Genetic Engineering Solutions for Natural Products in Actinomycetes

  • Chapter
Handbook of Industrial Cell Culture
  • 597 Accesses

Abstract

There are a number of genetic and molecular methods that are useful for the improvement of production of natural products in actinomycetes. These include traditional chemical mutagenesis and selection, transposition mutagenesis, targeted deletions and duplications by genetic engineering, and genetic recombination by protoplast fusion. With the recent developments in microbial genomics, transcriptome analysis, proteomics, metabolic reconstruction, and metabolite flux analysis, these new technologies are becoming valuable tools to aid in strain development. A robust strain development program can benefit from the synergy provided by coupling several of these approaches. This chapter limits its discussion to genetic engineering approaches to yield enhancement. More classical mutation and recombination approaches have been reviewed elsewhere (1–6).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 234.33
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 299.59
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 299.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baltz, R. H. (2001) Molecular genetic and combinatorial biology approaches to produce novel antibiotics, in Antibiotic Development and Resistance, (Hughes, D. and Anderson, D. eds.), Harwood Academic Publishers, Amsterdam. pp. 233–257.

    Google Scholar 

  2. Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F., and Hopwood, D. A. (2000) Practical Streptomyces Genetics, The John Innes Foundation, Norwich, UK.

    Google Scholar 

  3. Baltz, R. H. (1986) Mutagenesis in Streptomyces, in Manual of Industrial Microbiology and Biotechnology, (Demain, A. L. and Soloman, N. A. eds.), American Society for Microbiology, Washington, DC. pp. 184–190.

    Google Scholar 

  4. Baltz, R. H. (1986) Mutation in Streptomyces, in The Bacteria, Vol. IX. Antibiotic-Producing Streptomyces, (Queener, S. W. and Day, L. E. eds.), Academic Press, New York, NY. pp. 61–93.

    Google Scholar 

  5. Matsushima, P. and Baltz, R. H. (1986) Protoplast fusion, in Manual of Industrial Microbiology and Biotechnology, (Demain, A. L. and Solomon, N. A. eds.) American Society for Microbiology, Washington, DC. pp. 170–183.

    Google Scholar 

  6. Vinci, V. A. and Byng, G. (1999) Strain improvement by nonrecombinant methods, in Manual of Industrial Microbiology and Biotechnology, Second Edition, (Demain, A. L. and Davies, J. E. eds.), ASM Press, Washington, DC. pp. 103–113.

    Google Scholar 

  7. Katz, L. (1997) Manipulation of modular polyketide synthases. Chem. Rev. 97, 2557–2575.

    Article  CAS  Google Scholar 

  8. Khosla, C. (1997) Harnesing the biosynthetic potential of modular polyketide synthases. Chem. Rev. 97, 2577–2590.

    Article  CAS  Google Scholar 

  9. Marahiel, M. A., Stachelhaus, T., and Mootz, H. D. (1997) Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem. Rev. 97, 2651–2673.

    Article  CAS  Google Scholar 

  10. von Dohren, H., Keller, U., Vater, J., and Zocher, R. (1997) Multifunctional peptide synthetases. Chem. Rev. 97, 2675–2705.

    Article  Google Scholar 

  11. Hopwood, D. A. (1997) Genetic contributions to understanding polyketide synthases. Chem. Rev. 97, 2465–2479.

    Article  CAS  Google Scholar 

  12. Khosla, C. and Zawada, R. J. X. (1996) Generation of polyketide libraries via combinatorial biosynthesis. Trends Biotechnol. 14, 335–341.

    Article  CAS  Google Scholar 

  13. Baltz, R. H. (1995) Gene expression in recombinant Streptomyces. Bioprocess Technol. 22, 309–381.

    CAS  Google Scholar 

  14. Baltz, R. H. and Hosted, T. J. (1996) Molecular genetic methods for improving secondarymetabolite production in actinomycetes. Trends Biotechnol. 14, 245–250.

    Article  CAS  Google Scholar 

  15. Baltz, R. H. (1997) Molecular genetic approaches to yield improvement in actinomycetes. Drugs Pharm. Sci. 82, 49–62.

    CAS  Google Scholar 

  16. Hillemann, D., Puhler, A., and Wohlleben, W. (1991) Gene disruption and gene replacement in Streptomyces via single stranded DNA transformation of integrative vectors. Nucl. Acid Res. 19, 727–731.

    Article  CAS  Google Scholar 

  17. Oh, S.-H. and Chater, K. F. (1997) Denaturation of circular or linear DNA facilitates targeted integration of Streptomyces coelicolor A3(2): possible relevance to other organisms. J. Bacteriol. 179, 122–127.

    CAS  Google Scholar 

  18. Mazodier, P., Petter, R., and Thompson, C. (1989) Intergeneric conjugation between Escherichia col i and Streptomyces species. J. Bacteriol. 171, 3583–3585.

    CAS  Google Scholar 

  19. Baltz, R. H. (1998) Genetic manipulation of antibiotic producing Streptomyces. Trends Microbiol. 6, 76–83.

    Article  CAS  Google Scholar 

  20. Bierman, M., Logan, R., O’Brien, K., Seno, E. T., Rao, R. N., and Schoner, B. E. (1992) Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116, 43–49.

    Article  CAS  Google Scholar 

  21. Matsushima, P., Broughton, C. M., Turner, J. R., and Baltz R. H. (1994) Conjugal transfer of cosmid DNA from Escherichia coli to Saccharopolyspora spinosa: effects of chromosomal insertions on macrolide A83543 production. Gene 146, 39–45.

    Article  CAS  Google Scholar 

  22. Sun, Y., Zhou, X., Liu, J., Zhang, G., Tu, G., Kieser, T., et al. (2001) Streptomyces nanchangensis, a producer of the insecticidal polyether antibiotic nanchangmycin and the antiparasitic macrolide meilingmycin, contains multiple polyketide gene clusters. Microbiology 148, 361–371.

    Google Scholar 

  23. McHenney, M. A. and Baltz, R. H. (1988) Transduction of plasmid DNA in Streptomyces and related genera by bacteriophage FP43. J. Bacteriol. 170, 2276–2282.

    CAS  Google Scholar 

  24. McHenney, M. A. and Baltz, R. H. (1989) Transduction of plasmid DNA in macrolide producing streptomycetes. J. Antibiotics 42, 1725–1727.

    Article  CAS  Google Scholar 

  25. Matsushima, P., McHenney, M. A., and Baltz, R. H. (1989) Transduction and transformation of plasmid DNA in Streptomyces fradiae strains that express different levels of restriction. J. Bacteriol. 171, 3080–3084.

    CAS  Google Scholar 

  26. Mazy-Servais, C., Baczkowski, D., and Dusart, J. (1997) Electroporation of intact cells of Streptomyces parvulus and Streptomyces vinaceus. FEMS Microbiol. Lett. 15, 135–138.

    Article  Google Scholar 

  27. Fitzgerald, N. B., English, R. S., Lampel, J. S., and Vanden Boom, T. J. (1998) Sonicationdependent electroporation of the erythromycin-producing bacterium Saccharopolyspora erythraea. Appl. Environ. Microbiol. 64, 1580–1583.

    CAS  Google Scholar 

  28. English, R. S., Lampel, J. S., and Vanden Boom, T. J. (1998) Transformation of Saccharopolyspora erythraea by electroporation of germling spores: construction of propionyl CoA carboxylase mutants. J. Indl. Microbiol. Biotechnol. 21, 219–224.

    Article  CAS  Google Scholar 

  29. Pigac, J. and Schrempf, H. (1995) A simple and rapid method of transformation of Streptomyces rimosus R6 and other streptomycetes by electroporation. Appl. Environ. Microbiol. 61, 352–356.

    CAS  Google Scholar 

  30. Hopwood, D. A., Bibb, M. J., Chater, K. F., and Kieser, T. (1987) Plasmid and phage vectors for gene cloning and analysis in Streptomvces. Methods Enzymol. 153. 116–166.

    Article  CAS  Google Scholar 

  31. Rao, R. N., Richardson, M. A., and Kuhstoss, S. (1987) Cosmid shuttle vectors for cloning and analysis of Streptomyces DNA. Methods Enzymol. 153, 166–198.

    Article  CAS  Google Scholar 

  32. Kieser, T. and Hopwood, D. A. (1991) Genetic manipulation of Streptomyces: Integrating vectors and gene replacement. Methods Enzymol. 204, 430–458.

    Article  CAS  Google Scholar 

  33. Rowe, C. J., Cortes, J., Gaisser, S., Staunton, J., and Leadlay, P. F. (1998) Construction of new vectors for high-level expression in actinomycetes. Gene 216, 215–223.

    Article  CAS  Google Scholar 

  34. Meurer, G. and Hutchinson, C. R. (1999). Genes for the biosynthesis of microbial secondary metabolites, in Manual of Industrial Microbiology and Biotechnology, Second Edition, (Demain, A. L., and Davies, J. E. eds.), ASM Press, Washington, DC, pp. 740–758.

    Google Scholar 

  35. Sosio, M., Guisino, F., Cappellano, C., Bossi, E., Puglia, A. M., and Donadio, S. (2000) Artificial chromosomes for antibiotic-producing actinomycetes. Nat. Biotechnol. 18, 343–345.

    Article  CAS  Google Scholar 

  36. Flett, F., Mersinias, V., and Smith, C. P. (1997) High efficiency intergeneric conjugal transfer of plasmid DNA from Escherichia coli to methyl DNA-restricting streptomycetes. FEMS Microbiol. Lett. 155, 223–229.

    Article  CAS  Google Scholar 

  37. Miao, V., Coeffet-LeGal, M.- F., Silva, C., Penn, J., Whiting, A., Brost, R., et al. (2001) Utility of BAC libraries in the study of large biosynthetic pathways. Abstracts of the 12th International Symposium of the Biology of Actinomycetes, Vancouver, Canada, August 5–9.

    Google Scholar 

  38. Jones, G. (1989) Cloning of Streptomyces genes involved in antibiotic synthesis and its regulation, in Regulation of Secondary Metabolism in Actinomycetes, (Shipiro, S., ed.), CRC Press, Boca Raton, FL, pp. 49–73.

    Google Scholar 

  39. Mohrle, V., Roos, U., and Bormann, C. (1995) Identification of cellular proteins involved in nikkomycin production in Streptomyces tendae Tu901. Mol. Microbiol. 15, 561–571.

    Article  CAS  Google Scholar 

  40. McHenney, M. A., Hosted, T. J., DeHoff, B. S., Rosteck, P. R., Jr., and Baltz, R. H. (1998) Molecular cloning and physical map** of the daptomycin gene cluster from Streptomyces roseosporus.J.Bacteriol. 180,143–151.

    CAS  Google Scholar 

  41. Seno, E. T. and Baltz, R. H. (1989). Structural organization and regulation of antibiotic biosynthesis and resistance genes in actinomycetes, in Regulation of Secondary Metabolism in Actinomycetes, (Shipiro, S,. ed.), CRC Press, Boca Raton, FL, pp. 1–48.

    Google Scholar 

  42. Bate, N., Butler, A. R., Smith, I. P., and Cundliffe, E. (2000) The mycarose-biosynthetic genes of Streptomyces fradiae, producer of tylosin. Microbiology 146, 139–146.

    CAS  Google Scholar 

  43. Butler, A. R., Flint, S. A., and Cundliffe, E. (2001) Feedback control of polyketide metabolism during tylosin production. Microbiology 147, 795–801.

    CAS  Google Scholar 

  44. Onaka, H., Nagagawa, T., and Horinouchi, S. (1998) Involvement of two A-factor receptor homologues in Streptomyces coelicolor A3(2) in the regulation of secondary metabolism and morphogenesis. Mol. Microbiol. 28, 743–753.

    Article  CAS  Google Scholar 

  45. Hosted, T. J. and Baltz, R. H. (1997) Use of rpsL for dominance selection and gene replacement in Streptomyces roseosporus. J. Bacteriol. 179, 180–186.

    CAS  Google Scholar 

  46. Hosoya, Y., Muramatsu, H., and Ochi, K. (1998) Acquisition of certain streptomycin-resistant (str) mutations enhances antibiotic production in bacteria. Antimicrob. Agents Chemother. 42, 2041–2047.

    CAS  Google Scholar 

  47. Fisher, S. H., Bruton, C. J., and Chater, K. F. (1987) The glucose kinase gene of Streptomyces coelicolor and its use in selecting spontaneous deletions for desired regions of the genome. Mol. Gen. Genet. 206, 35–44.

    Article  CAS  Google Scholar 

  48. Buttner, M. J., Chater, K. F., and Bibb, M. J. (1990) Cloning, disruption, and transcriptional analysis of three RNA polymerase sigma factor genes of Streptomyces coelicolor A3(2). J.Bacteriol. 172, 3367–3378.

    CAS  Google Scholar 

  49. van Wezel, G. P. and Bibb, M. J. (1996) A novel plasmid vector that uses the glucose kinase gene (glkA) for the positive selection of stable gene disruptions in Streptomyces. Gene 182, 229–230.

    Article  Google Scholar 

  50. McDaniel, R., Thamchaipenet, A., Gufstafsson, C., Fu, H., Betlach, M., Ashley, G., et al. (1999) Multiple genetic modifications of the erythromycin polyketide synthase to produce a library of novel “unnatural” natural products. Proc. Natl. Acad. Sci. USA 96, 1846–1851.

    Article  CAS  Google Scholar 

  51. Ziermann, R., and Betlach, M. C. (2000) A two vector system for the production of recombinant polyketides in Streptomyces. J. Ind. Microbiol. Biotechnol. 24, 46–50.

    Article  CAS  Google Scholar 

  52. Xue, Q., Hutchinson, C. R., and Santi, D. V. (1999) A multi-plasmid approach to preparing large libraries of polyketides. Proc. Natl. Acad. Sci. USA 96, 11,740–11,745.

    Article  Google Scholar 

  53. Encell, L. P., Landis, D. M., and Loeb, L. A. (1999) Improved enzymes for cancer gene therapy. Nat. Biotechnol. 17, 143–147.

    Article  CAS  Google Scholar 

  54. Matsumura, T., Mijai, K., Trakulnaleamsai, S., Yomo, T., Shima, Y., Miki, S., et al. (1999) Evolutionary molecular engineering by random elongation mutagenesis. Nat. Biotechnol. 17, 58–61.

    Article  CAS  Google Scholar 

  55. Patten, P. A., Howard, R. J., and Stemmer, W. P. C. (1997) Applications of DNA shuffling to pharmaceuticals and vaccines. Curr. Opin. Biotechnol. 8, 724–733.

    Article  CAS  Google Scholar 

  56. Skandalis, A., Encell, L. P., and Loeb, L. A. (1997) Creating novel enzymes by applied molecular evolution. Chem. Biol. 4, 889–898.

    Article  CAS  Google Scholar 

  57. Zhao, H. and Arnold, F. H. (1997) Optimization of DNA shuffling for high fidelity recombination. Nucl. Acid Res. 25, 1307–1308.

    Article  CAS  Google Scholar 

  58. Zhao, H., Giver, L., Shao, Z., Affholter, J. A., and Arnold, F. H. (1998) Molecular evolution by staggered extension process (StEP) in vitro recombination. Nat. Biotechnol. 16, 258–261.

    Article  CAS  Google Scholar 

  59. Stemmer, W. P. C. (1994) Rapid evolution of a protein in vitro by DNA shuffling. Nature 370, 389–391.

    Article  CAS  Google Scholar 

  60. Stemmer, W. P. C. (1994) DNA shuffling by random fragmentation and reassembly: In vitro recombination for molecular evolution. Proc. Natl. Acad. Sci. USA 91, 10,747–10,751.

    Article  Google Scholar 

  61. Coco, W. M., Levinson, W. E., Crist, M. J., Hektor, H. J., Darzins, A., Pienkos, P. T., et al. (2001) DNA shuffling method for generating highly recombined genes and evolved enzymes. Nat. Biotechnol. 19, 354–359.

    Article  CAS  Google Scholar 

  62. Zhang, J.-H., Dawes, G., and Stemmer, W. P. C. (1997) Directed evolution of fucosidase from a galactosidase by DNA shuffling and screening. Proc. Natl. Acad. Sci. USA 94, 4504–4509.

    Article  CAS  Google Scholar 

  63. Crameri, A., Whitehorn, E. A., Tate, E., and Stemmer, W. P. C. (1996) Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat. Biotechnol. 14, 315–319.

    Article  CAS  Google Scholar 

  64. Crameri, A., Dawes, G., Rodriquez, E., Jr., Silver, S., and Stemmer, W. P. C. (1997) Molecular evolution of an arsenate detoxification pathway by DNA shuffling. Nat. Biotechnol. 15, 436–438.

    Article  CAS  Google Scholar 

  65. Crameri, A., Raillard, S.-A., Bermudez, E., and Stemmer, W.P.C. (1998) DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature 391, 288–291.

    Article  CAS  Google Scholar 

  66. Christians, F. C., Scapozza, A., Crameri, A., Folkers, G., and Stemmer, W. P. C. (1999) Directed evolution of thymidine kinase for AZT phosphorylation using DNA shuffling. Nat. Biotechnol. 17, 259–264.

    Article  CAS  Google Scholar 

  67. Chang, C.-C. J., Chen, T. T., Cox, B. W., Dawes, G. N., Stemmer, W. P. C., Punnonen, J., et al. (1999) Evolution of a cytokine using DNA family shuffling. Nat. Biotechnol. 17, 793–797.

    Article  CAS  Google Scholar 

  68. von Dohren, H. and Kleinkauf, H. (1997) Enzymology of peptide synthetases, in Biotechnology of Antibiotics, (Strohl, W. R., ed.), Marcel Dekker, New York, NY, pp. 217–240.

    Google Scholar 

  69. Socio, M., Bossi, E., Bianchi, A., and Donadio, S. (2000) Multiple peptide synthetase gene clusters in Actinomycetes. Mol. Gen. Genet. 264, 213–221.

    Article  Google Scholar 

  70. Ōmura, S., Ikeda, H., Ishikawa, J., Hanamoto, A., Takahashi, C., Shinose, M., et al. (2001) Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites. Proc. Natl. Acad. Sci. USA 98, 12,215–12,220.

    Google Scholar 

  71. Waldron, C., Matsushima, P., Rosteck, P. R., Jr., Broughton, M. C., Turner, J., Madduri, K., et al. (2001) Cloning and analysis of the spinosad biosynthetic gene cluster of Saccharopolyspora spinosa. Chem. Biol. 8, 487–499.

    Article  CAS  Google Scholar 

  72. Baltz, R. H. (1995) Gene expression in recombinant Streptomyces. Bioprocess Technol. 22, 309–381.

    CAS  Google Scholar 

  73. Bibb, M. (1996) 1995 Colworth Prize Lecture. The regulation of antibiotic production in Streptomyces coelicolor A3(2). Microbiology 142, 1335–1344.

    Article  Google Scholar 

  74. Bate, N., Butler, A. R., Gandecha, A. R. and Cundliffe, E. (1999) Multiple regulatory genes in the tylosin-biosynthetic cluster of Streptomyces fradiae. Chem. Biol. 6, 617–624.

    Article  CAS  Google Scholar 

  75. Stratigopoulos, G. and Cundliffe, E. (2001) Expression analysis of the tylosin-biosynthetic gene cluster: pivotal regulatory role of the tylQ product. Chem. Biol. 9, 71–78.

    Article  Google Scholar 

  76. Stratigopoulos, G. and Cundliffe, E. (2001) Inactivation of a transcriptional repressor during empirical improvement of the tylosin producer, Streptomyces fradiae. J. Ind. Microbiol. Biotechnol. 28, 219–224.

    Article  Google Scholar 

  77. Solenberg P. J. and Baltz R. H. (1991) Transposition of Tn5096 and other IS493 derivatives in Streptomyces griseofuscus. J. Bacteriol. 173, 1096–1104

    CAS  Google Scholar 

  78. Hahn, D. R., Solenberg, P. J., and Baltz, R. H. (1991) Tn5099, a xylE promoter probe transposon for Streptomyces spp. J. Bacteriol. 173, 5573–5577

    CAS  Google Scholar 

  79. Baltz, R. H., Hahn, D. R., McHenney, M. A., and Solenberg, P. J. (1992) Transposition of Tn5096 and related transposons in Streptomyces species. Gene 115. 61–65.

    Article  CAS  Google Scholar 

  80. Solenberg, P. J. and Baltz, R. H. (1994) Hyper-transposing derivatives of the streptomycete insertion sequence IS493. Gene 147, 47–54.

    Article  CAS  Google Scholar 

  81. Solenberg, P. J., Cantwell, C. A., Tietz, A. J., Mc Gilvray, D., Queener, S. W., and Baltz, R. H. (1996) Transposition mutagenesis in Streptomyces fradiae: identification of a neutral site for the stable insertion of DNA by transposon exchange. Gene 168, 67–72.

    Article  CAS  Google Scholar 

  82. Fowler, K. and Kieser, T. (2001) The Streptomyces coelicolor A3(2) transposon mutant “Megalibrary”: a valuable tool for investigating gene function. Abstracts of the 12th International Symposium on the Biology of Actinomycetes, Vancouver, BC, p. 81.

    Google Scholar 

  83. Gehring, A. M., Nodwell, J. R., Beverly, S. M., and Losick, R. (2000) Genomewide insertional mutagenesis in Streptomyces coelicolor reveals additional genes involved in morphological differentiation. Proc. Natl. Acad. Sci. USA 97, 9642–9647.

    Article  CAS  Google Scholar 

  84. Fernandes, P. J., Powell, J. A. C., and Archer, A. C. (2001) Construction of Rhodococcus random mutagenesis libraries using Tn5 transposition complexes. Microbiology 147, 2529–2536.

    CAS  Google Scholar 

  85. Baltz, R. H., McHenney, M. A., and Solenberg, P. J. (1993). Properties of transposons derived from IS493 and applications in streptomycetes, in Industrial Microorganisms: Basic and Applied Molecular Genetics, (Baltz, R. H., Hegeman, G., and Skatrud, P. L. eds.), American Society for Microbiology, Washington, DC, pp. 51–56.

    Google Scholar 

  86. McHenney, M. A. and Baltz, R. H. (1996) Gene transfer and transposition mutagenesis in Streptomyces roseosporus: map** of insertions that influence daptomycin or pigment production. Microbiology 142, 2363–2373.

    Article  CAS  Google Scholar 

  87. Gravius, B., Glocker, D., Pigac, J., Pandza, K., Hranueli, D., and Cullum, J. (1994) The 387 kb linear plasmid of Streptomyces rimosus and its interactions with the chromosome. Microbiology 140, 2271–2277.

    Article  CAS  Google Scholar 

  88. Peschke, U., Schmidt, H., Zhang, H.-Z. and Piepersberg, W. (1995) Molecular characterization of the lincomycin-production gene cluster of Streptomyces lincolnensis 78–11. Mol. Microbiol. 16, 1137–1158.

    Article  CAS  Google Scholar 

  89. Muth, G., Nussbaumer, B., Wohlleben, W., and Pühler, A. (1989) A vector system with temperature-sensitive replicon for gene disruption and mutational cloning in streptomycetes. Mol. Gen. Genet. 219, 341–348.

    Article  CAS  Google Scholar 

  90. Birch, A. and Cullum, J. (1985) Temperature-sensitive mutants of the Streptomyces plasmid pIJ702. J. Gen. Microbiol. 131, 1299–1303.

    CAS  Google Scholar 

  91. McHenney, M. A. and Baltz, R. H. (1991) Transposition of Tn5096 from a temperature-sensitive transducible plasmid in Streptomyces spp. J. Bacteriol. 173, 5578–5581.

    CAS  Google Scholar 

  92. Seno, E. T. and Baltz, R. H. (1982) S-adenosyl-L-methionine: macrocin 0-methyltransferase activities in a series of Streptomyces fradiae mutants which produce different levels of the macrolide antibiotic tylosin. Antimicrob. Agents Chemother. 21, 758–763.

    Article  CAS  Google Scholar 

  93. Baltz, R. H. and Seno E. T. (1988) Genetics of Streptomyces fradiae and tylosin biosynthesis. Ann. Rev. Microbiol. 42, 547–574.

    Article  CAS  Google Scholar 

  94. Baltz, R. H., McHenney, M. A., Cantwell, C. A., Queener, S. W., and Solenberg, P. J. (1997) Applications of transposition mutagenesis in antibiotic producing streptomycetes. Antonie Leeuwenhoek 71, 179–187.

    Article  CAS  Google Scholar 

  95. Baltz, R. H. (1998) New genetic methods to improve secondary metabolite production in Streptomyces. J. Ind. Microbiol. Biotechnol. 20, 360–363.

    Article  CAS  Google Scholar 

  96. Sezonov, G., Blanc, V., Bamas-Jacques, N., Friedman, A., Pernodet, J.-L. and Guerineau, M. (1997) Complete conversion of antibiotic precursor to pristinamycin IIA by overexpression of Streptomyces pristinaespiralis biosynthetic genes. Nat. Biotechnol. 15, 349–353.

    Article  CAS  Google Scholar 

  97. Baltz, R. H. (1999) Mutagenesis, in Encyclopedia of Bioprocess Technology: Fermentation, Biocatalysis, and Separation, (Flickinger, M. C. and Drew, S. W. eds.), Wiley, New York, NY, pp. 1819–1822.

    Google Scholar 

  98. Madduri, K., Waldron, C., Matsushima, P., Broughton, M. C., Crawford, K., Merlo, D. J., et al. (2001) Genes for the biosynthesis of spinosyns: applications for yield improvement in Saccharopolyspora spinosa. J. Ind. Microbiol. Biotechnol. 27, 399–402.

    Article  CAS  Google Scholar 

  99. Overbeek, R., Fonstein, M., D’Sousza, M., Pusch, G. D. and Malstev, N. (1999) The use of gene clusters to infer functional coupling. Proc. Natl. Acad. Sci. USA 96, 2896–2901.

    Article  CAS  Google Scholar 

  100. Overbeek, R., Larsen, N., Smith, W., Maltzev, N., and Selkov, E. (1997) Representation of function: the next step. Gene 191, GC1–GC9.

    Article  CAS  Google Scholar 

  101. Selkov, E., Jr., Grechkin, Y., Mikhailova, N., and Selkov, E. (1998) MPWW: the metabolic pathways database. Nucleic Acids Res. 26, 43–45

    Article  CAS  Google Scholar 

  102. Selkov, E., Maltzev, N., Olsen, G. J., Overbeek, R., and Whitman, W. B. (1997) A reconstruction of the metabolism of Methanococcus jannaschii. Gene 197, GC11–GC26.

    Article  CAS  Google Scholar 

  103. Covert, M. W., Schilling, C. H., Famili, I., Edwards, J. S., Goryanin, I. I., Selkov, E., et al. (2001) Metabolic modeling of microbial strains in silico. Trends Biochem. Sci. 3, 179–186.

    Article  Google Scholar 

  104. Overbeek, R., Larsen, N., Pusch, G. D., D’ Souza, M., Selkov, E., Jr., Kyrpides, N., Fonstein, M., Maltsev, N., and Selkov, E. (2000) WIT: integrated system for high-throughput genome sequence analysis and metabolic reconstruction. Nucleic Acids Res. 28, 123–125.

    Article  CAS  Google Scholar 

  105. Tao, H., Bausch, C., Richmond, C., Blattner, F. R., and Conway, T. (1999) Functional genomics: expression analysis of Escherichia coli growing on minimal and rich media. J. Bacteriol. 181, 6425–6440.

    CAS  Google Scholar 

  106. Pomposiello, P. J., Bennik, M. H. J., and Demple, B. (2001) Genome-wide transcriptional profiling of the Escherichia coli responses to superoxide stress and sodium salicylate. J. Bacteriol. 183, 3890–3902.

    Article  CAS  Google Scholar 

  107. Zheng, M., Wang, X., Templeton, L. J., Smulskoi, D. R., LaRossa, R. A., and Storz, G. (2001) DNA microarray-mediated transcriptional profiling of the Escherichia coli response to hydrogen peroxide. J. Bacteriol. 183, 4562–4570.

    Article  CAS  Google Scholar 

  108. DeLisa, M. P., Wu, C.-F., Wang, L., Valdes, J. J., and Bentley, W. E. (2001) DNA microarraybased identification of genes controlled by autoinducer 2-stimulated quorum sensing in Escherichia coli. J. Bacteriol. 183, 5239–5247.

    Article  CAS  Google Scholar 

  109. Luccini, S., Thompson, A., and Hinton, J. C. D. (2001) Microarrays for microbiologists. Microbiology 147, 1403–1414.

    Google Scholar 

  110. Price, C. W., Fawcett, P., Ceremonie, H., Su, N., Murphy, C. K., and Youngman, P. (2001) Genome-wide analysis of the general stress response in Bacillus subtilis. Mol. Microbiol. 41, 757–774.

    Article  CAS  Google Scholar 

  111. VanBogelen, R. A., Schiller, E. E., Thomas, J. D., and Neidhardt, F. C. (1999) Diagnosis of cellular states of microbial organisms using proteomics. Electrophoresis 20, 2149–2159.

    Article  CAS  Google Scholar 

  112. Pandey, A. and Mann, M. (2000) Proteomics to study genes and genomes. Nature 405, 837–846.

    Article  CAS  Google Scholar 

  113. Voradsky, J., Li, X.-M., and Thompson, C. J. (1997) Identification of prokaryotic development stages by statistical analyses of two-dimentional gel patterns. Electrophoresis 18, 1418–1428.

    Article  Google Scholar 

  114. Voradsky, J., Li, X.-M., Dale, G., Folcher, M., Nguyen, L., Viollier, P. H., et al. (2000) Developmental control of stress stimulons in Streptomyces coelicolor revealed by statistical analyses of global gene expression patterns. J. Bacteriol. 182, 4979–4986.

    Article  Google Scholar 

  115. Schilling, C. H., Edwards, J. S., and Palsson, B. O. (1999) Toward metabolic phenomics: analysis of genomic data using flux balances. Biotechnol. Prog. 15, 288–295.

    Article  CAS  Google Scholar 

  116. Hutchinson, C. R. and Fujii, I. (1995) Polyketide synthase gene manipulation: a structurefunction approach in engineering novel antibiotics. Annu. Rev. Microbiol. 49, 201–238.

    Article  CAS  Google Scholar 

  117. Haydock, S. F., Aparicio, J. F., Molnar, I., Schwecke, T., Khaw, L. E., Konig, A., et al. (1995) Divergent sequence motifs correlated with the substrate specificity of (methyl)malonylCoA:acyl carrier protein transacylase domains in modular polyketide synthases. FEBS Lett. 374, 246–248.

    Article  CAS  Google Scholar 

  118. Staunton, J., Caffrey, P., Aparicio, J. F., Roberts, G. A., Bethell, S. S., and Leadlay, P. F. (1996) Evidence for a double—helical structure for modular polyketide synthases. Nat. Struct. Biol. 3, 188–192.

    Article  CAS  Google Scholar 

  119. Aparicio, J. F., Molnar, I., Schwecke, T., Konig, A., Hayfcock, S. F., Khaw, L. E., et al. (1996) Organization of the biosynthetic gene cluster of rapamycin in Streptomyces hygroscopicus: analysis of the enzymatic domains in the modular polyketide synthase. Gene 196, 9–16.

    Article  Google Scholar 

  120. Leadlay, P. F. (1997) Combinatorial approaches to polyketide biosynthesis. Curr. Opin. Chem. Biol. 1, 162–168.

    Article  CAS  Google Scholar 

  121. Weissman, K. L., Timoney, M., Brycroft, M. C., Grice, P., Hanefeld, U., Staunton, J., et al. (1997) The molecular basis of Celmer’s rules: the stereochemistry of the condensation step in chain elongation on the erythromycin polyketide synthase. Biochemistry 36, 13,849–13,855.

    Article  Google Scholar 

  122. August, P., Tang, L., Yoon, Y. J., Ning, S., Muller, R., Yu, T.-W., et al. (1998) Biosynthesis of the ansamycin antibiotic rifamycin: deductions from the molecular analysis of the rif biosynthetic gene cluster of Amycolatopsis mediterranei S699. Chem. Biol. 5, 69–79.

    Article  CAS  Google Scholar 

  123. Weissman, K. J., Brycroft, M., Cutter, A. L., Hanefeld, U., Frost, E. J., Timoney, M. C., et al. (1998) Evaluating precursor-directed biosynthesis towards novel erythromycins through in vitro studies on a bimodular polyketide synthase. Chem. Biol. 5, 743–754.

    Article  CAS  Google Scholar 

  124. Staunton, J. (1998) Combinatorial biosynthesis of erythromycin and complex polyketides. Curr. Opin. Chem. Biol. 2, 339–345.

    Article  CAS  Google Scholar 

  125. Cane, D. E., Walsh, C. T., and Khosla, C. (1998) Harnessing the biosynthetic code: combinations, permutations, and mutations. Science 282, 63–68.

    Article  CAS  Google Scholar 

  126. Bohm, I., Holzbaur, U., Cortes, J., Staunton, J., and Leadlay, P. F. (1998) Engineering of a minimal polyketide synthase, and targeted alteration of the stereospecificity of polyketide chain extension. Chem. Biol. 5, 407–412.

    Article  CAS  Google Scholar 

  127. Tang, L., Yoon, Y. J., Choi, C.-Y., and Hutchinson, C. R. (1998) Characterization of the enzymatic domains in the modular polyketide synthase involved in rifamycin B biosynthesis in Amycolatopsis mediterranei. Gene 216, 255–265.

    Article  CAS  Google Scholar 

  128. Gokhale, R. S., Tsuji, S. Y., Cane, D. E., and Khosla, C. (1999) Dissecting and exploiting intermodular communication in polyketide synthases. Science 284, 482–485.

    Article  CAS  Google Scholar 

  129. Gokhale, R. S., Hunziker, D., Cane, D. E., and Khosla, C. (1999) Mechanism and specificity of the terminal thioesterase domain from the erythromycin polyketide synthase. Chem. Biol. 6, 117–125.

    Article  CAS  Google Scholar 

  130. Holzbaur, I. E., Harris, R. C., Bycroft, M., Cortes, J., Bisang, C., Staunton, J., et al. (1999) Molecular basis of Celmer’s rules: the role of the two ketoreductase domains in the control of chirality by the erythromycin modular polyketide synthase. Chem. Biol. 6, 189–195.

    Article  CAS  Google Scholar 

  131. Ikeda, H., Nonomiya, T., Usami, M., Ohta, T., and Omura, S. (1999) Organization of the biosynthetic gene cluster of the polyketide anthelmintic macrolide avermectin in Streptomyces avermitilis. Proc. Natl. Acad. Sci. USA 96, 9509–9514.

    Article  CAS  Google Scholar 

  132. Rowe, C. J., Bohm, I. U., Thomas, I. P., Wilkinson, B., Rudd, B. A. M., Foster, G., et al. (2001) Engineering a polyketide with a longer chain by insertion of an extra module into the erythromycin-producing polyketide synthase. Chem. Biol. 8, 475–485.

    Article  CAS  Google Scholar 

  133. Holzbaur, I. E., Ranganathan, A., Thomas, I. P., Kearney, D. J. A., Reather, J. A., Rudd, B. A. M., et al. (2001) Molecular basis of Celmer’s rules: role of the ketosynthase domain in epimerization and demonstration that ketoreductase domains can have altered product specificity with unnatural substrates. Chem. Biol. 8, 329–340.

    Article  CAS  Google Scholar 

  134. Kao, C. M., Luo, G. L., Katz, L., Cane, D. E., and Khosla, C. (1995) Manipulation of macrolide ring size by directed mutagenesis of a modular polyketide synthase. J. Am. Chem. Soc. 117, 9105–9106.

    Article  Google Scholar 

  135. Kirst, H. A. (1991) New macrolides: expanded horizons for an old class of antibiotics. J. Antimicrob. Chemother. 28, 787–790.

    Article  CAS  Google Scholar 

  136. Agouridas, C., Bonnefoy, A., and Chantot, J. F. (1997) Antibacterial activity of RU 64004 (HMR 3004), a novel ketolide derivative active against respiratory pathogens. Antimicrob. Agents Chemother. 42, 2149–2158.

    Google Scholar 

  137. Agouridas, C., Denis, A., Auger, J-M., Beneditti, Y., Bonnefoy, A., Bretin, F., et al. (1998) Synthesis and antimicrobial activity of ketolides (6-O-methyl-3-oxoerythromycin derivatives): a new class of antibacterials highly potent against macrolide-resistant and -susceptible respiratory pathogens. J. Med. Chem. 41, 4080–4100.

    Article  CAS  Google Scholar 

  138. Ednie, L. M., Spangler, S. K., Jacobs, M. R., and Applebaum, P. C. (1997) Susceptibilities of 228 penecillin- and erythromycin-susceptible and -resistant pneumococci to RU 64004, a new ketolide, compared with susceptibilities to 16 other agents. Antimicrob. Agents Chemother. 41, 1033–1036.

    CAS  Google Scholar 

  139. Schulin, T., Wennersten, R. C., Moellering, R. C., Jr., and Eliopoulos, G. M. (1997) In vitro activity of RU 64004, a new ketolide antibiotic, against gram-positive bacteria. Antimicrob. Agents Chemother. 41, 1196–1202.

    CAS  Google Scholar 

  140. Barry, A. L., Fuchs, P. C., and Brown, S. D. (1998) In vitro activities of the ketolide HMR 3647 against gram-positive clinical isolates and Haemophilus influenzae. Antimicrob. Agents Chemother. 42, 2138–2140.

    CAS  Google Scholar 

  141. Barry, A. L., Fuchs, P. C., and Brown, S. D. (1998) Antipneumococcal activities of a ketolide (HMR 3647), a streptogramin (quinupristin-dalphopristin), a macrolide (erythromycin), and a lincosamide (clindamycin). Antimicrob. Agents Chemother. 42, 945–946.

    CAS  Google Scholar 

  142. Barry, A. L., Fuchs, P. C., and Brown, S. D. (2001) In vitro activity of the ketolide ABT-773. Antimicrob. Agents Chemother. 45, 2922–2924.

    Article  CAS  Google Scholar 

  143. Goldstein, E. J. C., Conrads, G., Citron, D. M., Merriam, C. V., Warren, Y., and Tyrrell, K. (2001) In vitro activities of ABT-773, a new ketolide, against aerobic and anaerobic pathogens isolated from antral sinus puncture specimens from patients with sinusitis. Antimicrob. Agents Chemother. 45, 2363–2367.

    Article  CAS  Google Scholar 

  144. Seno, E. T., and Hutchinson, C. R. (1986). The biosynthesis of tylosin and erythromycin: model systems for studies of the genetics and biochemistry of antibiotic formation, in The Bacteria, vol. IX, Antibiotic-Producing Streptomyces (Queener, S. W. and Day, L. E., eds.), Academic Press, New York, NY, pp. 231–279.

    Google Scholar 

  145. Staunton, J. and Wilkinson, B. (1997) Biosynthesis of erythromycin and rapamycin. Chem. Rev. 97, 2611–2629.

    Article  CAS  Google Scholar 

  146. Rodriques, E. and McDaniel, R. (2001) Combinatorial biosynthesis of antimicrobials and other natural products. Curr. Opin. Microbiol. 4, 526–534.

    Article  Google Scholar 

  147. Ruan, X., Pereda, A., Stassi, D. L., Zeidner, D., Summers, R. G., Jackson, M., et al. (1997) Acyltransferase domain substitutions in erythromycin polyketide synthase yield novel erythromycin derivatives. J. Bacteriol. 179, 6416–6425.

    CAS  Google Scholar 

  148. Stassi, D. L., Kakavas, S. J., Reynolds, K. A., Gunawardana, G., Swanson, S., Zeidner, D., et al. (1998) Ethyl-substituted erythromycin derivatives produced by directed metabolic engineering. Proc. Natl. Acad. Sci. USA 95, 7305–7309.

    Article  CAS  Google Scholar 

  149. Kao, C. M., Katz, L., and Khosla, C. (1994) Engineered biosynthesis of a complete macrolactone in a heterologous host. Science 265, 509–512

    Article  CAS  Google Scholar 

  150. Cortes, J., Wiesmann, K. E., Roberts, G. A., Brown, M. J., Staunton, J., and Leadlay, P. F. (1995) Repositioning of a domain in a modular polyketide synthase to promote specific chain cleavage. Science 268, 1487–1489.

    Article  CAS  Google Scholar 

  151. Bedford, D., Jacobson, R., Luo, G., Cane, D. E., and Khosla, C. (1996) A functional chimeric polyketide svnthase generated via domain replacement. Chem. Biol. 3, 827–831.

    Article  CAS  Google Scholar 

  152. Oliynyk, M., Brown, M. J. B., Cortes, J., Staunton, J., and Leadlay, P. F. (1996) A hybrid modular polyketide synthase obtained by domain swap**. Chem. Biol. 3, 833–839.

    Article  CAS  Google Scholar 

  153. Denoya, C. D., Fedechko, R. W., Hafner, E. W., McArthur, H. A., Morgenstern, M. R., Skinner, D. D., et al. (1995) A second branched-chain alpha-keto acid dehydrogenase gene cluster (bkdFGH) from Streptomyces avermitilis: its relationship to avermectin biosynthesis and the construction of a bkdF mutant suitable for the production of novel antiparasitic avermectins. J. Bacteriol. 177, 3504–3511.

    CAS  Google Scholar 

  154. Dutton, C. J., Gibson, S. P., Goudie, A. C., Holden, K. S., Pacey, M. S., Ruddock, J. C., et al. (1991) Novel avermectins produced by mutational biosynthesis. J. Antibiot. 44, 357–365.

    Article  CAS  Google Scholar 

  155. Marsden, F. A., Wilkenson, B., Cortes, J., Dunster, N. J., Staunton, J., and Leadlay, P. F. (1998) Engineering broader specificity into an antibiotic-producing polyketide synthase. Science 279, 199–202.

    Article  CAS  Google Scholar 

  156. Pacey, M. S., Dirlam, J. P., Geldart, R. W., Leadlay, P. F., McArthur, H. A., McCormick, E. L., et al. (1998) Novel erythromycins from a recombinant Saccharopolyspora erythraea strain NRRL 2338 pIG1. I. Fermentation, isolation and biological activity. J. Antibiot. 51, 1029–1034.

    Article  CAS  Google Scholar 

  157. Kirst, H. A. (1994) Semi-synthetic derivatives of 16-membered macrolide antibiotics. Prog. Med. Chem. 31, 265–295.

    Article  CAS  Google Scholar 

  158. Wilson, R. C. (1984) Macrolides in veterinary practice, in Macrolide Antibiotics: Chemistry, Biology, and Practice, (Omura, S., ed.), Academic Press, Tokyo, pp. 301–347.

    Google Scholar 

  159. Nakayama, I. (1984) Macrolides in clinical practice, in Macrolide Antibiotics: Chemistry, Biology, and Practice, (Omura, S., ed.), Academic Press, Tokyo, pp. 261–300.

    Google Scholar 

  160. Olafsson, S., Berstat, A., Bang, C. J., Nysaeter, G., Coll, P., Tefera, S., et al. (1999) Spiramycin is comparable to oxytetracycline in eradicating H. pylori when given with ranitidine bismuth citrate and metronidizole. Aliment. Pharmacol. Ther. 13, 651–659.

    Article  CAS  Google Scholar 

  161. Rubinstein, E. and Keller, N. (1998) Spiramycin renaissance. J. Antimicrob. Chemother. 42, 572–576.

    Article  CAS  Google Scholar 

  162. Klugman, K. P., Capper, T., Widdowson, C. A., Koornhof, H. J., and Moser, W. (1998) Increased activity of 16-membered lactone ring macrolides against erythromycin-resistant Streptoccoccus pyogenes and Streptococcus pneumoniae: characterization of South African isolates. J. Antimicrob. Chemother. 42, 729–734.

    Article  CAS  Google Scholar 

  163. Okamoto, R., Fukumoto, T., Nomura, H., Kiyoshima, K., Nakamura, K., and Takamatsu, A. (1980) Physicochemical properties of new acyl derivatives of tylosin produced by microbial transformation. J. Antibiot. 33, 1300–1308.

    Article  CAS  Google Scholar 

  164. Baltz, R. H. and Seno, E. T. (1981) Properties of Streptomyces fradiae mutants blocked in bisynthesis of the macrolide antibiotic tylosin. Antimicrob. Agents Chemother. 20, 214–225.

    Article  CAS  Google Scholar 

  165. Kirst, H. A., Debono, M., Willard, K. E., Trudell, B. A., Toth, T. E., Turner, J. R., et al. (1986) Preparation and evaluation of 3,4″-ester derivatives of 16-membered macrolide antibiotics related to tylosin. J. Antibiot. 39, 1724–1735.

    Article  CAS  Google Scholar 

  166. Cox, K. L., Fishman, S. E., Larson, J. L., Stanzak, R., Reynolds, P. A., Yeh, W. K., et al. 1986 The use of recombinant DNA techniques to study tylosin biosynthesis and resistance in Streptomyces fradiae. J. Nat. Prod. 49, 971–980.

    Article  CAS  Google Scholar 

  167. Fishman, S. E., Cox, K., Larson, J. L., Reynolds, P. A., Seno, E. T., Yeh, W.-K., et al. (1987) Cloning genes for the biosynthesis of a macrolide antibiotic. Proc. Natl. Acad. Sci. USA 84, 8248–8252.

    Article  CAS  Google Scholar 

  168. Beckmann, R. J., Cox, K., and Seno, E. T. (1989). A cluster of tylosin biosynthetic genes is interrupted by a structurally unstable segment containing four repeated sequences, in Genetics and Molecular Biology of Industrial Microorganisms (Hershberger, C. L., Queener, S.W., and Hegeman, G., eds.), American Society for Microbiology, Washington, DC, pp. 176–186.

    Google Scholar 

  169. Merson-Davies, L. and Cundliffe, E. (1994) Analysis of five tylosin biosynthetic genes from the tylIBA region of the Streptomyces fradiae genome. Mol. Microbiol. 13, 349–355.

    Article  CAS  Google Scholar 

  170. Gandecha, A. R., Large, S. L., and Cundliffe, E. (1997) Analysis of four tylosin biosynthetic genes from the tylLM region of the Streptomyces fradiae genome. Gene 184, 197–203.

    Article  CAS  Google Scholar 

  171. Wilson, V. and Cundliffe, E. (1998) Characterization and targeted disruption of a glycosyltransferase gene in the tylosin producer, Streptomyces fradiae. Gene 214, 95–100.

    CAS  Google Scholar 

  172. Butler, A. R., Bate, N., and Cundliffe, E. (1999) Impact of thioesterase activity on tylosin biosynthesis in Streptomyces fradiae. Chem. Biol. 6, 287–292.

    Article  CAS  Google Scholar 

  173. Bate, N. and Cundliffe, E. (1999) The mycinose-biosynthetic genes of Streptomyces fradiae, producer of tylosin. J. Ind. Microbiol. Biotechnol. 23, 118–122.

    Article  CAS  Google Scholar 

  174. Fouces, R., Mellado, E., Diez, B., and Barredo, J. L. (1999) The tylosin biosynthetic cluster from Streptomyces fradiae: genetic organization of the left region. Microbiology 145, 855–868.

    Article  CAS  Google Scholar 

  175. Birmingham, V. A., Cox, K. L., Larson, J. L., Fishman, S. E., Hershberger, C. L., and Seno, E. T. (1986) Cloning and expression of a tylosin resistance gene from a tylosin-producing strain of Streptomyces fradiae. Mol. Gen. Genet. 204, 532–539.

    Article  CAS  Google Scholar 

  176. Zalacain, M. and Cundliffe, E. (1989) Methylation of 23s rRNA caused by tlrA (ermSF), a tylosin resistance determinant from Streptomyces fradiae. J. Bacteriol. 171, 4254–4260.

    CAS  Google Scholar 

  177. Keleman, G. H., Zalacain, M., Culebras, E., Seno, E. T., and Cundliffe, E. (1994) Transcriptional attenuation control of the tylosin-resistance gene tlrA in Streptomyces fradiae. Mol. Microbiol. 14, 833–842.

    Article  Google Scholar 

  178. Kovalic, D., Giannattasio, R. B., **, H.-J., and Weisblum, B. (1994) 23s rRNA domain V, a fragment that can be specifically methylated in vitro by the ermSF (t1rA) methyltransferase. J. Bacteriol. 176, 6992–6998.

    CAS  Google Scholar 

  179. Rosteck, P. R., Jr., Reynolds, P. A., and Hershberger, C. L. (1991) Homology between proteins controlling Streptomyces fradiae tylosin resistance and ATP-binding transport. Gene 102, 27–32.

    Article  CAS  Google Scholar 

  180. Zalacain, M. and Cundliffe, E. (1991) Cloning of t1rD, a fourth resistance gene, from the tylosin producer, Streptomyces fradiae. Gene 97, 137–142.

    Article  CAS  Google Scholar 

  181. Gandecha, A. R. and Cundliffe, E. (1996) Molecular analysis of t1rD, an MLS resistance determinant from the tylosin producer, Streptomyces fradiae. Gene 180, 173–176.

    Article  CAS  Google Scholar 

  182. Fish, S. A. and Cundliffe, E. (1996) Structure-activity studies of tylosin-related macrolides. J. Antibiot. 49, 1044–1048.

    Article  CAS  Google Scholar 

  183. Baltz, R. H., Seno, E. T., Stonesifer, J., and Wild, G. M. (1983) Biosynthesis of the macrolide antibiotic tylosin: A preferred pathway from tylactone to tylosin. J. Antiobiot. 36, 131–141.

    Article  CAS  Google Scholar 

  184. Fish, S. A. and Cundliffe, E. (1997) Stimulation of polyketide metabolism in Streptomyces fradiae by tylosin and its glycosylated precursors. Microbiology 143, 3871–3876.

    Article  CAS  Google Scholar 

  185. Matsushima, P. and Baltz, R. H. (1985) Efficient plasmid transformation of Streptomyces ambofaciens and Streptomyces fradiae protoplasts. J. Bacteriol. 163, 180–185.

    CAS  Google Scholar 

  186. Ford, L. M., Eaton, T. E., and Godfrey, O. W. (1990) Selection of Streptomyces ambofaciens mutants that produce large quantities of spiramycin and determination of optimal conditions for spiramycin production. Appl. Environ. Microbiol. 56, 3511–3514.

    CAS  Google Scholar 

  187. Epp, J. K., Huber, M. L. B., Turner, J. R., Goodson, T., and Schoner, B. E. (1989) Production of hybrid macrolide antibiotics in Streptomyces ambofaciens and Streptomyces lividans by introduction of a cloned carbomycin biosynthetic gene from Streptomyces thermotolerans. Gene 85, 293–301.

    Article  CAS  Google Scholar 

  188. Richardson, M. A., Kuhstoss, S., Huber, M. L. B., Ford, L., Godfrey, O., Turner, J. R., et al. (1990) Cloning of spiramycin biosynthetic genes and their use in constructing Streptomyces ambofaciens mutants defective in spiramycin biosynthesis. J.Bacteriol. 172, 3790–3798.

    CAS  Google Scholar 

  189. Geistlich, M., Losick, R., Turner, J. R., and Rao, R. N. (1992) Characterization of a novel regulatory gene governing the expression of a polyketide synthase gene in Streptomyces ambofaciens. Mol. Microbiol. 6, 2019–2029

    Article  CAS  Google Scholar 

  190. Kuhstoss, S., Huber, M., Turner, J. R., Paschal, J. W., and Rao, R. N. (1996) Production of a novel polyketide through the construction of a hybrid polyketide synthase. Gene 183, 231–236.

    Article  CAS  Google Scholar 

  191. Hutchinson, C. R. (1997) Biosynthesis of daunorubicin and tetracenomycin C. Chem. Rev. 97, 2525–2535.

    Article  CAS  Google Scholar 

  192. Binnie, C., Warren, M., and Butler, M. J. (1989) Cloning and heterologous expression in Streptomyces lividans of Streptomyces rimosus genes involved in oxytetracycline biosynthesis. J.Bacteriol. 171, 887–895.

    CAS  Google Scholar 

  193. Han, L., Yang, K., Ramalingam, E., Mosher, R. H., and Vining, L. C. (1994) Cloning and characterization of polyketide synthase genes for jadomycin B biosynthesis in Streptomyces venezuelae ISP5230. Microbiology 140, 3379–3389.

    Article  CAS  Google Scholar 

  194. Decker, H., Rohr, J., Motamedi, H., Zahner, C. R., and Hutchinson, C. R. (1995) Identification of Streptomyces olivaceus Tu2353 genes involved in the production of the polyketide elloramycin. Gene 166, 121–126.

    Article  CAS  Google Scholar 

  195. Decker, H. and Haag, S. (1995) Cloning and characterization of a polyketide synthase gene from Streptomyces fradiae Tu2717, which carries the genes for the biosynthesis of the angucycline antibiotic urdamycin A and a gene probably involved in its oxygenation. J. Bacteriol. 177, 6126–6136.

    CAS  Google Scholar 

  196. Ichinose, K., Bedford, D. J., Tornus, D., Bechthold, A., Bibb, M., Revill, W. P., et al. (1998) The granaticin biosynthetic gene cluster of Streptomyces violaceoruber Tu22: sequence analysi sand expression in a heterologous host. Chem. Biol. 5, 647–659.

    Article  CAS  Google Scholar 

  197. Lombo, F., Brana, A. F., Mendez, C., and Salas, J. A. (1999) The mithramycin gene cluster of Streptomyces argillaceus contains a positive regulatory gene and two repeated DNA sequences that are located at both ends of the cluster. J. Bacteriol. 181, 642–647.

    CAS  Google Scholar 

  198. Westrich, L., Domann, S., Faust, B., Bedford, D., Hopwood, D. A., and Bechthold, A. (1999) Cloning and characterization of a gene cluster from Streptomyces cyanogenus S136 probably involved in landomycin biosynthesis. FEMS Microbiol. Lett. 170, 381–387.

    Article  CAS  Google Scholar 

  199. Kantola, J., Kunnari, T., Hautala, A., Hakala, J., Ylinko, K., and Mantsala, P. (2000) Elucidation of anthracyclinone biosynthesis by stepwise cloning of genes for anthracyclines from three different Streptomyces spp. Microbiology 146, 155–163.

    CAS  Google Scholar 

  200. Tsoi, C. J. and Khosla, C. (1995) Combinatorial biosynthesis of unnatural natural products— the polyketide example. Chem. Biol. 2, 355–362.

    Article  CAS  Google Scholar 

  201. Khosla, C. and Zawada, R. J. X. (1996) Generation of polyketide libraries via combinatorial biosynthesis. Trends Biotechnol. 14, 335–341.

    Article  CAS  Google Scholar 

  202. Kleinkauf, H. and von Dohren, H. (1990) Bioactive peptides—recent advances and trends, in Biochemistry of Peptide Antibiotics, (Kleinkauf, H. and von Dohren, H., eds.), Walter de Gruyter, Berlin, pp. 1–31.

    Google Scholar 

  203. von Dohren, H. (1990) Compilation of peptide structures-a biogenetic approach, in Biochemistry of Peptide Antibiotics, (Kleinkauf, H., and von Dohren, H., eds.), Walter de Gruyter, Berlin. pp. 411–507.

    Google Scholar 

  204. Kleinkauf, H. and von Dohren, H. (1996) A nonribosomal system of peptide biosynthesis. Eur. J. Biochem. 236, 135–151.

    Article  Google Scholar 

  205. Marahiel, M. A., Stachelhaus, T., and Mootz, H. D. (1997) Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem Rev. 97, 2651–2673.

    Article  CAS  Google Scholar 

  206. von Dohren, H., Keller, U., Vater, J., and Zocher, R. (1997) Multifunctional peptide synthetases. Chem. Rev. 97, 2675–2705.

    Article  Google Scholar 

  207. Stachelhaus, T. and Marahiel, M. A. (1995) Modular structure of genes encoding multifunctional peptide synthetases required for non-ribosomal peptide synthesis. FEMS Microbiol. Lett. 125, 3–14.

    Article  CAS  Google Scholar 

  208. Stein, T. and Vater, J. (1996) Amino acid activation and polymerization at modular multienzymes in nonribosomal peptide biosynthesis. Amino Acids 10, 201–227.

    Article  CAS  Google Scholar 

  209. Zuber, P. and Marahiel, M. A. (1997) Structure, function, and regulation of genes encoding multidomain peptide synthetases, in Biotechnology of Antibiotics (Strohl, W. R., ed.), Marcel Dekker. New York, NY, pp. 187–216.

    Google Scholar 

  210. Konz, D. and Marahiel, M. A. (1999) How do peptide synthetases generate structural diversity? Chem. Biol. 6, 39–48.

    Article  Google Scholar 

  211. Stachelhaus, T., Schneider, A., and Marahiel, M. A. (1995) Rational design of peptide antibiotics by targeted replacement of bacterial and fungal domains. Science 269, 69–72.

    Article  CAS  Google Scholar 

  212. Schneider, A., Stachelhaus, T., and Marahiel, M. A. (1998) Targeted alteration of the substrate specificity of peptide synthetases by rational module swap**. Mol. Gen. Genet. 257, 308–318.

    Article  CAS  Google Scholar 

  213. Mootz, H. D., Schwarzer, D., and Marahiel, M. A. (2000) Construction of hybrid peptide synthetases by module and domain fusions. Proc. Nall. Acad. Sci. USA 97, 5848–5853.

    Article  CAS  Google Scholar 

  214. Belshaw, P. J., Walsh, C. T., and Stachelhaus, T. (1999) Aminoacyl-CoAs as probes of condensation domain selectivity in nonribosomal peptide synthetases. Science 284, 486–489.

    Article  CAS  Google Scholar 

  215. Ehmann, D. E., Trauger, J. W., Stachelhaus, T., and Walsh, C. T. (2000) Aminoacyl-SNACs as small-molecule substrates for the condensation domains of nonribosomal peptide synthetases. Chem. Biol. 7, 765–772.

    Article  CAS  Google Scholar 

  216. Linne, U. and Marahiel, M. A. (2000) Control of directionality in nonribosomal peptide synthesis: role of the condensation domain in preventing misinitiation and timing of epimerization. Biochemistry 39, 10,439–10,447.

    Google Scholar 

  217. Luo, L. and Marahiel, M. A. (2001) Kinetic analysis of three activated intermediates generated by the initiation module pheATE of gramacidin S synthetase. Biochemistry 40, 5329–5337.

    Article  CAS  Google Scholar 

  218. Conti, E., Stachelhaus, T., Marahiel, M. A., and Brick, P. (1997) Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramacidin S. EMBO J. 16, 4174–4183.

    Article  CAS  Google Scholar 

  219. Stachelhaus, T., Mootz, H. D., and Marahiel, M. A. (1999) The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem. Biol. 6, 493–505.

    Article  CAS  Google Scholar 

  220. Challis, G. L., Ravel, J., and Townsend, C. A. (2000) Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. Chem. Biol. 7, 211–224.

    Article  CAS  Google Scholar 

  221. Mootz, H. D. and Marahiel, M. A. (1999) Design and application of multimodular peptide synthetases. Curr. Opin. Biotechnol. 10, 341–348.

    Article  CAS  Google Scholar 

  222. von Dohren, H., Dieckmann, R., and Pavela-Vrancic, M. (1999) The nonribosomal code. Chem. Biol. 6, R273–R279.

    Article  Google Scholar 

  223. Doekel, S. and Marahiel, M. A. (2000) Dipeptide formation on engineered hybrid peptide synthetases. Chem. Biol. 7, 373–384.

    Article  CAS  Google Scholar 

  224. Stachelhaus, T. and Walsh, C. T. (2000) Mutational analysis of the epimerase domain in the initiation module pheATE of gramacidin S synthetase. Biochemistry 39, 5775–5787.

    Article  CAS  Google Scholar 

  225. Trauger, J. W., Kohli, R. M., Mootz, H. D., Marahiel, M. A., and Walsh, C. T. (2000) Peptide cyclization catalysed by the thioesterase domain of tvrocidin svnthetase. Nature 407. 215–218

    Article  CAS  Google Scholar 

  226. Kohli, R. M., Trauger, J. W., Schwarzer, D., Marahiel, M. A., and Walsh, C. T. (2001) Generality of peptide cyclization catalyzed by isolated thioesterase domains of nonribosomal peptide synthetases. Biochemistry 40, 7099–7108.

    Article  CAS  Google Scholar 

  227. Walsh, C. T., Chen, H., Keating, T. A., Hubbard, B. K., Losey, H. C., Luo, L., et al. (2001) Tailoring enzymes that modify nonribosomal peptides during and after chain elongation on NRPS assembly lines. Curr. Opin. Chem. Biol. 5, 525–534.

    Article  CAS  Google Scholar 

  228. Trauger, J. W., Kohli, R. M., and Walsh, C. T. (2001) Cyclization of backbone-substituted peptides catalyzed by the thioesterase domain from the tyrocidin nonribosomal peptide stnthetase. Biochemistry 40, 7092–7098.

    Article  CAS  Google Scholar 

  229. Marshall, C. G., Burkart, M. D., Keating, T. A., and Walsh, C. T. (2001) Heterocycle formation in vibriobactin biosynthesis: alternative substrate utilization and identification of a condensed intermediate. Biochemistry 40, 10,655–10,663.

    Google Scholar 

  230. Linne, U., Doekel, S., and Marahiel, M. A. (2001) Portability of epimerization domain and role of peptidyl carrier protein on epimerization activity in nonribosomal peptide synthetases. Biochemistry 40, 15,824–15,834.

    Article  CAS  Google Scholar 

  231. Baltz, R. H. (1997) Lipopeptide antibiotics produced by Streptomyces roseosporus and Streptomyces fradiae, in Biotechnology of Antibiotics, (Strohl, W. R., ed.), Marcel Dekker, New York, NY, pp. 415–435.

    Google Scholar 

  232. Tally, F. P., Zeckel, M., Wasilewski, M. M., Carini, C., Berman, C. L., Drusano, G. L., et al. (1999) Daptomycin: a novel agent for Gram-positive infections. Exp. Opin. Invest. Drugs 8, 1223–1238.

    Article  CAS  Google Scholar 

  233. Tally, F. P. and DeBruin, M. F. (2000) Development of daptomycin for Gram-positive infections. J. Antimicrob. Chemother. 46, 523–526.

    Article  CAS  Google Scholar 

  234. Hosted, T. J. and Baltz, R. H. (1996) Mutants of Streptomyces roseosporus that express enhanced recombination within partially homologous genes. Microbiology 142, 2803–2813

    Article  CAS  Google Scholar 

  235. Solenberg, P. J., Matsushima, P., Stack, D. R., Wilkie, S. C., Thompson, R. C., and Baltz, R. H. (1997) Glycosyltransferase genes from Amycolatopsis orientalis and their use to produce novel glycopeptide antibiotics. Dev. Ind. Microbial. Biotechnol. 34, 115–121.

    CAS  Google Scholar 

  236. Solenberg, P. J., Matsushima, P., Stack, D. R., Wilkie, S. C., Thompson, R. C., and Baltz, R. H. (1997) Production of hybrid glycopeptide antibiotics in vitro and in Streptomyces toyocaensis. Chem. Biol. 4, 195–202.

    Article  CAS  Google Scholar 

  237. van Wageningen, A. M. A., Kirkpatrick, P. N., Williams, D. H., Harris, B. R., Kershaw, J. K., Lennard, N. L., et al. (1997) Sequencing and analysis of genes involved in the biosynthesis of a vancomycin group antibiotic. Chem. Biol. 5, 155–162.

    Article  Google Scholar 

  238. Pelzer, S., Sussmuth, R., Heckmann, D., Recktenwald, J., Huber, P., Jung, G., et al. (1999) Identification and analysis of the balhimycin biosynthetic gene cluster and its use for manipulating glycopeptide biosynthesis in Amycolatopsis mediterranei DSM5908. Antimicrob. Agents Chemother. 43, 1565–1573.

    CAS  Google Scholar 

  239. Rectenwald, J., Shawky, R., Puk, O., Pfennig, F., Keller, U., Wohlleben, W., et al. (2002) Nonribosomal biosynthesis of vancomycin-type antibiotics: a heptapeptide backbone and eight peptide synthetase modules. Microbiology 148, 1105–1108.

    Google Scholar 

  240. Matsushima, P. and Baltz, R.H. (1996) A gene cloning system for ‘Streptomyces toyocaensis’. Microbiology 142, 261–267.

    Article  CAS  Google Scholar 

  241. Blanc, V., Gil, P., Bamas-Jacques, N., Lorenzon, S., Zagorec, M., Sheuniger, J., et al. (1997) Identification and analysis of genes form Streptomyces pristinaespiralis encoding enzymes involved in the biosynthesis of the 4-diamino-L-phenylalanine precursor of pristinamycin I. Mol. Microbiol. 23, 191–202.

    Article  CAS  Google Scholar 

  242. Crecy-Lagard, V., Blanc, V., Gil, P., Naudin, L., Lorenzon, S., Famechon, A., et al. (1997) Pristinamycin I biosynthesis in Streptomyces pristinaespiralis: molecular characterization of the first two structural peptide synthetase genes. J. Bacteriol. 179, 705–713.

    Google Scholar 

  243. Crecy-Lagard, V., Saurin, W., Thibaut, D., Gil, P., Naudin, L., Crouzet, J., et al. (1997) Streptogramin B biosynthesis in Streptomyces pristinaespiralis and Streptomyces virginiae: molecular characterization of the last structural peptide synthetase gene. Antimicrob. Agents Chemother. 41, 1904–1909.

    Google Scholar 

  244. Thibaut, D., Ratet, N., Bisch, D., Faucher, D., Debussche, L., and Blanche, F. (1995) Purification of the two-enzyme system catalyzing the oxidation of the D-proline residue of pristinamycin IIA biosynthesis. J. Bacteriol. 177, 5199–5205.

    CAS  Google Scholar 

  245. Schwecke, T., Aparicio, J. F., Molnar, I., Konig, A., Khaw, L. E., Haydock, S. F., et al. (1995) The biosynthetic gene cluster for the polyketide immunosuppressant rapamycin. Proc. Natl. Acad. Sci. USA 92, 7839–7843.

    Article  CAS  Google Scholar 

  246. Molnar, I., Aparicio, J. F., Haydock, S. F., Khaw, L. E., Schwecke, T., Konig, A., et al. (1996) Organization of the biosynthetic gene cluster for rapamycin in Streptomyces hygroscopicus: analysis of genes flanking the polyketide synthase. Gene 169, 1–7.

    Article  CAS  Google Scholar 

  247. Konig, A., Schwecke, T., Molnar, I., Bohm, G. A., Lowden, P. A. S., et al. (1997) The pipecolate-incorporating enzyme for the biosynthesis of the immunosuppressant rapamycin: nucleotide sequence analysis, disruption and heterologous expression of rapP from Streptomyces hygroscopicus. Eur.J.Biochem. 247, 526–534.

    CAS  Google Scholar 

  248. Du, L., Sanchez, C., Chen, M., Edwards, D. J., and Shen, B. (2000) The biosynthetic gene cluster for the antitumor drug bleomycin from Streptomyces verticillus ATCC 15003 supporting functional interactions between nonribosomal peptide synthetases and a polyketide synthase. Chem. Biol. 7, 623–642.

    Article  CAS  Google Scholar 

  249. Du, L., Sanchez, C., and Shen, B. (2001) Hybrid peptide-polyketide natural products: biosynthesis and prospects toward engineering novel molecules. Metabol. Eng. 3, 78–95.

    Article  CAS  Google Scholar 

  250. Du, L. and Shen, B. (2001) Biosynthesis of hybrid peptide-polyketide natural products. Curr. Opin. Drug Discov. Devel. 4, 215–218.

    CAS  Google Scholar 

  251. Yu, T. W., Muller, R., Muller, M., Zhang, X., Draeger, G., Kim, C. G., et al. (2001) Mutational analysis and reconstituted expression of the biosynthetic genes involved in the formation of 3amino-5-hydroxybenzoic acid, the starter unit of rifamycin biosynthesis in Amycolatopsis mediterranei S699. J. Biol. Chem. 276, 12,546–12,555.

    Google Scholar 

  252. Floss, H. G. (2001) Antibiotic biosynthesis: from natural to unnatural compounds. J. Ind. Microbiol. Biotechnol. 27, 183–194.

    Article  CAS  Google Scholar 

  253. Admiral, S. J., Walsh, C. T., and Khosla, C. (2001) The loading module of rifamycin synthase is an adenylation-thiolation didomain with substrate tolerance for substituted benzoates. Biochemistry 40, 6116–6123.

    Article  CAS  Google Scholar 

  254. Kirst, H. A., Wild, G. M., Baltz, R. H., Hamill, R. L., Ott, J. L., Counter, F. T., et al. (1982) Structure-activity studies among 16-membered macrolide antibiotics related to tylosin. J. Antibiot. 35, 1675–1682.

    Article  CAS  Google Scholar 

  255. Piepersberg, W. and Distler, J. (1997). Aminoglycosides and sugar components in other secondary metabolites, in Biotechnology, 2nd ed., Vol. 7, Products of Secondary Metabolism, (Rehm, H.-J., Reed, G., Pühler, A., and Stadler, P., eds.), VCH, Weinheim, pp. 399–488.

    Google Scholar 

  256. Kirshing, A., Bechtold, A. F.-W., and Rohr, J. (1997) Chemical and biochemical aspects of deoxysugars and deoxysugar oligosaccharides. Top. Curr. Chem. 188, 1–84.

    Article  Google Scholar 

  257. Xue, Y., Zhao, L., Liu, H. W., and Sherman, D. H. (1998) A gene cluster for macrolide antibiotic biosynthesis in Streptomyces venezuelae: architecture of metabolic diversity. Proc. Natl. Acad. Sci. USA 95, 12,111–12,116.

    Google Scholar 

  258. Trefzer, A., Salas, J. A., and Bechtold, A. (1999) Genes and enzymes involved in deoxysugar biosynthesis in bacteria. Nat. Prod. Rep. 16, 283–299.

    Article  CAS  Google Scholar 

  259. Weitnauer, G., Muhlenweg, A., Trefzer, A., Hoffmeister, D., Sussmuth, R. D., Jung, G., et al. (2001) Biosynthesis of the orthosomycin antibiotic avilamycin A: deductions from the molecular analysis of the avi biosynthetic gene cluster of Streptomyces viridochromogenes Tu57 and production of new antibiotics. Chem. Biol. 8, 569–581.

    Article  CAS  Google Scholar 

  260. Olano, C., Lomovskaya, N., Fonstein, L., Roll, J. T., and Hutchinson, C. R. (1999) A two plasmid system for the glycosylation of polyketide antibiotics: Bioconversion of epsilonrhodomycinone to rhodomycin. Chem. Biol. 6, 845–855.

    Article  CAS  Google Scholar 

  261. Wohlert, S., Lomovskaya, N., Kulowski, K, Fonstein, L., Occi, J. L., Gewain, K. M., et al. (2001) Insights about the biosynthesis of the avermectin deoxysugar L-oleandrose through heterologous expression of Streptomyces avermitilis deoxysugar genes in Streptomyces lividans. Chem. Biol. 7, 681–700.

    Article  Google Scholar 

  262. Ōmura, S., Sadakane, N., Tanaka, Y., and Matsubara, H. (1983) Chimeramycins: new macrolide antibiotics produced by hybrid biosynthesis. J. Antibiot. 36, 927–930.

    Article  Google Scholar 

  263. Ōmura, S., Sadakane, N., Kitao, C., Matsubara, H., and Nakagawa, A. (1980) Production of mycarosyl protolonolide by a mycaminose idiotroph from the tylosin-producing strain Streptomyces fradiae KA-427. J. Antibiot. 33, 913–914.

    Article  Google Scholar 

  264. Jones, N. D., Chaney, M. O., Kirst, H. A., Wild, G. M., Baltz, R. H., Hamill, R. L., et al. (1982) Novel fermentation products from Streptomyces fradiae: X-ray crystal structure of 5-Omycarosyltylactone and proof of the absolute configuration of tylosin. J. Antibiot. 35, 420–425.

    Article  CAS  Google Scholar 

  265. Xue, Y., Wilson, D., Zhao, L., Liu, H. W., and Sherman, D. H. (1998) Hydroxylation of the macrolactones YC-17 and narbomycin is mediated by the pikC-encoded cytochrome P450 in Streptomyces venezuelae. Chem. Biol. 5, 661 667.

    Google Scholar 

  266. Tang, L. and McDaniel, R. (2001) Construction of desosamine containing polyketide libraries using a glycosyltransferase with broad substrate specificity. Chem. Biol. 8, 547–555.

    Article  CAS  Google Scholar 

  267. Gaisser, S., Reather, J., Wirtz, G., Kellenberger, L., Staunton, J., and Leadlay, P. F. (2000) A defined system for hybrid macrolide biosynhtesis in Saccharopolyspora erythraea. Mol. Microbiol. 36, 391–401.

    Article  CAS  Google Scholar 

  268. Niemi, J., Ylihonko, K., Hakala, J., Parssinen, R., Kopio, R., and Mantsala, P. (1994) Hybrid anthracycline antibiotics: production of the new anthracyclines by cloned genes of Streptomyces purpurascens in Streptomyces galilaensis. Microbiology 140, 1351–1358.

    Article  CAS  Google Scholar 

  269. Ylihonko, K., Hakala, J., Kunari, T., and Mantsala, P. (1996) Production of hybrid anthracycline antibiotics by heterologous expression of Streptomyces nogalater nogalamycin biosynthesis genes. Microbiology 142, 1965–1972.

    Article  CAS  Google Scholar 

  270. Kunnari, T., Tuikkanen, J., Hautala, A., Hakala, J., Ylihonko, K., and Mantsala, P. (1997) Isolation and characterization of the 8-methyoxy steffimycins and generation of 2,8-demethoxy steffimycins in Streptomyces steffisburgensis. J. Antibiot. 50, 496–501.

    Article  CAS  Google Scholar 

  271. Blanco, G., Patallo, E. P., Brana, A. F., Trefzer, A., Bechthold, A., Rohr, J., et al. (2001) Identification of a sugar flexible glycosyltransferase from Streptomyces olivaceus, the producer of the antitumor polyketide elloramycin. Chem. Biol. 8, 253–263.

    Article  CAS  Google Scholar 

  272. Hofmeister, D., Ichinose, K., Domann, S., Faust, B., Trefzer, A., Drager, G., et al. (2000) The NDP-sugar co-substrate concentration and the enzyme expression level influence the substrate specificity of glycosyltransferases: cloning and characterization of deoxysugar biosynthetic genes of the urdamycin biosynthetic gene cluster. Chem. Biol. 4, 821–831.

    Article  Google Scholar 

  273. Hofmeister, D., Ichinose, K., and Bechthold, A. (2001) Two sequence elements of glycosyltransferases involved in urdamycin biosynthesis are responsible for substrate specificity and enzymatic activity. Chem. Biol. 8, 557–567.

    Article  Google Scholar 

  274. Lancini, C. and Cavalleri, B. (1990) Glycopeptide antibiotics of the vancomycin group, in Biochemistry of Peptide Antibiotics, (Kleinkauf, H. and von Dohren, H., eds.), Walter de Gruyter, Berlin, pp.159–178.

    Google Scholar 

  275. Nicas, T. I. and Cooper, R. D. G. (1997) Vancomycin and other glycopeptides, in Biotechnology of Antibiotics, (Strohl, W. R., ed.), Marcel Dekker, New York, NY, pp. 363–392.

    Google Scholar 

  276. Cooper, R. D. G., Snyder, N. J., Zweifel, M. J., Staszak, M. A., Wilkie, S. C., Nicas, T. I., et al. (1996) Reductive alkylation of glycopeptide antibiotics: synthesis and antibacterial activity. J. Antibiot. 49, 575–581.

    Article  CAS  Google Scholar 

  277. Baltch, A. L., Smith, R. P., Ritz, W. J., and Bopp, L. H. (1998) Comparison of inhibitory and bacteriocidal activities and postantibiotic effects of LY333328 and ampicillin used singly and in combination against vancomycin-resistant Enterococcus faecium. Antimicrob. Agents Chemother. 42, 2564–2568.

    CAS  Google Scholar 

  278. Garcia-Garrot, F., Cercenado, E., Alcala, L. and Bouza, E. (1998) In vitro activity of the new glycopeptide LY333328 against multiply resistant gram-positive clinical isolates. Antimicrob. Agents Chemother. 42, 2452–2455.

    Google Scholar 

  279. Kaatz, G. W., Seo, S. M., Aeschlimann, J. R., Houlihan, H. H., Mercier, R.-C., and Ribak, M. J. (1998) Efficacy of LY333328 against experimental methicillin-resistant Staphylococcus aureus endocarditis. Antimicrob. Agents Chemother. 42, 981–983.

    CAS  Google Scholar 

  280. Saleh-Mghir A., Lefort, A., Petegnief, Y., Dautrey, S., Vallois, J.-M., Le Guludec, D., et al. (1999) Activity and diffusion of LY333328 in experimental endocarditis due to vancomycinresistant Enterococcus faecalis. Antimicrob. Agent Chemother. 43, 115–120.

    Article  CAS  Google Scholar 

  281. Ge, M., Chen, Z., Onishi, H. R., Kohler, J., Silver, L. L., Kerns, R., et al. (1999) Vancomycin derivatives that inhibit peptidoglycan biosynthesis without binding D-ala-D-ala. Science 284, 504–510.

    Article  Google Scholar 

  282. Eggert, U., Ruiz, N., Falcone, B. V., Branstrom, A. A., Goldman, R. C., Silhavy, T. J., et al. (2001) Genetic basis for activity differences and glycolipid derivatives of vancomycin. Science 294, 361–364.

    Article  CAS  Google Scholar 

  283. Losey, H. C., Peczuh, M. W., Chen, Z., Eggert, U. S., Dong, S. D., Pelczer, I., et al. (2001) Tandem action of glycosyltransferases in the maturation of vancomycin and teicoplanin aglycones: novel glycopeptides. Biochemistry 40, 4745–4755.

    Article  CAS  Google Scholar 

  284. Sosio, M., Bianchi, A., Bossi, E., and Donadio, S. (2000) Teicoplanin biosynthesis genes in Actinoplanes teichomyceticus. Antonie Leeuwenhoek 78, 379–384.

    Article  CAS  Google Scholar 

  285. Madduri, K., Kennedy, J., Rivoli, G., Inventi-Solari, A., Zanuso, G., Colombo, A. L., et al. (1998) Production of the antitumor drug (4′-epidoxorubicin) and its precursor by a genetically engineered strain of Streptomyces peucetius. Nat. Biotechnol. 16, 69–74.

    Article  CAS  Google Scholar 

  286. Borosova, S. A., Zhao, L., Sherman, D. H., and Liu, H.-W. (1999) Biosynthesis of desosamine: construction of a new macrolide carrying a genetically designed sugar moity. Org. Lett. 1, 133–136.

    Article  Google Scholar 

  287. Okamoto, R., Fukumoto, T., Nomura, H., Kiyoshima, K., Nakamura, K., and Takamatsu, A. (1980) Physiochemical properties of new acyl derivatives of tylosin produced by microbial transformation. J. Antibiot. 33, 1300–1308.

    Article  CAS  Google Scholar 

  288. Arisawa A., Kawamura, N., Takeda, K., Tsunekawa, H., Okamura, K., and Okamoto, R. (1994) Cloning of the macrolide antibiotic biosynthetic gene acyA, which encodes 3–0-acyltransferase, from Streptomyces thermotolerans and its use for direct fermentative production of a hybrid macrolide antibiotic. Appl. Environ. Microbiol. 60, 2657–2660.

    CAS  Google Scholar 

  289. Arisawa, A., Kawamura, N., Narita, T., Kojima, I., Okamura, K., Tsunekawa, H., et al. (1996) Direct fermentative production of acyltylosins by genetically-engineered strains of Streptomyces fradiae. J. Antibiot. 49, 349–354.

    Article  CAS  Google Scholar 

  290. Epp, J. K., Huber, M. L. B., Turner, J. R., Goodson, T., and Schoner, B. E. (1989) Production of hybrid macrolide antibiotics in Streptomyces ambofaciens and Streptomyces lividans by introduction of a cloned carbomycin biosynthetic gene from Streptomyces thermotolerans. Gene 85, 293–301.

    Article  CAS  Google Scholar 

  291. Gaisser, S., Lill, R., Wirtz, G., Grolle, F., Staunton, J., and Leadlay, P. F. (2001) New erythromycin derivatives from Saccharopolyspora erythraea using sugar 0-methyltransferases from the spinosyn biosynthetic gene cluster. Mol. Microbiol. 41, 1223–1231.

    Article  CAS  Google Scholar 

  292. Patallo, E. P., Blanco, G., Fischer, C., Brana, A. F., Rohr, J., Mendez, C., et al. (2001) Deoxysugar methylation during biosynthesis of the antitumor polyketide ellaromycin by Streptomyces olivaceus. J. Biol. Chem. 276, 18,765–18,774.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Baltz, R.H. (2003). Genetic Engineering Solutions for Natural Products in Actinomycetes. In: Vinci, V.A., Parekh, S.R. (eds) Handbook of Industrial Cell Culture. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-346-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-346-0_6

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-315-2

  • Online ISBN: 978-1-59259-346-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation