Abstract

Monoamine-based theories of major depressive disorder (MDD) have dominated thinking in biological psychiatry for over 40 yr. These theories were largely grounded on the principle of “reverse engineering.” In this case, the demonstrable effects of “first generation” antidepressants (e.g., tricyclics, such as imipramine) on the reuptake of norepinephrine and serotonin (1,2), and the observation that drugs depleting these biogenic amines lower mood (3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 232.09
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 210.99
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Glowinski J, Axelrod J. Effect of drugs on the uptake, release and metabolism of 3H-norepinephrine in the rat brain. J Pharmacol Exp Ther 1965; 149:43–49.

    CAS  PubMed  Google Scholar 

  2. Carlsson A, Fuxe K, Ungerstedt U. The effect of imipramine on central 5-hydroxytryptamine neurons. J Pharm Pharmacol 1968; 20:150–151.

    CAS  PubMed  Google Scholar 

  3. Schildkraut JJ. Catecholamine hypothesis of affective disorders: a review of supporting evidence. Amer J Psychiat 1965; 130:695–699.

    Google Scholar 

  4. Randrup A, Munkvad J, Fog R, et al. Mania, depression and brain dopamine. In: Essman WB, Valzelli L, eds. Current Developments in Psychopharmacology. Vol. 2. New York: Spectrum Publications, 1975:206–248.

    Google Scholar 

  5. Serra G, Argiolas A, Klimek V, Fadda F, Gessa GL. Chronic treatment with antidepressant prevents the inhibitory effect of small doses of apomorphine on dopamine synthesis and motor activity. Life Sci 1979; 25:414–424.

    Article  Google Scholar 

  6. Wise RA. Neuroleptics and operant behavior: the anhedonia hypothesis. Behav Brain Sci 1982; 5:39–87.

    Article  Google Scholar 

  7. Willner P. Dopamine and depression: a review of recent evidence. I. Empirical Studies. Brain Res Rev 1983; 6:211–224.

    Article  CAS  Google Scholar 

  8. Skolnick P, Legutko B, Li X, Bymaster FP. Current perspectives on the development of non-biogenic amine based antidepressants. Pharmacological Res 2001; 43:411–423.

    Article  CAS  Google Scholar 

  9. Paul IA, Skolnick P. Glutamate and depression: clinical and preclinical studies. Ann NY Acad Sci 2003; 1003:250–272.

    Article  CAS  PubMed  Google Scholar 

  10. Lippa AS, Antelman SM, Fisher AE, Canfield DR. Neurochemical mediation of reward: a significant role for dopamine? Pharmacol Biochem Behav 1973; 1:23–28.

    Article  CAS  PubMed  Google Scholar 

  11. Kelley AE. Neural integrative activities of nucleus accumbens subregions in relation to learning and motivation. Psychobiology 1999; 27:198–213.

    Google Scholar 

  12. Wise RA. Brain reward circuity: insights from unsensed incentives. Neuron 2002; 36:229–240.

    Article  CAS  PubMed  Google Scholar 

  13. Salamone JD, Cousins MS, Snyder BJ. Behavioral functions of nucleus accumbens dopamine: empirical and conceptual problems with the anhedonia hypothesis. Neurosci Biobehav Rev 1997; 21:341–359.

    Article  CAS  PubMed  Google Scholar 

  14. Di Chiara G. Drug addiction as dopamine-dependent associative learning disorder. Eur J Pharmacol 1999; 375:13–30.

    Article  PubMed  Google Scholar 

  15. Willner P. Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacology (Berl) 1997; 134:319–329.

    Article  CAS  Google Scholar 

  16. Moreau JL, Jenck F, Martin JR, Mortas P, Haefely W. Effects of moclobemide, a new generation reversible MAO-A inhibitor, in a novel animal model of depression. Pharmacopsychiatry 1993; 26:30–33.

    Article  CAS  PubMed  Google Scholar 

  17. Papp M, Klimek V, Willner P. Parallel changes in dopamine D2 receptor binding in limbic forebrain associated with chronic mild stress-induced anhedonia and its reversal by imipramine. Psychopharmacology 1994; 115:441–446.

    Article  CAS  PubMed  Google Scholar 

  18. Dziedzicka-Wasylewska M, Willner P, Papp M. Changes in dopamine receptor mRNA expression following chronic mild stress and chronic antidepressant treatment. Behav Pharmacol 1997; 8:607–618.

    Article  CAS  PubMed  Google Scholar 

  19. Papp M, Muscat R, Willner P. Subsensitivity to rewarding and locomotor stimulant effects of a dopamine agonist following chronic mild stress. Psychopharmacology 1993; 110:152–158.

    Article  CAS  PubMed  Google Scholar 

  20. Di Chiara G, Loddo P, Tanda G. Reciprocal changes in prefrontal and limbic dopamine responsiveness to aversive and rewarding stimuli after chronic mild stress: implications for the psychobiology of depression. Biol Psychiatry 1999; 46:1624–1633.

    Article  PubMed  Google Scholar 

  21. Willner P. Dopaminergic mechanisms in depression and mania. In: Watson S, ed. Psychopharmacology: The Fourth Generation of Progress. On-line ed. New York: Lippincott Williams & Wilkins, 2000.

    Google Scholar 

  22. Wolfe N, Katz DI, Albert ML, et al. Neuropsychological profile linked to low dopamine: in Alzheimer’s disease, major depression, and Parkinson’s disease. J Neurol Neurosurg Psychiat 1990; 53:915–917.

    Article  CAS  PubMed  Google Scholar 

  23. Jimerson DC. Role of dopamine mechanisms in affective disorders. In: Meltzer HY, ed. Psychopharmacology: The Third Generation of Progress. 3rd ed. New York: Raven Press; 1987:515–521.

    Google Scholar 

  24. Jimerson DC, Post RM. Psychomotor stimulants and dopamine agonists in depression. In: Post RM, Ballenger JC, eds. Neurobiology of Mood disorders. Frontiers of Clinical Neuroscience. Vol. 1. Baltimore & London: Williams and Wilkins; 1984:819–828.

    Google Scholar 

  25. Van Scheyen JD, Van Praag HM, Korf J. Controlled study comparing nomifensine and clomipramine in unipolar depression, using the probenecid technique. Br J Clin Pharmacol 1977; 4 (Suppl 2):179S–184S.

    PubMed  Google Scholar 

  26. Eshleman AJ, Carmolli M, Cumbay M, Martens CR, Neve KA, Janowsky A. Characteristics of drug interactions with recombinant biogenic amine transorters expressed in the same cell type. J Pharmacol Exp Ther 1999; 289:877–885.

    CAS  PubMed  Google Scholar 

  27. Bowden C, Cheetham SC, Lowther S, Katona CL, Crompton MR, Horton RW. Reduced dopamine turnover in the basal ganglia of depressed suicides. Brain Res 1997; 769:135–140.

    Article  CAS  PubMed  Google Scholar 

  28. Bowden C, Cheetham SC, Lowther S, Katona CL, Crompton MR, Horton RW. Dopamine uptake sites, labeled with [3H]GBR12935, in brain samples form depressed suicides and controls. Eur Neuropsychopharmacol 1997; 7:247–252.

    Article  CAS  PubMed  Google Scholar 

  29. Meyer JH, Kruger S, Wilson AA, et al. Lower dopamine transporter binding potential in striatum during depression. Neuroreport 2001; 12:4121–4125.

    Article  CAS  PubMed  Google Scholar 

  30. Vetulani J, Sulser F. Action of various antidepressant treatment reduces reactivity of noradrenergic cyclic AMP generating system in limbic forebrain. Nature 1975;257:495–496.

    Article  CAS  PubMed  Google Scholar 

  31. Coyle JT, Duman RS. Finding the intracellular signalling pathways affected by mood disorder treatments. Neuron 2003; 38:157–160.

    Article  CAS  PubMed  Google Scholar 

  32. Duman RS, Nakagawa S, Malberg J. Regulation of adult neurogenesis by antidepressant treatment. Neuropsychopharmacology 2001; 25:836–844.

    Article  CAS  PubMed  Google Scholar 

  33. D’Aquila PS, Collu M, Gessa GL, Serra G. The role of dopamine in the mechanism of action of antidepressant drugs. Eur J Pharmacol 2000; 405:365–373.

    Article  PubMed  Google Scholar 

  34. Collu M, Poggiu AS, Devoto P, Serra G. Behavioural sensitization of mesolimbic dopamine D2 receptors in chronic fluoxetine-treated rats. Eur J Pharmacol 1997; 322:123–127.

    Article  CAS  PubMed  Google Scholar 

  35. Maj J, Rogoz Z, Skuza G, Sowinska H. Antidepressants given repeatedly increase the behavioural effect of dopamine D-2 agonist. J Neural Transm 1989; 78:1–8.

    Article  CAS  Google Scholar 

  36. Maj J, Dziedzicka-Wasylewska M, Rogoz R, Rogoz Z. Effect of antidepressant drugs administered repeatedly on the dopamine D3 receptors in the rat brain. Eur J Pharmacol 1998; 351:31–37.

    Article  CAS  PubMed  Google Scholar 

  37. Spyraki C, Fibiger HC. Behavioural evidence for supersensitivity of postsynaptic dopamine receptors in the mesolimbic system after chronic administraiton of desipramine. Eur J Pharmacol 1981; 74:195–206.

    Article  CAS  PubMed  Google Scholar 

  38. Maj J, Wedzony K. Repeated treatment with imipramine or amitryptyline increases the locomotor response of rats to (+)-amphetamine given into the nucleus accumbens. J Pharm Pharmacol 1985; 37:362–364.

    CAS  PubMed  Google Scholar 

  39. Maj J, Papp M, Skuza G, Bigajska K, Zazula M. The influence of repeated treatment with imipramine, (+)-and (−)-oxaprotiline on behavioural effects of dopamine D-1 and D-2 agonists. J Neural Transm 1989; 76:29–38.

    Article  CAS  PubMed  Google Scholar 

  40. Naranjo C, Tremblay LK, Busto UE. The role of the brain reward system in depression. Prog Neurosychopharmacol Biol Psychiaty 2001; 25:781–823.

    Article  CAS  Google Scholar 

  41. Chagraoui A, Vasse M, Protais P. Effects of chronic treatments with amineptine and esipramine on motor responses involving dopaminergic systems. Psychopharmacologia 1990; 102:201–206.

    Article  CAS  Google Scholar 

  42. Rogoz Z, Wrobel A, Dlaboga D, Dziedzicka-Wasylewska M. Effect of repeated treatment with mirtazepine on the central dopaminergic D2/D3 receptors. Pol J Pharmacol 2002; 54:381–389.

    CAS  PubMed  Google Scholar 

  43. Rossby SP, Sulser F. Antidepressants: beyond the synapse. In: Skolnick P, ed. Antidepressants: New Pharmacological Strategies. Totowa: Humana Press, 1997:195–212.

    Google Scholar 

  44. Skolnick P. Antidepressants for the new millennium. Eur J Pharmacol 1999; 375:31–41.

    Article  CAS  PubMed  Google Scholar 

  45. Maj J, Wedzony K. The influence of oxaprotiline enantiomers given repeatedly on the behavioural effects of d-amphetmaine and dopamine injected into the nucleus accumbens. Eur J Pharmacol 1988; 145:97–103.

    Article  CAS  PubMed  Google Scholar 

  46. Chiodo L, Antelman S. Repeated tricyclics induce a progressive dopamine autoreceptor subsensitivity independent of daily drug treatment. Nature 1980; 28: 451–454.

    Article  Google Scholar 

  47. Rogoz R, Dziedzicka-Wasylewska M. Effects of antidepressant drugs on the dopamine D2/D3 receptors in the rat brain differentiated by agonist and antagonist binding—an autoradiographic analysis. Naunyn Schmiedebergs Arch Pharmacol 1999; 359:178–86.

    Article  CAS  PubMed  Google Scholar 

  48. Dziedzicka-Wasylewska M, Rogoz Z, Skuza G, Dlaboga D, Maj J. Effect of repeated treatment with tianeptine and fluoxetine on central dopamine D2/D3 receptors. Behav Pharmacol 2002; 13:127–138.

    CAS  PubMed  Google Scholar 

  49. Ainsworth K, Smith SE, Zetterstrom TS, Pei Q, Franklin M, Sharp T. Effect of antidepressant drugs on dopamine D1 and D2 receptor expression and dopamine release in the nucleus accumbens of the rat. Psychopharmacology (Berl) 1998; 140:470–147.

    Article  CAS  Google Scholar 

  50. Lammers CH, Diaz J, Schwartz JC, Sokoloff P. Selective increase of dopamine D3 receptor gene expression as a common effect of chronic antidepressant treatments. Mol Psychiatry 2000; 5:378–388.

    Article  CAS  PubMed  Google Scholar 

  51. Dziedzicka-Wasylewska M, Rogoz R, Klimek V, Maj J. Repeated administration of antidepressant drugs affects the levels of mRNA coding for D1 and D2 dopamine receptors in the rat brain. J Neural Transm 1997; 104:515–524.

    Article  CAS  PubMed  Google Scholar 

  52. Maj J, Rogoz Z, Margas W, Dziedzicka-Wasylewska M. The effect of repeated treatment with pramipexole on the central dopamine D3 system. J Neural Transm 2000; 107:1369–1379.

    Article  CAS  PubMed  Google Scholar 

  53. Berendsen HH, Broekkamp CL, Pinder RM. Mirtazapine enhances the effect of haloperidol on apomorphine-induced climbing behavior and attenuates haloperidol-induced catalepsy in mice. Psychopharmacol 1998; 135:284–289.

    Article  CAS  Google Scholar 

  54. Ebert D, Feistel H, Loew T, Pirner A. Dopamine and depression—striatal dopamine D2 receptor SPECT before and after antidepressant therapy. Psychopharmacology 1996; 126:91–94.

    Article  CAS  PubMed  Google Scholar 

  55. Nomikos GG, Damsma G, Wenkstern D, Fibiger HC. Chronic despiramine enhances amphetamine-induced increases in intersititial concentrations of dopamine in the nucleus accumbens. Eur J Pharmacol 1991; 195:63–73.

    Article  CAS  PubMed  Google Scholar 

  56. Bowden C, Theodorou AE, Cheetham SC, et al. Dopamine D1 and D2 receptor binding sites in brain samples from depressed suicides and controls. Brain Res 1997c; 752:227–233.

    Article  CAS  PubMed  Google Scholar 

  57. Allard P, Norlen M. Caudate nucleus dopamine D(2) receptors in depressed suicide victims. Neuropsychobiology 2001; 44:70–73.

    Article  CAS  PubMed  Google Scholar 

  58. Cooper BR, Wang CM, Cox RF, Norton R, Shea V, Ferris RM. Evidence that acute behavioral and electrophysiological effects of bupropion (Wellbutrin) are mediated by a noradrenergic mechanism. Neuropsychopharmacology 1994; 11:133–141.

    CAS  PubMed  Google Scholar 

  59. Nieuwstraten CE, Dolovich LR. Buproprion versus selective serotonin-reuptake inhibitors for treatment of depression. Ann Pharmacother 2001; 35:1608–613.

    Article  CAS  PubMed  Google Scholar 

  60. Slemmer JE, Martin BR, Damaj MI. Bupropion is a nicotinic antagonist. J Pharmacol Exp Ther 2000; 295:321–327.

    CAS  PubMed  Google Scholar 

  61. Brunello N, Mendlewicz J, Kasper S, et al. The role of noradrenaline and selective noradrenaline reuptake inhibition in depression. Eur Neuropsychopharm 2002; 12:461–475.

    Article  CAS  Google Scholar 

  62. Borsini F, Meli A. Is the forced swim test a suitable model for revealing antidepressant activity? Psychopharmacology 1988; 94:147–160.

    Article  CAS  PubMed  Google Scholar 

  63. Porsolt RD, Lenegre A. Behavioral models of depression. In: Elliott JM, Heal DJ, Marsden CA, eds. Experimental Approaches to Anxiety and Depression. London & New York: John Wiley & Sons: 1992:73–85.

    Google Scholar 

  64. Tizabi Y, Overstreet DH, Revzani AH, et al. Antidepressant effects of nicotine in an animal model of depression. Psychopharmacology 1999; 142:193–199.

    Article  CAS  PubMed  Google Scholar 

  65. Salin-Pascual RJ, Rosas M, Jimenez-Genchi A, Rivera-Meza BL, Delgado-Parra V. Antidepressant effect of transdermal nicotine patches in nonsmoking patients with major depression. J Clin Psychiatry 1996; 57:387–389.

    CAS  PubMed  Google Scholar 

  66. Waehrens J, Gerlach J. Bromocriptine and imipramine in endogenous depression. A double-blind controlled trial in out-patients. J Affect Disord 1981; 3:193–202.

    Article  CAS  PubMed  Google Scholar 

  67. Theohar C, Fischer-Cornelssen K, Brusch H, Fischer EK, Petrovic D. Acomparative, multicenter trial between bromocriptine and amitriptyline in the treatment of endogenous depression. Arzneimittelforsch 1982; 32:783–787.

    CAS  PubMed  Google Scholar 

  68. Bouras N, Bridges PK. Bromocriptine in depression. Curr Med Res Opin 1982; 8:50–53.

    Google Scholar 

  69. Sitland-Marken PA, Wells BG, Froemming JH, Chu CC, Brown CS. Psychiatric applications of bromocriptine. J Clin Psychiatry 1990; 51:68–82.

    CAS  PubMed  Google Scholar 

  70. Corrigan MH, Denahan AQ, Wright CE, Ragual RJ, Evans DL. Comparison of pramipexole, fluoxetine, and placebo in patients with major depression. Depress Anxiety 2000; 11:58–65.

    Article  CAS  PubMed  Google Scholar 

  71. Rektorova I, Rektor I, Bares M, et al. Pramipexole and pergolide in the treatment of depression in Parkinson’s disease: a national multicentre prospective randomized study. Eur J Neurol 2003; 10:399–406.

    Article  CAS  PubMed  Google Scholar 

  72. Fava M. Augmentation and combination strategies in treatment-resistant depression. J Clin Psychiatry 2001; 62:4–11.

    CAS  PubMed  Google Scholar 

  73. Nelson JC. Augmentation strategies with serotonergic-noradrenergic combinations. J Clin Psychiatry 1998; 59:65–68.

    CAS  PubMed  Google Scholar 

  74. Bodkin JA, Lasser RA, Wines JD, Gardner DM, Baldessarini RJ. Combining serotonin reuptake inhibitors and bupropion in partial responders to antidepressant monotherapy. J Clin Psychiatry 1997; 58:137–145.

    CAS  PubMed  Google Scholar 

  75. Kennedy SH, McCann SM, Masellis M, et al. Combining bupropion SR with venlafaxine, paroxetine, or fluoxetine: a preliminary report on pharmacokinetic, therapeutic, and sexual dysfunction effects. J Clin Psychiatry 2000; 63:181–186.

    Google Scholar 

  76. Maj J, Rogoz Z, Skuza G, Kolodziejczyk K. Antidepressant effects of pramipexole, a novel dopamine receptor agonist. J Neural Transm 1997; 104:525–533.

    Article  CAS  PubMed  Google Scholar 

  77. Inoue T, Tscuchiya K, Miura J, et al. Bromocriptine treatment of tricyclic and heterocyclic antidepressant-resistant depression. Biol Psychiatry 1996; 40:151–153.

    Article  CAS  PubMed  Google Scholar 

  78. Izumi T, Inoue T, Kitagawa N, et al. Open pergolide treatment of tricyclic and heterocyclic antidepressant-resistant depression. J Affect Disord 2000; 61:127–132.

    Article  CAS  PubMed  Google Scholar 

  79. Lattanzi L, Dell’Osso L, Cassano P, et al. Pramipexole in treatment-resistant depression: a 16-week naturalistic study. Bipolar Disord 2002; 4:307–314.

    Article  CAS  PubMed  Google Scholar 

  80. Perugi G, Toni C, Ruffolo G, Frare E, Akiskal H. Adjunctive dopamine agonists in treatment-resistant bipolar II depression: an open case series. Pharmacopsychiatry 2001; 34:137–141.

    Article  CAS  PubMed  Google Scholar 

  81. Sporn J, Ghaemi SN, Sambur MR, et al. Pramipexole augmentation in the treatment of unipolar and bipolar depression: a retrospective chart review. Ann Clin Psychiatry 2000; 12:137–140.

    CAS  PubMed  Google Scholar 

  82. Briley M, Moret C. Antidepressant properties of specific serotonin-noradrenaline reuptake inhibitors. In: Skolnick P, ed. Antidepressants: New Pharmacological Strategies. Totowa: Humana Press, 1997:35–52.

    Google Scholar 

  83. Skolnick P. Antidepressants beyond monoamine-based therapies: clues to new approaches. J Clin Psychiatry 2002; 63:19–23.

    CAS  PubMed  Google Scholar 

  84. Povlock SL, Amara SG. The structure and function of norepinephrine, dopamine and serotonin transporters. In: Reith MEA, ed. Neurotransmitter Transporters: Structure, Function, and Regulation. Totowa: Humana Press, 1997:1–28.

    Google Scholar 

  85. Skolnick P, Popik P, Janowsky A, Beer B, Lippa A. “Broad spectrum” antidepressants: is more better for the treatment of depression? Life Sci 2003 73:3175–3179. Review.

    Article  CAS  PubMed  Google Scholar 

  86. Skolnick P, Popik P, Janowsky A, Beer B, Lippa A. Antidepressant-like actions of DOV 21, 947: a “triple” reuptake inhibitor. Eur J Pharmacol 2003b; 461:99–104.

    Article  CAS  PubMed  Google Scholar 

  87. Porsolt RD, Bertin A, Jalfre M. Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 1977; 229:327–336.

    CAS  PubMed  Google Scholar 

  88. Steru L, Chermat R, Theirry B, Simon P. The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology 1985; 85:367–370.

    Article  CAS  PubMed  Google Scholar 

  89. Trullas R, Skolnick P. Functional antagonists at the NMDA receptor complex exhibit antidepressant actions. Eur J Pharmacol 1990; 185:1–10.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Skolnick, P. (2005). Dopamine and Depression. In: Schmidt, W.J., Reith, M.E.A. (eds) Dopamine and Glutamate in Psychiatric Disorders. Humana Press. https://doi.org/10.1007/978-1-59259-852-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-852-6_9

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-325-1

  • Online ISBN: 978-1-59259-852-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation