon WS, et al. Adenovirus-mediated suicide gene therapy using the human telomerase catalytic subunit (hTERT) gene promoter induced apoptosis of ovarian cancer cell line. Biosci Biotechnol Biochem 2003;67:2344–2350.

    Article  PubMed  CAS  Google Scholar 

  14. Maemondo M, Saijo Y, Narumi K, et al. Gene therapy with secretory leukoprotease inhibitor promoter-controlled replication-competent adenovirus for non-small cell lung cancer. Cancer Res 2004;64:4611–4620.

    Article  PubMed  CAS  Google Scholar 

  15. Walther W, Stein U. Cell type specific and inducible promoters for vectors in gene therapy as an approach for cell targeting. J Mol Med 1996;74:379–392.

    Article  PubMed  CAS  Google Scholar 

  16. Robson T, Hirst DG. Transcriptional targeting in cancer gene therapy. J Biomed Biotechnol 2003;2:110–137.

    Article  Google Scholar 

  17. Walther W, Stein U. Viral vectors for gene transfer: a review of their use in the treatment of human diseases. Drugs 2000;60:249–271.

    Article  PubMed  CAS  Google Scholar 

  18. Lotze MT, Kost TA. Viruses as gene delivery vectors: application to gene function, target validation, and assay development. Cancer Gene Ther 2002;9:692–699.

    Article  PubMed  CAS  Google Scholar 

  19. El-Aneed A. An overview of current delivery systems in cancer gene therapy. J Control Release 2004;94:1–14.

    Article  PubMed  CAS  Google Scholar 

  20. Bischoff JR, Kirn DH, Williams A, et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 1996;274:373–376.

    Article  PubMed  CAS  Google Scholar 

  21. Heise C, Sampson-Johannes A, Williams A, et al. ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat Med 1997;3:639–645.

    Article  PubMed  CAS  Google Scholar 

  22. Varghese S, Rabkin SD. Oncolytic herpes simplex virus vectors for cancer virotherapy. Cancer Gene Ther 2002;9:967–978.

    Article  PubMed  CAS  Google Scholar 

  23. Norman KL, Coffey MC, Hirasawa K, et al. Reovirus oncolysis of human breast cancer. Hum Gene Ther 2002;13:641–652.

    Article  PubMed  CAS  Google Scholar 

  24. Orson FM, Kinsey BM, Bhogal BS, Song L, Densmore CL, Barry MA. Targeted delivery of expression plasmids to the lung via macroaggregated polyethylenimine-albumin conjugates. Methods Mol Med 2003;75:575–590.

    PubMed  CAS  Google Scholar 

  25. Templeton NS, Lasic DD, Frederick PM, Strey HH, Roberts DD, Pavlakis GN. Improved DNA:liposome complexes for increased systemic delivery and gene expression. Nat Biotechnol 1997;15:647–652.

    Article  PubMed  CAS  Google Scholar 

  26. Vahlsing HL, Yankauckas M, Sawdey SH, Gromkowski M, Manthorpe M. Immunization with plasmid DNA using apneumatic gun. J Immunol Methods 1994;175:11–22.

    Article  PubMed  CAS  Google Scholar 

  27. Rakhmilevich AL, Turner J, Ford MJ, et al. Gene gun-mediated skin transfection with interleukin 12 gene results in regression of established primary and metastatic murine tumors. Proc Natl Acad Sci U S A 1996;93:6291–6296.

    Article  PubMed  CAS  Google Scholar 

  28. Liu MA, Ulmer J B. Gene based vaccines. Mol Ther 2000; 1:497–500.

    Article  PubMed  CAS  Google Scholar 

  29. Turner JG, Tan J, Crucian BE, et al. Broadened clinical utility of gene gun-mediated granulocytemacrophage colony-stimulating factor cDNA-based tumor cell vaccines as demonstrated with a mouse myeloma model. Hum Gene Ther 1998;9:1121–1130.

    PubMed  CAS  Google Scholar 

  30. Davis HL, Demeneix BA, Quantin B, Coulombe J, Whalen RG. Plasmid DNA is superior to viral vectors for direct gene transfer into adult mouse skeletal muscle. Hum Gene Ther 1993;4:733–740.

    PubMed  CAS  Google Scholar 

  31. Heinzerling L, Feige K, Rieder S, et al. Tumor regression induced by intratumoral injection of DNA coding for human interleukin 12 into melanoma metastases in grey horses. J Mol Med 2001;78: 692–702.

    Article  PubMed  CAS  Google Scholar 

  32. Sikes ML, O’Malley BW, Finegold MJ, Ledley FD. In vivo gene transfer into rabbit thyroid follicular cells by direct DNA injection. Hum Gene Ther 1994;6:837–844.

    Google Scholar 

  33. Yang N-S, Burkholder J, Roberts B, Martinell B, McCabe D. In vivo and in vitro gene transfer to mammalian cells by particle bombardment. Proc Natl Acad Sci USA 1990;87:9568–9572.

    Article  PubMed  CAS  Google Scholar 

  34. Aihara H, Miyazaki J-I. Gene transfer into muscle by electroporation in vivo. Nat Biotechnol 1998;16:867–870.

    Article  PubMed  CAS  Google Scholar 

  35. Somiari S, Glasspool-Malone J, Drabick JJ, et al. Theory and in vivo application of electroporative gene delivery. Mol Ther 2000;2:178–187.

    Article  PubMed  CAS  Google Scholar 

  36. Liu F, Song YK, Liu D. Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther 1999;6:1258–1266.

    Article  PubMed  CAS  Google Scholar 

  37. Walther W, Stein U, Fichtner I, Malcherek L, Lemm M, Schlag PM. Non-viral in vivo gene delivery into tumors using a novel low volume jet-injection technology. Gene Ther 2001;8:173–180.

    Article  PubMed  CAS  Google Scholar 

  38. Hortobagyi GN, Hung MC, Lopez-Berestein G. A Phase I multicenter study of E1A gene therapy for patients with metastatic breast cancer and epithelial ovarian cancer that overexpresses HER-2/neu or epithelial ovarian cancer. Hum Gene Ther 1998;9:1775–1798.

    Article  PubMed  CAS  Google Scholar 

  39. Ram Z, Culver KW, Oshiro EM, et al. Therapy of malignant brain tumors by intratumoral implantation of retroviral vector-producing cells. Nat Med 1997;3:1354–1361.

    Article  PubMed  CAS  Google Scholar 

  40. Immonen A, Vapalahti M, Tyynela K, et al. AdvHSV-tk gene therapy with intravenous ganciclovir improves survival in human malignant glioma: a randomised, controlled study. Mol Ther 2004;10:967–972.

    Article  PubMed  CAS  Google Scholar 

  41. Rainov NG. A phase III clinical evaluation of herpes simplex virus type 1 thymidine kinase and ganciclovir gene therapy as an adjuvant to surgical resection and radiation in adults with previously untreated glioblastoma multiforme. Hum Gene Ther 2000; 11:2389–2401

    Article  PubMed  CAS  Google Scholar 

  42. Chiocca EA, Abbed KM, Tatter S, et al. A phase I open-label, dose-escalation, multi-institutional trial of injection with an E1B-attenuated adenovirus, ONYX-015, into the peritumoral region of recurrent malignant gliomas, in the adjuvant setting. Mol Ther 2004;10:958–966.

    Article  PubMed  CAS  Google Scholar 

  43. Lawler SE, Peruzzi PP, Chiocca EA. Genetic strategies for brain tumor therapy. Cancer Gene Ther 2006;13:225–233.

    Article  PubMed  CAS  Google Scholar 

  44. Roth JA, Swisher SG, Merritt JA, et al. Gene therapy for non-small cell lung cancer: a preliminary report of a phase I trial of adenoviral p53 gene replacement. Semin Oncol 1998;25:33–37.

    PubMed  CAS  Google Scholar 

  45. Swisher SG, Roth JA, Nemunaitis J, et al. Adenovirus-mediated p53 gene transfer in advanced non-small-cell lung cancer. J Natl Cancer Inst 1999;91:763–771.

    Article  PubMed  CAS  Google Scholar 

  46. Nemunaitis J, Khuri F, Ganly I, et al. Phase II trial of intratumoral administration of ONYX-015, a replication-selective adenovirus, in patients with refractory head and neck cancer. J Clin Oncol 2001;19:289–298.

    PubMed  CAS  Google Scholar 

  47. Khuri FR, Nemunaitis J, Ganly I, et al. A controlled trial of intratumoral ONYX-015, a selectivelyreplicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nat Med 2000;6:879–885.

    Article  PubMed  CAS  Google Scholar 

  48. Heise C, Ganly I, Kim YT, Sampson-Johannes A, Brown R, Kirn D. Efficacy of a replication-selective adenovirus against ovarian carcinomatosis is dependent on tumor burden, viral replication and p53 status. Gene Ther 2000;7:1925–1929.

    Article  PubMed  CAS  Google Scholar 

  49. Hecht JR, Bedford R, Abbruzzese JL, et al. A phase I/II trial of intratumoral endoscopic ultrasound injection of ONYX-015 with intravenous gemcitabine in unresectable pancreatic carcinoma. Clin Cancer Res 2003;9:555–561.

    PubMed  CAS  Google Scholar 

  50. Klatzmann D, Cherin P, Bensimon G, et al. A phase I/II dose-escalation study of herpes simplex virus type 1 thymidine kinase “suicide” gene therapy for metastatic melanoma. Study Group on Gene Therapy of Metastatic Melanoma. Hum Gene Ther 1998;9:2585–2594.

    Article  PubMed  CAS  Google Scholar 

  51. Dummer R, Bergh J, Karlsson Y, et al. Biological activity and safety of adenoviral vector-expressed wild-type p53 after intratumoral injection in melanoma and breast cancer patients with p53-overexpressing tumors. Cancer Gene Ther 2000;7:1069–1076.

    Article  PubMed  CAS  Google Scholar 

  52. Stopeck AT, Hersh EM, Akporiaye ET, et al. Phase I study of direct gene transfer of an allogeneic histocompatibility antigen, HLA-B7, in patients with metastatic melanoma. J Clin Oncol 1997;15: 341–349.

    PubMed  CAS  Google Scholar 

  53. Fujii S, Huang S, Fong TC, et al. Induction of melanoma-associated antigen systemic immunity upon intratumoral delivery of interferon-gamma retroviral vector in melanoma patients. Cancer Gene Ther 2000;7:1220–1230.

    Article  PubMed  CAS  Google Scholar 

  54. Herman JR, Adler HL, Aguilar-Cordova E, et al. In situ gene therapy for adenocarcinoma of the prostate: a phase I clinical trial. Hum Gene Ther 1999;10:1239–1249.

    Article  PubMed  CAS  Google Scholar 

  55. Freytag SO, Khil M, Stricker H, et al. Phase I study of replication-competent adenovirus-mediated double suicide gene therapy for the treatment of locally recurrent prostate cancer. Cancer Res 2002;62:4968–4976.

    PubMed  CAS  Google Scholar 

  56. DeWeese TL, van der Poel H, Li S, et al. A phase I trial of CV706, a replication-competent, PSA selective oncolytic adenovirus, for the treatment of locally recurrent prostate cancer following radiation therapy. Cancer Res 2001;61:7464–7472.

    Google Scholar 

  57. Irie A. Advances in gene therapy for bladder cancer. Curr Gene Ther 2003;3:1–11.

    Article  PubMed  CAS  Google Scholar 

  58. Wells DJ. Gene therapy progress and prospects: electroporation and other physical methods. Gene Ther 2004;11:1363–1369.

    Article  PubMed  CAS  Google Scholar 

  59. Zhang G, Song YK, Liu D. Long-term expression of human alphal-antitrypsin gene in mouse liver achieved by intravenous administration of plasmid DNA using hydrodynamics-based procedure. Gene Ther 2000;7:1344–1349.

    Article  PubMed  CAS  Google Scholar 

  60. Yamashita Y, Shimada M, Hasegawa H, et al. Electroporation-mediated interleukin-12 gene therapy for hepatocellular carcinoma in the mice model. Cancer Res 2001;61:1005–1012.

    PubMed  CAS  Google Scholar 

  61. Heller LC, Coppola D. Electrically mediated delivery of vector plasmid DNA elicits an antitumor effect. Gene Ther 2002;9:1321–1325.

    Article  PubMed  CAS  Google Scholar 

  62. Seigne J, Turner J, Diaz J, et al. Feasibility study of gene gun mediated immunotherapy for renal cell carcinoma. J Urol 1999;162:1259–1263.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Walther, W., Stein, U.S., Schlag, P.M. (2007). Local Gene Therapy for Cancer. In: Schlag, P.M., Stein, U., Eggermont, A.M.M. (eds) Regional Cancer Therapy. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-225-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-225-0_12

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-672-6

  • Online ISBN: 978-1-59745-225-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation