Functional Genomics for Plant Trait Discovery

  • Chapter
Handbook of Industrial Cell Culture
  • 580 Accesses

Abstract

Functional genomics, as the name implies, approaches gene discovery on a genomewide scale. Our understanding of the complex genetic interrelationships underlying plant traits such as yield or stress tolerance is being shaped by new technologies that facilitate the analysis of thousands of genes in a single experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schena, M., Shalon, D., Davis, R. W., and Brown, P. 0. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470.

    Article  CAS  Google Scholar 

  2. Seki, M., Narusaka, M., Abe, H., Kasuga, M., Yamaguchi-Shinozaki, K., Carninci, P., et al. (2001) Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13, 61–72.

    CAS  Google Scholar 

  3. Schenk, P. M., Kazan, K., Wilson, I., Anderson, J. P., Richmond, T., Somerville, S. C., et al. (2000) Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc. Natl. Acad. Sci. USA 97, 11,655–11,660.

    Google Scholar 

  4. Maleck, K., Levine, A., Eulgem, T., Morgan, A., Schmid, J., Lawton, K. A., et al. (2000) The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat. Genet. 26, 403–410.

    Article  CAS  Google Scholar 

  5. Kawasaki, S., Borchert, C., Deyholos, M., Wang, H., Brazille, S., Kawai, K., et al. (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13, 889–906.

    CAS  Google Scholar 

  6. Petersen, M., Brodersen, P., Naested, H., Andreasson, E., Lindhart, U., Johansen, B., et al. (2000) Arabidopsis map kinase 4 negatively regulates systemic acquired resistance. Cell 103, 1111–1120.

    Article  CAS  Google Scholar 

  7. Aharoni, A., Keizer, L. C., Bouwmeester, H. J., Sun, Z., Alvarez-Huerta, M., Verhoeven, H.A., et al. (2000) Identification of the SAAT gene involved in strawberry flavor biogenesis by use of DNA microarrays. Plant Cell 12, 647–662.

    CAS  Google Scholar 

  8. van Wijk, K. J. (2000) Proteomics of the chloroplast: experimentation and predication. Trends Plant Sci. 5, 420–425.

    Article  Google Scholar 

  9. Williams, K. L. and Hochstrasser, D. E. (1997) in Proteome Research: New Frontiers in Functional Genomics. Springer-Verlag, Berlin, Germany, pp. 1–12.

    Google Scholar 

  10. Riccardi, F., Gazeau, P., de Vienne, D., and Zivy, M. (1998) Protein changes in response to progressive water deficit in maize. Quantitative variation and polypeptide identification. Plant Physiol. 117, 1253–1263.

    Article  CAS  Google Scholar 

  11. Chang, S. S., Park, S. K., and Nam, H. G. (1994) Transformation of Arabidopsis by Agrobacterium inoculation on wounds. Plant J. 5, 551–558.

    Article  CAS  Google Scholar 

  12. Ziv, M. and de Vienne, D. (2000) Proteomics: a link between genomics, genetics and physiology. Plant Mol. Biol. 44, 575–580.

    Article  Google Scholar 

  13. Damerval, C. and Le Guilloux, M. (1998). Characterization of novel proteins affected by the o2 mutation and expressed during maize endosperm development. Mol. Gen. Genet. 257, 354–361.

    Article  CAS  Google Scholar 

  14. Gallardo, K., Job, C., Groot, S. P., Puype, M., Demol, H., Vandekerckhove, J., et al. (2001) Proteomic analysis of Arabidopsis seed germination and priming. Plant Physiol. 126, 835–848.

    Article  CAS  Google Scholar 

  15. Peck, S. C., Nuhse, T. S., Hess, D., Iglesias, A., Meins, F., and Boller, T. (2001) Directed proteomics identifies a plant-specific protein rapidly phosphorylated in response to bacterial and fungal elicitors. Plant Cell 13, 1467–1475.

    CAS  Google Scholar 

  16. Martinez-Zapater, J. M. and Salinas, J. (1998) in, Arabidopsis Protocols, Humana Press, Totowa, NJ, pp. 209–267.

    Book  Google Scholar 

  17. Bechtold, N., Ellis, J., and Pelletier, D. (1993) In planta Agrobaterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C. R. Acad. Sci. Paris, Life Sci. 316, 1194–1199.

    CAS  Google Scholar 

  18. Feldmann, K. A. and Marks, M. D. (1987) Agrobacterium-mediated transformation of germinating seeds of Arabidopsis thaliana: a non-tissue culture approach. Mol. Gen. Genet. 208, 1–9.

    Article  CAS  Google Scholar 

  19. Neuffer, M. G., Coe, E. H. and Wessler, S. R. (1997) Mutants of Maize, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  20. The Arabidopsis Genome Initiative (2000) Sequence and analysis of the flowering plant Arabidopsis thaliana. Nature 408, 796–815.

    Article  Google Scholar 

  21. Bouché, N. and Bouchez, D. (2001) Arabidopsis gene knockout: phenotypes wanted. Curr. Opin. Plant Biol. 4, 111–117.

    Article  Google Scholar 

  22. Bevan, M., Mayer, K., White, O., Eisen, J. A., Preuss, D., Bureau, T., et al. (2001) Sequence and analysis of the Arabidopsis genome. Curr. Opin. Plant Biol. 4, 105–110.

    Article  CAS  Google Scholar 

  23. Weigel, D., Ahn, J. H., Blazquez, M. A., Borevitz, J. O., Christensen, S. K., Fankhauser, C., Ferrandiz, C., et al. (2000) Activation Tagging in Arabidopsis. Plant Physiol. 122, 1003–1013.

    Article  CAS  Google Scholar 

  24. Walbot, V. (2000) Saturation mutagenesis using maize transposons. Curr. Opin. Plant Biol. 3, 103–107.

    Article  CAS  Google Scholar 

  25. McClintock, B. (1992) in, The Dynamic Genome: Barbara McClintock’s Ideas in the Century of Genetics. (Federoff, N., and Botstein, D., eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  26. Federoff, N. (1983) in, Mobile Genetic Elements. (Shapiro, J., ed.), Academic Press, NY, pp. 1–63.

    Google Scholar 

  27. Bechtold, N. and Pelletier, G. (1998) In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. Methods Mol. Biol. 82, 259–266.

    CAS  Google Scholar 

  28. Zupan, J., Muth, T. R., Draper, O., and Zambryski, P. (2000) The transfer of DNA from Agrobacterium tumefaciens into plants: a feast of fundamental insights. Plant J. 23, 11–28.

    Article  CAS  Google Scholar 

  29. Krysan, P. J., Young, J. C., and Sussman, M. R. (1999) T-DNA as an insertional mutagen in Arabidopsis. Plant Cell 11, 2283–2290.

    CAS  Google Scholar 

  30. Kardailsky, I., Shukla, V. K., Ahn, J. H., Dagenais, N., Christensen, S. K., Nguyen, J. T., et al. (1999) Activation tagging of the floral inducer FT. Science 286, 1962–1965.

    Article  CAS  Google Scholar 

  31. Christensen, S. K., Dagenais, N., Chory, J., and Weigel, D. (2000) Regulation of auxin response by the protein kinase PINOID. Cell 100, 469–478.

    Article  CAS  Google Scholar 

  32. Springer, P. S. (2000) Gene traps: tools for plant development and genomics. Plant Cell 12, 1007–1020.

    CAS  Google Scholar 

  33. Liljegren, S. J., Ditta, G. S., Eshed, Y., Savidge, B., Bowman, J. L., and Yanofsky, M. F. (2000) SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature 404, 766–770.

    Article  CAS  Google Scholar 

  34. Huang, S., Cerny, R. E., Bhat, D. S., and Brown, S. M. (2001) Cloning of an Arabidopsis patatin-like gene, STURDY, by activation T-DNA tagging. Plant Physiol. 125, 573–584.

    Article  CAS  Google Scholar 

  35. Smith, B. D. (1994) The Emergence of Agriculture, W.H. Freeman and Company, New York, NY.

    Google Scholar 

  36. Muller, H. L. (1927) Artificial transmutations of the gene. Science 66, 84–87.

    Article  CAS  Google Scholar 

  37. van Harten, A. M. (1998) Mutation Breeding, Theory and Practical Applications, Cambridge University Press, Cambridge, UK, pp. 47–63.

    Google Scholar 

  38. Maluszynski, M., van Zanten, L., Ashri, A., Brunner, H., Ahloowalia, B., Zapata, F.P., et al. (1995) Mutation techniques in plant breeding, in Induced Mutations and Molecular Techniques for Crop Improvement, Proceedings of the FAO/IAEA Symposium, Vienna, IAEA, Vienna, pp. 489–504.

    Google Scholar 

  39. Rédei, G.P. and Koncz, C. (1992) Classical mutagenesis, in Methods in Arabidopsis Research (Koncz, C., Chua, N.-H., and Schell, J., eds.), J. World Scientific, Singapore, pp. 16–82.

    Google Scholar 

  40. Bruggemann, E., Handwerger, K., Essex, C., and Storz, G. (1996) Analysis of fast neutrongenerated mutants at the Arabidopsis thaliana HY4 locus. Plant J. 10, 755–760.

    Article  CAS  Google Scholar 

  41. Cecchini, E., Mulligan, B. J., Covey, S. N., and Milner, J. J. (1998) Characterization of gamma irradiation-induced deletion mutations at a selectable locus in Arabidopsis. Mutat. Res. 401, 199–206.

    CAS  Google Scholar 

  42. Li, X., Song, Y., Century, K., Straight, S., Ronald, P., Dong, X., et al. (2001) A fast neutron deletion mutagenesis-based reverse genetics system for plants. Plant J. 27, 235–242.

    Article  CAS  Google Scholar 

  43. McCallum, C. M., Comai, L., Greene, E. A., and Henikoff, S. (2000) Targeted screening for induced mutations. Nat. Biotechnol. 18, 455–457.

    Article  CAS  Google Scholar 

  44. Sablowski, R. W. and Meyerowitz, E. M. (1998) Temperature-sensitive splicing in the floral homeotic mutant apetala3–1. Plant Cell 10, 1453–1463.

    CAS  Google Scholar 

  45. Whittington, A. T,. Vugrek, O., Wei, K. J., Hasenbein, N. G., Sugimoto, K., Rashbrooke, M. C., et al. (2001) MOR1 is essential for organizing cortical microtubules in plants. Nature 411, 610–613.

    Article  CAS  Google Scholar 

  46. Ouellet, F., Overvoorde, P. J., and Theologis, A. (2001) IAA17/AXR3. Biochemical insight into an auxin mutant phenotype. Plant Cell 13, 829–842.

    CAS  Google Scholar 

  47. Spiegelman, J. I., Mindrinos, M. N., Fankhauser, C., Richards, D., Lutes, J., Chory, J., et al. (2000) Cloning of the Arabidopsis RSF1 gene by using a map** strategy based on highdensity DNA arrays and denaturing high-performance liquid chromatography. Plant Cell 12, 2485–2498.

    CAS  Google Scholar 

  48. Straus, D. and Ausubel, F. M. (1990) Genomic subtraction for cloning DNA corresponding to deletion mutations. Proc. Natl. Acad. Sci. USA 87, 1889–1893.

    Article  CAS  Google Scholar 

  49. Sun, T. P., Straus, D., and Ausubel, F. M. (1992) Cloning Arabidopsis genes by genomic subtraction, in Methods in Arabidopsis Research (Koncz, C., Chua, N.-H., and Schell, J., eds.), World Scientific, Singapore, pp. 331–341.

    Google Scholar 

  50. Silverstone, A. L., Ciampaglio, C. N., and Sun, T. (1998) The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. Plant Cell 10, 155–169.

    CAS  Google Scholar 

  51. Liu, L. X., Spoerke, J. M., Mulligan, E. L., Chen, J., Reardon, B., Westlund, B., et al. (1999) High-throughput isolation of Caenorhabditis elegans deletion mutants. Genome Res. 9, 859–867.

    Article  CAS  Google Scholar 

  52. Castle, L. A., Errampalli, D., Atherton, T. L., Franzmann, L. H., Yoon, E. S., and Meinke, D. W. (1993) Genetic and molecular characterization of embryonic mutants identified following seed transformation in Arabidopsis. Mol. Gen. Genet. 241, 504–514.

    Article  CAS  Google Scholar 

  53. Bogyo, T. P. (1991) Numerical aspects of mutation breeding programs, in Induced Mutations and Molecular Techniques for Crop Improvement, Proceedings of the FAO/IAEA Symposium, Vienna, IAEA, Vienna, pp. 489–504.

    Google Scholar 

  54. Bird, R. M. and Neuffer, M. G. (1987) Induced mutations in maize, in Plant Breeding Reviews, Vol. 5 (Janick, J., ed.), Timber Press, Portland, OR, pp. 139–180.

    Google Scholar 

  55. Koornneef, M., Dellaert, L. W., and van der Veen, J. H. (1982) EMS- and radiation-induced mutation frequencies at individual loci in Arabidopsis thaliana (L.) Heynh. Mutat. Res. 93, 109–123.

    Article  CAS  Google Scholar 

  56. Fiehn, O., Kloska, S., and Altmann, T. (2001) Integrated studies on plant biology using multiparallel techniques. Curr. Opin. Biotechnol. 12, 82–86.

    Article  CAS  Google Scholar 

  57. Somerville, C. and Somerville, S. (1999) Plant functional genomics. Science 285, 380–383.

    Article  CAS  Google Scholar 

  58. Somerville, C. and Dangl, J. (2000) Genomics. Plant biology in 2010. Science 290, 2077–2078.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Reddy, S., Larrinua, I.M., Ruegger, M.O., Shukla, V.K., Sun, Y. (2003). Functional Genomics for Plant Trait Discovery. In: Vinci, V.A., Parekh, S.R. (eds) Handbook of Industrial Cell Culture. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-346-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-346-0_8

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-315-2

  • Online ISBN: 978-1-59259-346-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation