Natural Killer Cell-Chemokine Interactions

Biologic Effects on Natural Killer Cell Trafficking and Cytolysis

  • Chapter
Chemokines and Cancer

Part of the book series: Contemporary Cancer Research ((CCR))

Abstract

The process of inflammation and immune recognition involve a complex series of events that result in an accumulation of specific leukocyte subsets at the site of tissue alteration or damage. These processes involve activation of cellular components and release of reactive mediators, changes in vascular endothelium, and penetration of the basement membrane, as well as chemotaxis of specific leukocyte subsets to the site of injury and infiltration into the tissue site (1–4). While these extravasating leukocytes are critical for host defense, leading to clearance of the inciting factors such as infectious agents, it should also be appreciated that leukocyte recruitment may also contribute to the pathogenesis of an underlying disease. The maintenance of leukocyte recruitment during inflammation requires a “delicate” communication between infiltrating leukocytes and the endothelium (1–5). These signals are mediated via the generation of several early response cytokines (such as interleukin-1 [IL-1] and tumor necrosis factor-α [TNF-α]), the expression of surface adhesion molecules, and the production of chemotactic molecules. All these processes, in one way or another, have been shown to be involved in the localization of neutrophils, monocytes, macrophages, eosinophils, basophils, T- and B-lymphocytes, and natural killer (NK) cells to inflammatory sites. In many disease states, this recruitment appears to be selective in that neutrophils are typically present in sites of acute inflammation whereas macrophages and lymphocytes are typically present at sites of chronic inflammation or at the later stages of disease. Likewise, in viral infections (6, 7) and during the rejection of allografts (8), NK cells selectively accumulate in the inflammatory site, in many cases before T-cell infiltration.

The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Butcher, E. C. 1991. Leukocyte-endothelial cell recognition: three (or more) steps to specificity and diversity. Cell 67: 1033.

    Article  PubMed  CAS  Google Scholar 

  2. Springer, T. A. 1994. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76: 301.

    Article  PubMed  CAS  Google Scholar 

  3. Springer, T. A. 1995. Traffic signals on endothelium for lymphocyte recirculation and leukocyte emigration. Annu. Rev. Physiol. 57: 827.

    Article  PubMed  CAS  Google Scholar 

  4. Shimizu, Y., W. Newman, Y. Tanaka, and S. Shaw. 1992. Lymphocyte interactions with endothelial cells. Immunol. Today 13: 106.

    Article  PubMed  CAS  Google Scholar 

  5. Butcher, E. C., and L. J. Picker. 1996. Lymphocyte homing and homeostasis. Science 272: 60.

    Article  PubMed  CAS  Google Scholar 

  6. McIntyre, K. W., and R. M. Welsh. 1986. Accumulation of natural killer and cytotoxic T large granular lymphocytes in the liver during virus infection. J. Exp. Med. 164: 1667.

    Article  PubMed  CAS  Google Scholar 

  7. Natuk, R. J., and R. M. Welsh. 1987. Accumulation and chemotaxis of natural killer/large granular lymphocytes at sites of virus replication. J. Immunol. 138: 877.

    PubMed  CAS  Google Scholar 

  8. Nemlander, A., E. Saksela, and P. Hayrj. 1983. Are natural killer cells involved in allograft rejection? Eur. J. Immunol. 13: 348.

    Article  PubMed  CAS  Google Scholar 

  9. Herberman, R. B., and J. R. Ortaldo. 1981. NK cells: their role in defense against disease. Science 214: 24.

    Article  PubMed  CAS  Google Scholar 

  10. Robertson, M. J., and J. Ritz. 1990. Biology and clinical relevance of human natural killer cells. Blood 76: 2421.

    PubMed  CAS  Google Scholar 

  11. Trinchieri, G. 1989. Biology of natural killer cells, in Advances in Immunology, vol. 47 ( Dixon, F. J., ed.), Academic, San Diego, p. 187.

    Google Scholar 

  12. Whiteside, T. L., and R. B. Herberman. 1994. Role of human natural killer cells in health and disease. Clin. Diag. Lab. Immunol. 1: 125.

    CAS  Google Scholar 

  13. Pilaro, A. M., D. D. Taub, K. L. McCormick, H. M. Williams, T. J. Sayers, W. E. Fogler, and R. H. Wiltrout. 1994. TNF-a is a principal cytokine involved in the recruitment of NK cells to liver parenchyma. J. Immunol. 153: 333–342.

    PubMed  CAS  Google Scholar 

  14. Allavena, P., S. Sozzani, and A. Mantovani. 1997. Molecules involved in trafficking of NK cells and dendritic cells: implications for tumour immunotherapy, in Adhesion Molecules and Chemokines in Lymphocyte Trafficking. Harwood Academic, Germany, p. 201.

    Google Scholar 

  15. Holmberg, L. A., K. A. Springer, and K. A. Ault. 1981. Natural killer activity in the peritoneal exudate of mice infected with listeria monocytogenes. J. Immunol. 127: 1792.

    PubMed  CAS  Google Scholar 

  16. Glimpel, G. R., D. W. Niesel, M. Asuncion, and K. D. Klimpel. 1988. Natural killer cell activation and interferon production by peripheral blood lymphocytes after exposure to bacteria. Infect. Immun. 56: 1436–1441.

    Google Scholar 

  17. Bottazzi, B., M. Introna, P. Allavena, A. Villa, and A. Mantovani. 1985. In vitro migration of human large granular lymphocytes. J. Immunol. 134: 2316.

    Google Scholar 

  18. Pohajdak, B., J. Gomez, F. W. Orr, N. Khalik, M. Talgoy, and A. H. Greenberg. 1986. Chemotaxis of large granular lymphocytes. J. Immunol. 136: 278.

    PubMed  CAS  Google Scholar 

  19. Polentarutti, N., B. Bottazzi, C. Balotta, A. Erroi, and A. Mantovani. 1986. Modulation of the locomotory capacity of human large granular lymphocytes. Cell Immunol. 101: 204.

    Article  PubMed  CAS  Google Scholar 

  20. Somersalo, K., O. Carpen, and E. Saksela. 1994. Stimulated natural killer cells secrete factors with chemotactic activity, including NAP-1 IL-8, which supports VLA-4- and VLA-5-mediated migration of T lymphocytes. Eur. J. Immunol. 24: 2957.

    Article  PubMed  CAS  Google Scholar 

  21. Allavena, P., C. Paganin, I. Martin Padura, G. Peri, M. Gaboli, E. Dejana, P. C. Marchisio, and A. Mantovani. 1991. Molecules and structures involved in the adhesion of natural killer cells to vascular endothelium. J. Exp. Med. 173: 439.

    Article  PubMed  CAS  Google Scholar 

  22. Gismondi, A., S. Morrone, M. J. Humphries, M. Piccoli, L. Frati, and A. Santoni. 1991. Human natural killer cells express VLA-4 and VLA-5, which mediate their adhesion to fibronectin. J. Immunol. 146: 384.

    PubMed  CAS  Google Scholar 

  23. Somersalo, K., and E. Sakela. 1991. Fibronectin facilitates the migration of human natural killer cells. Eur. J. Immunol. 21: 35.

    Article  PubMed  CAS  Google Scholar 

  24. Bianchi, G., M. Sironi, E. Ghibaudi, C. Selvaggini, M. Elices, P. Allavena, and A. Mantovani. 1993. Migration of natural killer cells across endothelial cell monolayers. J. Immunol. 151: 5135.

    PubMed  CAS  Google Scholar 

  25. Aronson, F. R., P. Libby, E. P. Brandon, M. W. Janicka, and J. W. Mier. 1988. IL-2 rapidly induces natural killer cell adhesion to human endothelial cells: a potential mechanism for endothelial injury. J. Immunol. 141: 158.

    PubMed  CAS  Google Scholar 

  26. Rabinovich, H., R. B. Herberman, and T. Whiteside. 1993. Differential effects of IL-12 and IL-2 in expression and function of cellular adhesion molecules on purified NK cells. Cell Immunol. 152: 481.

    Article  Google Scholar 

  27. Allavena, P., C. Paganin, D. Zhou, G. Bianchi, S. Sozzani, and A. Mantovani. 1994. Interleukin-12 is chemotactic for natural killer cells and stimulates their interaction with vascular endothelium. Blood 84 (7): 2261–2268.

    PubMed  CAS  Google Scholar 

  28. Maghazachi, A. A., and A. Al-Aoukaty. 1993. Guanine nucleotide binding proteins mediate the chemotactic signal of transforming growth factor-1 in rat IL-2-activated natural killer cells. Int. Immunol. 5: 825 - 832.

    Article  PubMed  CAS  Google Scholar 

  29. Maghazachi, A. A., and A. Al-Aoukaty. 1993. Transforming growth factor-1 is chemotactic for interleukin-2-activated natural killer cells. Nat. Immunity 12: 57 - 61.

    CAS  Google Scholar 

  30. Maghazachi, A. A. 1991. Tumor necrosis factor-a is chemokinetic for lymphokine-activated natural killer cells: regulation by cyclic adenosine monophosphate. J. Leuk. Biol. 49: 302–308.

    CAS  Google Scholar 

  31. Robertson, M. J., M. A. Caligiuri, T. J. Manley, H. Levine, and J. Ritz. 1990. Human natural killer cell adhesion molecules: differential expression after activation and participation in cytolysis. J. Immunol. 145: 3194.

    PubMed  CAS  Google Scholar 

  32. Maenpoaa, A., J. Jaakelainen, O. Carpen, M. Patarroyo, and T. Timonen. 1993. Expression of integrins and other adhesion molecules on NK cells: impact of IL-2 on short-and longterm cultures. Int. J. Cancer 53: 850.

    Article  Google Scholar 

  33. Ortaldo, J. R., A. Mason, and R. Overton. 1986. Lymphokine-activated killer (LAK) cells: analysis of progenitors and effectors. J. Exp. Med. 164: 1193.

    Article  PubMed  CAS  Google Scholar 

  34. Pirelli, A., P. Allavena, and A. Mantovani. 1988. Activated adherent large granular lymphocytes/natural killer (LGL/NK) cells change their migratory behaviour. Immunology 65: 651.

    PubMed  CAS  Google Scholar 

  35. Rosenberg, S. A. 1992. Karnofsky Memorial Lecture. The immunotherapy and gene therapy of cancer. J. Clin. Oncol. 10: 180.

    PubMed  CAS  Google Scholar 

  36. Baggiolini, M., B. Dewald, and B. Moser. 1994. Interleukin-8 and related chemotactic cytokines-CXC and CC chemokines. Adv. Immunol. 55: 97.

    Article  PubMed  CAS  Google Scholar 

  37. Oppenheim, J. J., J. M. Wang, O. Chertov, D. D. Taub, and A. Ben-Baruch. 1996. The role of chemokines in transplantation, in Transplantation Biology: Cellular and Molecular Aspects (Tilney, N. L., et al., eds.), Lippincott-Raven, Philadelphia, p. 21. 1.

    Google Scholar 

  38. Schall, T. J., and K. B. Bacon. 1994. Chemokines, leukocyte trafficking, and inflammation. Curr. Opin. Immunol. 6: 865.

    Article  PubMed  CAS  Google Scholar 

  39. Tanaka, Y., D. H. Adams, and S. Shaw. 1993. Proteoglycans on endothelial cells present adhesion-inducing cytokines to leukocytes. Immunol. Today 14: 111.

    Article  PubMed  CAS  Google Scholar 

  40. Taub, D. D., and J. J. Oppenheim. 1994. Chemokines, inflammation and the immune system. Ther. Immunol. 1: 229.

    Google Scholar 

  41. Taub, D. D., and W. J. Murphy. Chemokines as mediators of adhesion and migration, in Adhesion Molecules and Lymphocyte Trafficking (Hamann, A., ed.), Harwood Academic, Switzerland.

    Google Scholar 

  42. Taub, D. D. 1996. Chemokines-leukocyte interactions: the voodoo that they do so well. Cytokine Growth Factor Rev. 7 (4): 355–376.

    Article  PubMed  CAS  Google Scholar 

  43. Kelner, G. S., J. Kennedy, K. Bacon, S. Kleyensteuber, D. A. Largaespada, N. A. Jenkins, N. G. Copeland, J. F. Bazan, K. W. Moore, T. J. Schall, and A. Zlotnik. 1994. Lymphotactin: a cytokine that represents a new class of chemokines. Science 266: 1395.

    Article  PubMed  CAS  Google Scholar 

  44. Bacon, K. B., B. A. Premack, P. Gardner, and T. J. Schall. 1995. Activation of dual T cell signaling pathways by the chemokine RANTES. Science 269: 1727.

    Google Scholar 

  45. Taub, D. D., J. R. Ortaldo, S. M. Turcovski-Corrales, M. L. Key, D. L. Longo, and W. J. Murphy. 1996. 3 Chemokines costimulate lymphocyte cytolysis, proliferation, and lymphokine production. J. Leuk. Biol. 59: 81.

    Google Scholar 

  46. Taub, D. D., S. M. Turcovski-Corrales, M. L. Key, D. L. Longo, and W. J. Murphy. 1996. Chemokines and T lymphocytes: a and (3 chemokines costimulate human T lymphocyte proliferation and lymphokine production in vitro. J. Immunol. 156: 2095.

    PubMed  CAS  Google Scholar 

  47. Murphy, W. J., Z.-G. Tian, O. Asai, S. Funakoshi, P. Rotter, M. Henry, R. M. Strieter, S. L. Kunkel, D. L. Longo, and D. D. Taub. 1996. Chemokines and T lymphocyte activation. II. Facilitation of human T cell trafficking in severe combined immunodeficiency mice. J. Immunol. 156: 2104.

    PubMed  CAS  Google Scholar 

  48. Murphy, P. M. 1994. The molecular biology of leukocyte chemoattractant receptors. Annu. Rev. Immunol. 12: 593.

    Article  PubMed  CAS  Google Scholar 

  49. Taub, D. D., A. R. Lloyd, K. Conlon, J. M. Wang, J. R. Ortaldo, A. Harada, K. Matsushima, D. J. Kelvin, and J. J. Oppenheim. 1993. Recombinant human interferon-inducible protein 10 is a chemoattractant for human monocytes and T lymphocytes and promotes T cell adhesion to endothelial cells. J. Exp. Med. 177: 1809.

    Article  PubMed  CAS  Google Scholar 

  50. Taub, D. D., K. Conlon, A. R. Lloyd, J. J. Oppenheim, and D. J. Kelvin. 1993. Preferential migration of activated CD4+ and CD4+ T cells in response to MIP-1 a and MIP-1(3. Science 260: 355.

    Article  PubMed  CAS  Google Scholar 

  51. Taub, D. D., A. S. R. Lloyd, K. Conlon, J. M. Wang, J. R. Ortaldo, A. Harada, K. Matsushima, D. J. Kelvin, and J. J. Oppenheim. 1993. Recombinant human interferon-inducible protein 10 is a chemoattractant for human monocytes and T lymphocytes and promotes T cell adhesion to endothelial cells. J. Exp. Med. 177: 1809.

    Article  PubMed  CAS  Google Scholar 

  52. Tanaka, Y., D. H. Adams, S. Hubscher, H. Hirano, U. Siebenlist, and S. Shaw. 1993. T-cell adhesion induced by proteoglycan-immobilized cytokine MIP-1. Nature 361: 81.

    Article  Google Scholar 

  53. Taub, D. D., P. Proost, W. J. Murphy, M. Anver, D. L. Longo, J. Van Damme, and J. J. Oppenheim. 1995. Monocyte chemotactic protein-1 (MCP-1), -2, and -3 are chemotactic for human T lymphocytes. J. Clin. Invest. 95: 1370.

    Article  PubMed  CAS  Google Scholar 

  54. Murphy, W. J., D. D. Taub, M. Anver, K. Conlon, J. J. Oppenheim, D. J. Kelvin, and D. L. Longo. 1994. Human RANTES induces the migration of human T lymphocytes into the peripheral tissues of mice with severe combined immune deficiency. Eur. J. Immunol. 24 (8): 1823.

    Article  PubMed  CAS  Google Scholar 

  55. Loetscher, P., M. Seitz, I. Clark-Lewis, M. Baggiolini, and B. Moser. 1996. Activation of NK cells by CC chemokines: chemotaxis, Ca’mobilization, and enzyme release. J. Immunol. 156: 322–327.

    PubMed  CAS  Google Scholar 

  56. Loetscher, P., M. Seitz, I. Clark-Lewis, M. Baggiolini, and B. Moser. 1994. Monocyte chemotactic proteins MCP-1, MCP-2, and MCP-3 are major attractants for human CD4+ and CD8+ T lymphocytes. FASEB J. 8: 1055.

    PubMed  CAS  Google Scholar 

  57. Allavena, P., G. Bianchi, D. Zhou, J. Van Damme, P. Jilek, S. Sozzani, and A. Mantovani. 1994. Induction of natural killer cell migration by monocyte chemotactic protein-1, -2, and -3. Eur. J. Immunol. 24: 3233–3236.

    Article  PubMed  CAS  Google Scholar 

  58. Carr, M. W., S. J. Roth, E. Luther, S. S. Rose, and T. A. Springer. 1994. Monocyte chemoattractant protein 1 acts as a T-lymphocyte chemoattractant. Proc. Natl. Acad. Sci. USA 91: 3652.

    Article  PubMed  CAS  Google Scholar 

  59. Hedrick, J. A., V. Saylor, D. Figueroa, L. Mizoue, Y. Xu, S. Menon, J. Abrams, T. Handel, and A. Zlotnick. 1997. Lymphotactin is produced by NK cells and attracts both NK cells and T cells in vivo. J. Immunol. 158: 1533–1540.

    PubMed  CAS  Google Scholar 

  60. Loetscher, A., B. Gerber, P. Loetscher, S. A. Jones, L. Piali, I. Clark-Lewis, M. Baggiolini, and B. Moser. 1996. Chemokine receptor specific for IP-10 and Mig: structure, function, and expression in activated T-lymphocytes. J. Exp. Med. 184: 963–969.

    Article  PubMed  CAS  Google Scholar 

  61. Bluman, E. M., K. J. Bartynski, B. R. Avalos, and M. A. Caligiuri. 1996. Human natural killer cells produce abundant macrophage inflammatory protein-1 in response to monocyte-derived cytokines. J. Clin. Invest. 97: 2722–2727.

    Article  PubMed  CAS  Google Scholar 

  62. Taub, D. Unpublished data.

    Google Scholar 

  63. Sebok, K., D. Woodside, A. Al-Aoukaty, A. D. Ho, S. Gluck, and A. A. Maghazachi. 1993. IL-8 induces the locomotion of human IL-2-activated natural killer cells: involvement of a guanine nucleotide binding (Go) protein. J. Immunol. 150: 1524–1534.

    PubMed  CAS  Google Scholar 

  64. Taub, D. D., T. Sayers, C. Carter, and J. R. Ortaldo. 1995. Chemokines induce NK cell migration and enhance NK cell cytolytic activity via cellular degranulation. J. Immunol. 155: 3877.

    PubMed  CAS  Google Scholar 

  65. Taub, D. D., D. L. Longo, and W. J. Murphy. 1996. Human IP-10 induces mononuclear cell infiltration in mice and promotes the migration of human T lymphocytes into the peripheral tissues of huPBL-SCID mice. Blood 87: 1423.

    PubMed  CAS  Google Scholar 

  66. Maghazachi, A. A., B. S. Skalhegg, B. Rolstad, and A. Al-Aoukaty. 1997. Interferoninducible protein-10 and lymphotactin induce the chemotaxis and mobilization of intracellular calcium in natural killer cells through pertussis toxin-sensitive and -insensitive heterotrimeric G-proteins. FASEB J. 11: 765–774.

    PubMed  CAS  Google Scholar 

  67. Taub, D. Unpublished data.

    Google Scholar 

  68. Maghazachi, A. A., A. Al-Aoukaty, and T. J. Schall. 1994. C-C chemokines induce the chemotaxis of NK and IL-2-activated NK cells: role of G proteins. J. Immunol. 153: 4969–4977.

    Google Scholar 

  69. Maghazachi, A. A., T. J. Schall, and A. Al-Aoukaty. Differential coupling of CC chemokine receptors to multiple heterotrimeric G proteins in human interleukin-2-activated natural killer cells. Blood. 87: 4255–4260.

    Google Scholar 

  70. Polentarutti, N., et al. 1997. IL-2 regulated expression of the monocyte chemotactic protein-1 receptor (CC CKR2) in human NK cells: characterization of a predominant 3.4 Kb transcript containing CC CKR2A and CC CKR2B sequences. J. Immunol. 158: 26892694.

    Google Scholar 

  71. Maghazachi, A. A., and A. Al-Aoukaty. 1994. Gs is the major G protein involved in interleukin-2-activated natural killer (IANK) cell-mediated cytotoxicity: successful introduction of anti-G protein antibodies inside streptolysin 0-permeabilized IANK cells. J. Biol. Chem. 269: 6796–6802.

    PubMed  CAS  Google Scholar 

  72. Bianchi, G., S. Sozzani, A. Zlotnik, A. Mantovani, and P. Allavena. 1996. Migratory response of human natural killer cells to lymphotactin. Eur. J. Immunol. 26: 3238–3241.

    Article  CAS  Google Scholar 

  73. Frey, J. L., T. Bino, R. R. S. Kantor, D. M. Segal, S. L. Giardina, J. Roder, S. Anderson, and J. R. Ortaldo. 1991. Mechanism of target cell recognition by natural killer cells: characterization of a novel triggering molecule restricted to CD3- large granular lymphocytes. J. Exp. Med. 174: 1527.

    Article  PubMed  CAS  Google Scholar 

  74. Maghazachi, A. A., A. Al-Aoukaty, and T. J. Schall. 1996. CC chemokines induce the generation of killer cells from CD56+ cells. Eur. J. Immunol. 26: 315–319.

    Article  PubMed  CAS  Google Scholar 

  75. Taub, D. Unpublished data.

    Google Scholar 

  76. Allavena, P., and A. Mantovani. 1994. Therapeutic strategies targeted to tumor-associated leukocytes in human tumors, in Tumor-Associated Leukocytes: Pathophysiology and Therapeutic Applications ( Mantovani, A., ed.), R. G. Landes, Austin, p. 90.

    Google Scholar 

  77. Kurosawa, S., G. Matsuzaki, M. Harada, T. Ando, and K. Nomoto. 1993. Early appearance and activation of natural killer cells in tumor-infiltrating lymphoid cells during tumor development. Eur. J. Immunol. 23: 1029.

    Article  PubMed  CAS  Google Scholar 

  78. Pardoll, D. M. 1995. Paracrine cytokine adjuvants in cancer immunotherapy. Annu. Rev. Immunol. 13: 399.

    Article  PubMed  CAS  Google Scholar 

  79. Velotti, F., A. Stoppacciaro, L. Ruc, A. Tubsaro, A. Pettinato, S. Morrone, T. Napolitano, P. C. Bossola, C. R. Franks, P Palmer, et al. 1991. Local activation of immune response in bladder cancer patients treated with intraarterial infusion of recombinant interleukin-2. Cancer Res. 51: 2456.

    PubMed  CAS  Google Scholar 

  80. Cohen, P. J., M. T. Lotze, J. R. Roberts, S. A. Rosenberg, and E. S. Jaffe. 1987. The immunopathology of sequential tumor biopsies in patients treated with interleukin-2: correlation of response with T-cell infiltration and HLA-DR expression. Am. J. Pathol. 129: 208.

    PubMed  CAS  Google Scholar 

  81. Gansbacher, B., K. Zier, B. Daniels, K. Cronin, R. Bannerji, and E. Gilboa. 1990. Interleukin 2 gene transfer into tumor cells abrogates tumorigenicity and induces protective immunity. J. Exp. Med. 172: 1217.

    Article  PubMed  CAS  Google Scholar 

  82. Murphy, W. J., and D. L. Longo. 1997. The potential role of NK cells in the separation of graft-versus-tumor effects from graft-versus-host disease after allogeneic bone marrow transplantation. Immunol. Rev. 157: 167–176.

    Article  PubMed  CAS  Google Scholar 

  83. Gansbacher, B., R. Bannerji, B. Daniels, K. Zier, K. Cronin, and E. Gilboa. 1990. Retroviral vector-mediated gamma-interferon gene transfer into tumor cells generates potent and long lasting antitumor immunity Cancer Res. 50: 7820.

    PubMed  CAS  Google Scholar 

  84. Dilloo, D., K. Bacon, W. Holden, W. Zhong, S. Burdach, A. Zlotnik, and M. Brenner. 1996. Combined chemokine and cytokine gene transfer enhances antitumor immunity. Nat. Med. 2 (10): 1090–1095.

    Article  PubMed  CAS  Google Scholar 

  85. Tannenbaum, C. S., N. Wicker, D. Armstrong, R. Tubbs, J. Finke, R. M. Bukowski, and T. A. Hamilton. 1996. Cytokine and chemokine expression in tumors of mice receiving systemic therapy with IL-12. J. Immunol. 156: 693–699.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Taub, D.D. (1999). Natural Killer Cell-Chemokine Interactions. In: Rollins, B.J. (eds) Chemokines and Cancer. Contemporary Cancer Research. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-701-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-701-7_5

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-4760-7

  • Online ISBN: 978-1-59259-701-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation