Protein Expression Using Transgenic Animals

  • Chapter
Handbook of Industrial Cell Culture

Abstract

In general, the need for more economical, abundant, safe, and efficacious supplies of therapeutic proteins has motivated research and development into the use of transgenic animals as bioreactors since about 1987. These proteins have traditionally been derived from human plasma where supply and safety issues have inspired the development of recombinant versions from mammalian cells. However, a lack of development and production capacity for recombinant mammalian cell culture has provided added impetus to use transgenic livestock as sources of these proteins (1). The use of transgenic animals as bioreactors for human wild-type or genetically engineered variants of human proteins is one of the most advanced examples of recombinant biology because it must achieve the biosynthesis of a protein both in a temporal and tissuespecific manner without harming the host animal. The preferred tissue for expression of the recombinant protein is one that naturally produces and exports high concentrations of protein to enable easy harvesting. In particular, the expression of recombinant proteins into the milk of transgenic rabbits and livestock has been a central focus of the transgenic animal bioreactor theme, although expression in urine and blood has been also studied (2a,b).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 234.33
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 295.39
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 295.39
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Garber, K. (2001) Biotech Industry Faces New Bottleneck. Nat. Biotechnol. 19(3), 184–185.

    Article  CAS  Google Scholar 

  2. Houdebine, L. M. (2000) Transgenic animal bioreactors. Transgenic Res. 9(4–5), 305–320.

    Article  CAS  Google Scholar 

  3. Kerr, D. E., Liang, F., Bondioli, K. R., Zhao, H., Kreibich, G., Wall, R. J., et al. (1998) The bladder as a bioreactor: urothelium production and secretion of growth hormone into urine. Nat. Biotechnol. 16(1), 75–79.

    Article  CAS  Google Scholar 

  4. Points to consider in the manufacture and testing of therapeutic products for human use derived from transgenic animals. Docket No. 95D-0131. U.S. Food and Drug Administration, Center for Biologics Evaluation and Research (1995).

    Google Scholar 

  5. “PPL Therapeutics plc (“PPL”) Announces Status of Phase III AAT Trial” PPL press release, October 15, 2001.

    Google Scholar 

  6. “Genzyme Transgenics, Genzyme General start recombinant antithrombin III pivotal clinical trial, first transgenic therapeutic to reach phase III study.” Genzyme Transgenics press release, May 13, 1998.

    Google Scholar 

  7. Van den Hout, J. M., Reuser, A. J., de Klerk, J. B., Arts, W. F., Smeitink, J. A., and Van der Ploeg, A. T. (2001) Enzyme therapy for pompe disease with recombinant human alpha-glucosidase from rabbit milk. J. Inherit. Metab. Dis. 24(2), 266–274.

    Article  Google Scholar 

  8. Han, K. K. and Martinage, A. (1992) Post-translational chemical modification(s) of proteins. Int. J. Biochem. 24(1), 19–28.

    Article  CAS  Google Scholar 

  9. Yan, S. C., Grinnell, B. W., and Wold, F. (1989) Post-translational modifications of proteins: some problems left to solve. Trends Biochem. Sci. 14(7), 264–268.

    Article  CAS  Google Scholar 

  10. Lerouge, P., Bardor, M., Pagny, S., Gomord, V., and Faye, L. N-glycosylation of recombinant pharmaceutical glycoproteins produced in transgenic plants: towards an humanisation of plant N-glycans. Curr. Pharm. Biotechnol. 1(4), 347–354.

    Google Scholar 

  11. Grinnell, G. W., Walls, J. D., Gerlitz, B., Berg, D. T., McClure, D. B., Ehrlich, H., et al. (1990) Native and modified human protein C: function, secretion, and post-translational modifications. Protein C and Related Anticoagulants (Bruley, D. F. and Drohan, W.N., eds.), Gulf Publishing Co., Houston, TX, pp. 29–63.

    Google Scholar 

  12. Wall, R. J. (2002) New gene transfer methods. Theriogenology 57(1), 189–201.

    Article  CAS  Google Scholar 

  13. Bondioli, K. R., Biery, K. A., Hill, K. G., Jones, K. B., De Mayo, F. J. (1991) Production of transgenic cattle by pronuclear injection. Biotechnology 16, 265–273.

    CAS  Google Scholar 

  14. Hammer, R. E., Pursel, V. G., Rexroad, C. E. Jr., Wall, R. J., Bolt, D. J., and Ebert, K. M. (1985) Production of transgenic rabbits, sheep and pigs by microinjection. Nature 315(6021), 680–683.

    Article  CAS  Google Scholar 

  15. Wall, R. J. (1996) Transgenic livestock: progress and prospects for the future. Theriogenology 45, 57–68.

    Article  Google Scholar 

  16. Wall, R. J., Kerr, D. E., and Bondioli, K. R. (1997) Transgenic dairy cattle: genetic engineering on a large scale. J. Dairy Sci. 80(9), 2213–2224.

    Article  CAS  Google Scholar 

  17. Niemann, H. and Kues, W. A. (2000) Transgenic livestock: premises and promises. Anim. Reprod. Sci. 60–61, 277–293.

    Article  Google Scholar 

  18. Renard, J. P., Zhou, Q., LeBourhis, D., Chavatte-Palmer, P., Hue, I., Heyman, Y., et al. (2002) Nuclear transfer technologies: between successes and doubts. Theriogenology 57(1), 203–222.

    Article  CAS  Google Scholar 

  19. Schnieke, A. E., Kind, A. J., Ritchie, W. A., Mycock, K., Scott, A. R., Ritchie, M., et al. (1997) Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science 278(5346), 2130–2133.

    Article  CAS  Google Scholar 

  20. Campbell, K. H., McWhir, J., Ritchie, W. A., and Wilmut, I. (1996) Sheep cloned by nuclear transfer from a cultured cell line. Nature 380(6569), 64–66.

    Article  CAS  Google Scholar 

  21. Points to consider in the manufacture and testing of monoclonal antibody products for human use. Docket No. 94D-0259. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Biologics Evaluation and Research (1997).

    Google Scholar 

  22. Fiane, A. E., Mollnes, T. E., and Degre, M. (2000) Pig endogenous retrovirus-a threat to clinical xenotransplantation? APMIS 108(4), 241–250.

    Article  CAS  Google Scholar 

  23. Cunningham, D. A., Herring, C., Fernandez-Suarez, X. M., Whittam, A. J., Paradis, K., and Langford, G. A. (2001) Analysis of patients treated with living pig tissue for evidence of infection by porcine endogenous retroviruses. Trends Cardiovasc. Med. 11(5), 190–196.

    Article  CAS  Google Scholar 

  24. Bruce, M., Chree, A., McConnell, I., Foster, J., Pearson, G., and Fraser, H. (1995) Transmission of bovine spongiform encephalopathy and scrapie to mice: strain variation and the species barrier. Phil. Trans. R. Soc. Lond. B. 343, 405–411.

    Article  Google Scholar 

  25. Ryder, S. J., Hawkins, S. A., Dawson, M., and Wells, G. A. (2000) The neuropathology of experimental bovine spongiform encephalopathy in the pig. J. Comp. Pathol. 122(2–3), 131–143.

    Article  CAS  Google Scholar 

  26. Busby, T. F. and Miekka, S. I. (2000) Viral inactivation, emerging technologies for human blood products. Encyclopedia of Cell Technology. (Spier, R. E., ed.), Wiley, pp. 1173–1182.

    Google Scholar 

  27. Devinoy, E., Thepot, D., Stinnakre, M. G., Fontaine, M. L., Grabowski, H., Puissant, C., et al. (1994) High level production of human growth hormone in the milk of transgenic mice: the upstream region of the rabbit whey acidic protein (WAP) gene targets transgene expression to the mammary gland. Transgenic. Res. 3(2), 79–89.

    Article  CAS  Google Scholar 

  28. Rudolph, N. S. (1999) Biopharmaceutical production in transgenic livestock. Trends Biotechnol. 17(9), 367–374.

    Article  CAS  Google Scholar 

  29. Kaufman, R. J., Wasley, L. C., Furie, B. C., Furie, B., and Shoemaker, C. B. (1986) Expression, purification, and characterization of recombinant gamma-carboxylated factor IX synthesized in Chinese hamster ovary cells. J . Biol. Chem. 261(21), 9622–9628.

    CAS  Google Scholar 

  30. Subramanian, A., Paleyanda, R. K., Lubon, H., Williams, B. L., Gwazdauskas, F. C., Knight, J.W., et al. (1996) Rate limitations in posttranslational processing by the mammary gland of transgenic animals. Ann. NY Acad. Sci. 782, 87–96.

    Article  CAS  Google Scholar 

  31. Reviewed in: a. Jenkins, N. and Curling, E. M. (1994) Glycosylation of recombinant proteins: problems and prospects. Enzyme Microb. Technol. 16(5), 354–364.

    Article  CAS  Google Scholar 

  32. Reviewed in: b. Goochee, C. F., Gramer, M. J., Andersen, D. C., Bahr, J. B., and Rasmussen, J. R. (1991) The oligosaccharides of glycoproteins: bioprocess factors affecting oligosaccharide structure and their effect on glycoprotein properties. Biotechnology (NY) 9(12), 1347–1355.

    Article  CAS  Google Scholar 

  33. Reviewed in: c. Wright, A. and Morrison, S. L. (1997) Effect of glycosylation on antibody function: implications for genetic engineering. Trends Biotechnol. 15(1), 26–32.

    Article  CAS  Google Scholar 

  34. Reviewed in: d. Jenkins, N., Parekh, R. B., and James, D. C. (1996) Getting the glycosylation right: implications for the biotechnology industry. Nat. Biotechnol. 14(8), 975–981.

    Article  CAS  Google Scholar 

  35. Reviewed in: e. Bhatia, P. K. and Mukhopadhyay, A. (1999) Protein glycosylation: implications for in vivo functions and therapeutic applications. Adv. Biochem. Eng. Biotechnol. 64, 155–201.

    CAS  Google Scholar 

  36. For examples see: a. Gelfi, C., Righetti, P. G., and Mannucci, P. M. (1985) Charge heterogeneity of human protein C revealed by isoelectric focusing in immobilized pH gradients. Electrophoresis 6, 373–376.

    Article  CAS  Google Scholar 

  37. For examples see: b. Heeb, M. J., Schwarz, H. P., White, T., Lammle, B., Berrettini, M., and Griffin, J. H. (1988) Immunoblotting studies of the molecular forms of protein C in plasma. Thromb. Res. Suppl. 52(1), 33–43.

    Article  CAS  Google Scholar 

  38. For examples see: c. Miletich, J. P. and Broze, G. J. Jr. (1990) Beta protein C is not glycosylated at asparagine 329. The rate of translation may influence the frequency of usage at asparagine-X-cysteine sites. J. Biol. Chem. 265(19), 11,397–11,404.

    CAS  Google Scholar 

  39. For examples see: d. Frebelius, S., Isaksson, S., and Swedenborg, J. (1996) Thrombin inhibition by antithrombin III on the subendothelium is explained by the isoform AT beta. Arterioscler. Thromb. Vasc. Biol. 16(10), 1292–1297.

    Article  CAS  Google Scholar 

  40. For examples see: e. Peterson, C. B. and Blackburn, M. N. (1985) Isolation and characterization of an antithrombin III variant with reduced carbohydrate content and enhanced heparin binding. Biol. Chem. 260(1), 610–615.

    CAS  Google Scholar 

  41. Reviewed in several articles, the following reference is specific to production of recombinant proteins in different expression systems. Goochee, C. F., Gramer, M. J., Andersen, D. C., Bahr, J. B., and Rasmussen, J. R. (1991) The oligosaccharides of glycoproteins: bioprocess factors affecting oligosaccharide structure and their effect on glycoprotein properties. Biotechnology (NY) 9(12), 1347–1355.

    Article  CAS  Google Scholar 

  42. Vijay, I. K. (1998) Developmental and hormonal regulation of protein N-glycosylation in the mammary gland. J. Mammary Gland Biol. Neoplasia. 3(3), 325–336.

    Article  CAS  Google Scholar 

  43. Spik, G., Coddeville, B., Mazurier, J., Boume, Y., Cambillaut, C., and Montreuil, J. (1994) Primary and three—dimensional structure of lactotransferrin (lactoferrin) glycans. Adv. Exp. Med. Biol. 357, 21–32.

    Article  CAS  Google Scholar 

  44. Wei, Z., Nishimura, T., and Yoshida, S. (2000) Presence of a glycan at a potential N-glycosylation site, Asn-281, of bovine lactoferrin. J. Dairy Sci. 83(4), 683–689.

    Article  CAS  Google Scholar 

  45. Morcol, T. M. (1995) Potential sources for the large scale production of human protein C. PhD, Virginia Tech.

    Google Scholar 

  46. Lubon, H., Paleyanda, R. K., Velander, W. H., and Drohan, W. N. (1996) Blood proteins from transgenic animal bioreactors. Transfus. Med. Rev. 10(2), 131–143.

    Article  CAS  Google Scholar 

  47. Pratt, C. W. and Church, F. C. (1991) Antithrombin: structure and function. Semin. Hematol. 28(1), 3–9.

    CAS  Google Scholar 

  48. Menache, D. (1991) Replacement therapy in patients with hereditary antithrombin III deficiency. Semin. Hematol. 28(1), 31–38.

    CAS  Google Scholar 

  49. Levy, J. H., Weisinger, A., Ziomek, C. A., and Echelard, Y. (2001) Recombinant antithrombin: production and role in cardiovascular disorder. Semin. Thromb. Hemost. 27(4), 405–416.

    Article  CAS  Google Scholar 

  50. Minnema, M. C., Chang, A. C., Jansen, P. M., Lubbers, Y. T., Pratt, B.M., Whittaker, B.G., et al. (2000) Recombinant human antithrombin III improves survival and attenuates inflammatory responses in baboons lethally challenged with Escherichia coli. Blood 95(4), 1117–1123.

    CAS  Google Scholar 

  51. Genzyme Transgenics Announces Expectations for rhATIII. PRNewswire. Feb 6, 2001.

    Google Scholar 

  52. Levy, J. H., Weisinger, A., Ziomek, C. A., and Echelard, Y. (2001) Recombinant antithrombin: production and role in cardiovascular disorder. Semin. Thromb. Hemost. 27(4), 405–416.

    Article  CAS  Google Scholar 

  53. Edmunds, T., Van Patten, S. M., Pollock, J., Hanson, E., Bernasconi, R., Higgins, E., et al. (1998) Transgenically produced human antithrombin: structural and functional comparison to human plasma-derived antithrombin. Blood 91(12), 4561–4571.

    CAS  Google Scholar 

  54. Edmunds, T., Van Patten, S. M., Pollock, J., Hanson, E., Bernasconi, R., Higgins, E., et al. (1998) Transgenically produced human antithrombin: structural and functional comparison to human plasma-derived antithrombin. Blood 91(12), 4561–4571.

    CAS  Google Scholar 

  55. Denman, J., Hayes, M., O’Day, C., Edmunds, T., Bartlett, C., Hirani, S., et al. (1991) Transgenic expression of a variant of human tissue-type plasminogen activator in goat milk: purification and characterization of the recombinant enzyme. Biotechnology (NY) 9(9), 839–843.

    Article  CAS  Google Scholar 

  56. Olson, S. T., Frances-Chmura, A. M., Swanson, R., Bjork, I., and Zettlmeissl, G. (1997) Effect of individual carbohydrate chains of recombinant antithrombin on heparin affinity and on the generation of glycoforms differing in heparin affinity. Arch. Biochem. Biophys. 341(2), 212–221.

    Article  CAS  Google Scholar 

  57. Turk, B., Brieditis, I., Bock, S. C., Olson, S. T., and Bjork, I. (1997) The oligosaccharide side chain on Asn-135 of alpha-antithrombin, absent in beta-antithrombin, decreases the heparin affinity of the inhibitor by affecting the heparin-induced conformational change. Biochemistry 36(22), 6682–6691.

    Article  CAS  Google Scholar 

  58. Lu, W., Mant, T., Levy, J. H., and Bailey, J. M. (2000) Pharmacokinetics of recombinant transgenic antithrombin in volunteers. Anesth. Analg. 90(3), 531–534.

    Article  CAS  Google Scholar 

  59. Schwaiblmair, M. and Vogelmeier, C. (1998) Alpha 1-antitrypsin. Hope on the horizon for emphysema sufferers? Drugs Aging 12(6), 429–440.

    Article  CAS  Google Scholar 

  60. Carrell, R. W., Lomas, D. A., Sidhar, S., and Foreman, R. (1996) Alpha 1-antitrypsin deficiency. A conformational disease. Chest 110(6 Suppl), 243S–247S.

    Article  CAS  Google Scholar 

  61. Mills, P. B., Mills, K., Johnson, A. W., Clayton, P. T., and Winchester, B. G. (2001) Analysis by matrix assisted laser desorption/ionisation-time of flight mass spectrometry of the posttranslational modifications of alpha 1-antitrypsin isoforms separated by two-dimensional polyacrylamide gel electrophoresis. Proteomics 1(6), 778–786.

    Article  CAS  Google Scholar 

  62. Casolaro, M. A., Fells, G., Wewers, M., Pierce, J. E., Ogushi, F., Hubbard, R., et al. (1987) Augmentation of lung antineutrophil elastase capacity with recombinant human alpha-l-antitrypsin. J. Appl. Physiol. 63(5), 2015–2023.

    CAS  Google Scholar 

  63. Straus, S. D., Fells, G. A., Wewers, M. D., Courtney, M., Tessier, L. H., Tolstoshev, P., et al. (1985) Evaluation of recombinant DNA-directed E. coli produced alpha 1-antitrypsin as an anti-neutrophil elastase for potential use as replacement therapy of alpha 1-antitrypsin deficiency. Biochem. Biophys. Res. Commun. 130(3), 1177–1184.

    Article  CAS  Google Scholar 

  64. Kang, H. A., Sohn, J. H., Choi, E. S., Chung, B. H., Yu, M. H., and Rhee, S. K. (1998) Glycosylation of human alpha 1-antitrypsin in Saccharomyces cerevisiae and methylotrophic yeasts. Yeast 14(4), 371–381.

    Article  CAS  Google Scholar 

  65. Wright, G., Carver, A., Cottom, D., Reeves, D., Scott, A., Simons, P., et al. (1991) High level expression of active human alpha-1-antitrypsin in the milk of transgenic sheep. Biotechnology (NY) 9(9), 830–834.

    Article  CAS  Google Scholar 

  66. Carver, A. S., Dalrymple, M. A., Wright, G., Cottom, D. S., Reeves, D. B., Gibson, Y. H., et al. (1993) Transgenic livestock as bioreactors: stable expression of human alpha-1-antitrypsin by a flock of sheep. Biotechnology (NY) 11(11), 1263–1270.

    CAS  Google Scholar 

  67. Tebbutt, S. J. (2000) Technology evaluation: transgenic alpha-1-antitrypsin (AAT), PPL therapeutics. Curr. Opin. Mol. Ther. 2(2), 199–204.

    CAS  Google Scholar 

  68. Carver, A., Wright, G., Cottom, D., Cooper, J., Dalrymple, M., Temperley, S., et al. (1992) Expression of human alpha 1 antitrypsin in transgenic sheep. Cytotechnology 9(1–3), 77–84.

    Article  CAS  Google Scholar 

  69. Jeppsson, J. O., Lilja, H., and Johansson, M. (1985) Isolation and characterization of two minor fractions of alpha 1-antitrypsin by high-performance liquid chromatographic chromatofocusing. J. Chromatogr. 327, 173–177.

    Article  CAS  Google Scholar 

  70. Reviewed in: a. Wu, S. M., Stanley, T. B., Mutucumarana, V. P., and Stafford, D. W. (1997) Characterization of the gamma-glutamyl carboxylase. Thromb. Haemost. 78(1), 599–604.

    CAS  Google Scholar 

  71. Reviewed in: b. Furie, B. C. and Furie, B. (1997) Structure and mechanism of action of the vitamin K-dependent gamma-glutamyl carboxylase: recent advances from mutagenesis studies. Thromb. Haemost. 78(1), 595–598.

    CAS  Google Scholar 

  72. Reviewed in: c. Suttie, J. W. (1993) Synthesis of vitamin K-dependent proteins. FASEB J. 7(5), 445–452.

    CAS  Google Scholar 

  73. Sunnerhagen, M., Drakenberg, T., Forsen, S., and Stenflo, J. (1996) Effect of Ca2+ on the structure of vitamin K-dependent coagulation factors. Haemostasis 26(suppl 1), 45–53.

    CAS  Google Scholar 

  74. Reviewed in: a. Furie, B. C. and Furie, B. (1997) Structure and mechanism of action of the vitamin K-dependent gamma-glutamyl carboxylase: recent advances from mutagenesis studies. Thromb. Haemost. 78(1), 595–598.

    CAS  Google Scholar 

  75. Reviewed in: b. Dowd, P., Ham, S. W., Naganathan, S., and Hershline, R. (1995) The mechanism of action of vitamin K. Annu. Rev. Nutr. 15, 419–440.

    Article  CAS  Google Scholar 

  76. Cain, D., Hutson, S. M., and Wallin, R. (1997). Assembly of the warfarin-sensitive vitamin K 2,3-epoxide reductase enzyme complex in the endoplasmic reticulum membrane. J. Biol. Chem. 272, 29,068–29,075.

    Article  CAS  Google Scholar 

  77. Stanley, T. B., Wu, S. M., Houben, R. J., Mutucumarana, V. P., and Stafford, D. W. (1998) Role of the propeptide and gamma-glutamic acid domain of factor IX for in vitro carboxylation by the vitamin K-dependent carboxylase. Biochemistry 37(38), 13.262–13.268.

    Article  Google Scholar 

  78. Li, S., Furie, B. C., Furie, B., and Walsh, C. T. (1997) The propeptide of the vitamin K-dependent carboxylase substrate accelerates formation of the gamma-glutamyl carbanion intermediate. Biochemistry 36(21), 6384–6390.

    Article  CAS  Google Scholar 

  79. Bristol, J. A., Freedman, S. J., Furie, B. C., and Furie, B. (1994) Profactor IX: the propeptide inhibits binding to membrane surfaces and activation by factor XIa. Biochemistry 33(47), 14,136–14,143.

    Article  CAS  Google Scholar 

  80. Rehemtulla, A., Roth, D. A., Wasley, L. C., Kuliopulos, A., Walsh, C. T., Furie, B., et al. (1993) In vitro and in vivo functional characterization of bovine vitamin K-dependent gamma-carboxylase expressed in Chinese hamster ovary cells. Proc. Natl. Acad Sci USA 90(10), 4611–46l5

    Article  CAS  Google Scholar 

  81. Wasley, L. C., Rehemtulla, A., Bristol, J. A., and Kaufman, R. J. (1993) PACE/furin can process the vitamin K-dependent pro-factor IX precursor within the secretory pathway. J. Biol. Chem. 268(12), 8458–8465.

    CAS  Google Scholar 

  82. Stenina, O., Pudota, B. N., McNally, B. A., Hommema, E. L., and Berkner, K. L. (2001) Tethered processivity of the vitamin K-dependent carboxylase: factor IX is efficiently modified in a mechanism which distinguishes Gla’s from Glu’s and which accounts for comprehensive carboxylation in vivo. Biochemistry 40(34), 10,301–10,309.

    Article  CAS  Google Scholar 

  83. Subramanian, A., Paleyanda, R. K., Lubon, H., Williams, B. L., Gwazdauskas, F. C., Knight, J. W., et al. (1996) Rate limitations in posttranslational processing by the mammary gland of transgenic animals. Ann. NY Acad. Sci. 782, 87–96.

    Article  CAS  Google Scholar 

  84. Velander, W. H., Johnson, J. L., Page, R. L., Russell, C. G., Subramanian, A., Wilkins, T. D., et al. (1992) High-level expression of a heterologous protein in the milk of transgenic swine using the cDNA encoding human protein C. Proc. Natl. Acad. Sci. USA 89(24), 12,003–12,007.

    Article  CAS  Google Scholar 

  85. Van Cott, K. E., Lubon, H., Russell, C. G., Butler, S. P., Gwazdauskas, F. C., Knight, J., et al. (1997) Phenotypic and genotypic stability of multiple lines of transgenic pigs expressing recombinant human protein C. Transgenic Res. 6(3), 203–212.

    Article  Google Scholar 

  86. Subramanian, A., Paleyanda, R. K., Lubon, H., Williams, B. L., Gwazdauskas, F. C., Knight, J. W., et al. (1996) Rate limitations in posttranslational processing by the mammary gland of transgenic animals. Ann. NY Acad. Sci. 782, 87–96.

    Article  CAS  Google Scholar 

  87. Van Cott, K. E., Williams, B., Velander, W. H., Gwazdauskas, F., Lee, T., Lubon, H., and Drohan, W. N. (1996) Affinity purification of biologically active and inactive forms of recombinant human protein C produced in porcine mammary gland. J. Mol. Recognit. 9(5–6), 407–414.

    Article  Google Scholar 

  88. Yull, F., Harold, G., Wallace, R., Cowper, A., Percy, J., Cottingham, I., et al. (1995) Fixing human factor IX (fIX), correction of a cryptic RNA splice enables the production of biologically active fIX in the mammary gland of transgenic mice. Proc. Natl. Acad. Sci. USA 92(24), 10,899–10,903.

    Article  CAS  Google Scholar 

  89. Van Cott, K. E., Butler, S. P., Russell, C. G., Subramanian, A., Lubon, H., Gwazdauskas, F. C., et al. (1999) Transgenic pigs as bioreactors: a comparison of gamma-carboxylation of glutamic acid in recombinant human protein C and factor IX by the mammary gland. Genet. Anal. 15(3–5), 155–160.

    Article  Google Scholar 

  90. Clark, A. J., Bessos, H., Bishop, J. O., Brown, P., Harris, S., Lathe, R., et al. (1989) Expression of human anti-hemophilic factor IX in the milk of transgenic sheep. Bio-Technology 7, 487–492.

    CAS  Google Scholar 

  91. Kaufman, R. J., Wasley, L. C., Furie, B. C., Furie, B., and Shoemaker, C. B. (1986) Expression, purification, and characterization of recombinant gamma-carboxylated factor IX synthesized in Chinese hamster ovary cells. J. Biol. Chem. 261(21), 9622–968.

    CAS  Google Scholar 

  92. Bond, M., Jankowski, M., Patel, H., Karnik, S., Strang, A., Xu, B., et al. (1998) Biochemical characterization of recombinant factor IX. Semin. Hematol. 35(2 Suppl 2), 11–17.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Velander, W.H., van Cott, K.E. (2003). Protein Expression Using Transgenic Animals. In: Vinci, V.A., Parekh, S.R. (eds) Handbook of Industrial Cell Culture. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-346-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-346-0_3

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-315-2

  • Online ISBN: 978-1-59259-346-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation