Plant Cell Culture

A Critical Tool for Agricultural Biotechnology

  • Chapter
Handbook of Industrial Cell Culture

Abstract

Agricultural biotechnology was born during the 1980s, when the first published reports of the successful delivery, integration, and expression of foreign genes in plants began to appear (1,2). Since that time, exceptionally rapid progress in extending genetransfer capabilities to economically important crop plants has been made. Today, representatives from virtually all the major families of crop plants have been successfully transformed (3). Improved methods of DNA delivery, development of effective selectable marker genes, and availability of potent gene-expression signals are among the most important factors that contribute to the production of transgenic plants over the last decade (see Chapter 9). However, the foundation for all agricultural biotechnology has been the establishment of methods for culturing plant cells and tissues in vitro and subsequently regenerating fertile plants. This chapter focuses on plant cell and tissue culture as it relates to transgenic plant production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 234.33
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 299.59
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 299.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fraley, R. B., Rogers, S. G., Horsch, R. B., Sanders, P. R., Flick, J. S., Adams, S. P., et al. (1983) Expression of bacterial genes in plant cells. Proc. Natl. Acad. Sci. USA 80, 4803–4807.

    Article  CAS  Google Scholar 

  2. Zambryski, P., Joss, H., Genetello, C., Leemans, J., Van Montagu, M., and Schell, J. (1983) Ti plamid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. EMBO J. 2, 2143–2150.

    CAS  Google Scholar 

  3. McElroy, D. (1996) The industrialization of plant transformation. Nat. Biotechnol. 14, 715,716.

    Article  CAS  Google Scholar 

  4. Schleiden M. J. (1838) Beitrage zur Phytogenesis. Archiv fuer Anatomie und Physiologie in Verbindung mit mehreren gelehrten herausgegeben von Johannes Mueller, Verlag von veit ET COMP. Berlin, pp. 137–176.

    Google Scholar 

  5. Schwann T. (1839) Mikroskopishe Untersuchungen uber die Ubereinstimmung in der Struktur unddem Wachstun der Tiere und Pflanzen, (Smith, H., transl.) London, Sydenham Society.

    Google Scholar 

  6. Haberlandt, G, (1902) Culturversuche mit isolierten Pflanzenzellen. Sitzungsber. Kais. Akad. Wiss.-Math. Naturw. Klasse, Wien Bd. CXI, 69–92.

    Google Scholar 

  7. Dodds, J. H. and Roberts, L. W. (1987) Experiments in Plant Tissue Culture, 2nd ed., Cambridge University Press, New York, NY, pp. 101–113.

    Google Scholar 

  8. Bhojwani, S. S. and Razdan, M. K. (1999) Cellular totipotency, in Plant Tissue Culture: Theory and Practice, Elsevier, NY, pp. 95–123.

    Google Scholar 

  9. Fehr, W. R. (1987) Principles of Culture Development, MacMillan Publishing Co., New York, pp. 533–576.

    Google Scholar 

  10. Takayama, S. and Akita, M. (1994) The type of bioreactors used for shoots and embryos. Plant Cell Tissue Organ Cult. 39, 147–156.

    Article  Google Scholar 

  11. Vasil, I. K. (1994) Automation of plant propagation. Plant Cell Tissue Organ Cult. 39, 105–108.

    Article  Google Scholar 

  12. Sudha Vani, A. K. and Reddy, G. M. (1995) Micropropagation of banana through synseed technology. In Vitro Cell. Dev. Biol. 31, 57A.

    Google Scholar 

  13. Xavier, J. L., Karine L, and Branchard, M. (2000) Plant genomic instability detected by microsatellite-primers. Vol. 3 No. 2, Issue of August 15, 2000. EJB Electronic Journal of Biotechnology. http://www.ejb.org/content/vol3/issue2/full/2/bip/

    Google Scholar 

  14. Larkin, P. J. and Scowcroft, W. R. (1981) Somaclonal variation — a novel source of variability from cell cultures. Theor. App. Genet. 67, 197–201.

    Article  Google Scholar 

  15. Phillips, R. L., Kaeppler, S. M., and Olhoft, P. (1994) Genetic instability of plant tissue cultures: breakdown of normal controls. Proc. Natl. Acad. Sci. USA 91, 5222–5226.

    Article  CAS  Google Scholar 

  16. Henikoff, S. and Matzke, M. A. (1997) Exploring and explaining epigenetic effects. Trends Genet. 13, 293–295.

    Article  CAS  Google Scholar 

  17. Evans, D. A. (1989) Somaclonal variation: Genetic basis and breeding applications. Trends Genet. 5, 46–50.

    Article  CAS  Google Scholar 

  18. Reichert, N. A. and Baldwin, B. S. (1996) Potential for kenaf improvement via somaclonal variation, in Progress in New Crops, (Janick, J., ed.), ASHS Press, Arlington, VA, pp. 408–411.

    Google Scholar 

  19. Cocking, E. C. (1960) A method for the isolation of plant protoplasts and vacuoles. Nature 187, 962,963.

    Article  Google Scholar 

  20. Waara, S. and Glimelius, K. (1995) The potential of somatic hybridization in crop breeding. Euphytica 85, 217–233.

    Article  Google Scholar 

  21. Hinchee, M. A., Corbin, D. R., Armstrong, C. L., Fry, J. E., Sato, S. S., DeBoer, D. L., et al. (1994) Plant Transformation, in Plant Cell and Tissue Culture, (Vasil, I. K. and Thorpe, T. A., eds.), Kluwer, The Netherlands, pp. 231–270.

    Google Scholar 

  22. Dehneke, J., Gossele, V., Bottermann, J., and Cornelissen, M. (1989) Quantitative analysis of transiently expressed genes in plant cells. Methods Mol. Cell. Biol. 7, 725–737.

    Google Scholar 

  23. Lyznik, L. A., Ryan, R. D., Ritchie, S. W., and Hodges, T. K. (1989) Stable co-transformation of maize protoplasts with gusA and neo genes. Plant Mol. Biol. 13, 151–161.

    Article  CAS  Google Scholar 

  24. Benediktsson, I., Spampinato, C., and Schieder, O. (1995) Studies of the mechanism of transgene integration into plant protoplasts: improvement of the transformation rate. Euphytica 85, 53–61.

    Article  CAS  Google Scholar 

  25. Chilton, M. D., Drummond, D. M., Merlo, D. J., Sciaky, D., Montoya, A. L., Gordon, M. P., et al. (1977) Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11, 263.

    Article  CAS  Google Scholar 

  26. Gelvin, S. (2000) Agrobacterium and plant genes involved in T-DNA transfer and integration. Annu. Rev. Plant Physiol. Plant Molec. Biol. 51, 223–256.

    Article  CAS  Google Scholar 

  27. Hiei, Y., Ohta S., Komari, T., and T. Kumashiro. (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6, 271–282.

    Article  CAS  Google Scholar 

  28. Ishida, Y., Saito, H., Ohta, S., Hiei, Y., Komari, T., and Kumashiro, T. (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat. Biotechnol. 14, 745–750.

    Article  CAS  Google Scholar 

  29. Bundock, P. and Hooykaas, P. (1996) Integration ofAgrobacterium tumefaciens T-DNA in the Saccharomyces cerevisiae genome by illegitimate recombination. Proc. Natl. Acad. Sci. USA 93, 15,272–15,275.

    Article  CAS  Google Scholar 

  30. de Groot, M. et al. (1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat. Biotechnol. 16, 839–842.

    Article  Google Scholar 

  31. Kunik, T., Tzfira, T., Kapulnik, Y., Gafni, Y., Dingwall, C., and Citovsky, V. (2001) Genetic transformation of HeLa cells by Agrobacterium. Proc. Natl. Acad. Sci. USA 98, 1871–1876.

    Article  CAS  Google Scholar 

  32. Koncz, C., Martini, N., Mayerhofer, R., Koncz-Kalman, Z., Korber, H., Redei, G., et al. (1989) High frequency T-DNA mediated gene tagging in plants. Proc. Natl. Acad. Sci. USA 86, 8467–8471.

    Article  CAS  Google Scholar 

  33. Koncz, C., Nemeth, N., Redei, G. P., and Schell, J. (1992) T-DNA insertional mutagenesis in Arabidopsis. Plant Mol. Biol. 20, 963–976.

    Article  CAS  Google Scholar 

  34. Kaeppler, H. F., Gu, W., Somers, D. A., Rines, H. W., and Cockburn, A. F. (1990) Silicon carbide fiber-mediated DNA delivery into plant cells. Plant Cell Rep. 8, 415–418.

    Google Scholar 

  35. Sanford, J. (1988) The biolistic process. Trends Biotechnol. 6, 299–302.

    Article  CAS  Google Scholar 

  36. Pareddy, D., Petolino, J., Skokut, T., Hopkins, N., Miller, M., Welter, M., et al. (1997) Maize transformation via helium blasting. Maydica 42, 143–154.

    Google Scholar 

  37. Serik, O., Ainur, I., Murat, K., Tetsuo, M., and Masaki, I. (1996) Silicon carbide fiber-mediated DNA delivery into cells of wheat (Triticum aestivum L.) mature embryos. Plant Cell Rep. 16, 133–136.

    Article  CAS  Google Scholar 

  38. Petolino, J. F. (2001) Direct DNA delivery into intact cells and tissues, in Transgenic Plants and Crops, (Hui, Y. H., Khachatourians, G. G., McHughen, A., Nip, W. K., and Scorza, R., eds.), Marcel Dekker, Inc., New York, NY, in press.

    Google Scholar 

  39. Uchimiya, H., Handa, T., and Brar, D. S. (1989) Transgenic plants. J. Biotechnol. 12, 1–20.

    Article  CAS  Google Scholar 

  40. Charles, J. F., Nielsen-LeRoux, C., and Delecluse, A. (1996) Bacillus sphaericus toxins: molecular biology and mode of action. Annu. Rev. Entomol. 41, 451–472.

    Article  CAS  Google Scholar 

  41. Gill, S. S., Cowles, E. A., and Pietrantonio, F. V. (1992) The mode of action of Bacillus thuringiensis endotoxins. Ann. Rev. Entomol. 37, 615–636.

    Article  CAS  Google Scholar 

  42. Sharma, C. H., Sharma, K. K., Seetharama, N., and Ortiz, R. (2000) Prospects for using transgenic resistance to insects in crop improvement. EJB Electronic Journal of Biotechnology. Vol. 3 No. 2, Issue of August 15. http://www.ejb.org/content/vol3/issue2/full/3/index.html

    Google Scholar 

  43. Bennett, J. (1994) DNA-based techniques for control of rice insects and diseases: transformation, gene tagging and DNA fingerprinting, in Rice Pest Science and Management, (Teng, P. S., Heong, K. L., and Moody, K., eds.), International Rice Research Institute, Los Banos, Philippines, pp. 147–172.

    Google Scholar 

  44. Federici, B. A. (1998) Broad-scale leaf pest-killing plants to be true test. Calif Agri. 52,14–20.

    Article  Google Scholar 

  45. Griffiths, W. (1998) Will genetically modified crops replace agrochemicals in modern agriculture? Pesticide Outlook 9, 6–8.

    Google Scholar 

  46. Hoftey, H. and Whiteley, H. R. (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiology Rev. 53, 242–255.

    Google Scholar 

  47. Tailor, R., Tippett, J., Gibb, G., Pells, S., Pike, D., Jordan, L., et al. (1992) Identification and characterisation of a novel Bacillus thuringiensis-endotoxin entomocidal to coleopteran and lepidopteran larvae. Mol. Microbiol. 7, 1211–1217.

    Article  Google Scholar 

  48. Milne, R. and Kaplan, H. (1993) Purification and characterisation of a trypsin like digestive enzyme from spruce budworm (Christoneura fumiferana) responsible for the activation of d-endotoxin from Bacillus thuringiensis. Insect Biochem. Mol. Biol. 23, 663–673.

    Article  CAS  Google Scholar 

  49. Tojo, A. and Aizawa, K. (1983) Dissolution and degradation of endotoxin by gut juice protease of silkworm, Bombyx mori. Appl. Environ. Microbiol. 45, 576–580.

    CAS  Google Scholar 

  50. Crickmore, N., Ziegler, D. R., Fietelson, J., Schnepf, E., Van Rie, J., Lereclus, D., et al. (1998) Revision of the nomenclature for Bacillus thuringiensis pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62, 807–813.

    CAS  Google Scholar 

  51. Barton, K., Whitely, H., and Yang, N. S. (1987) Bacillus thuringiensis d-endotoxin in transgenic Nicotiana tabacum provides resistance to lepidopteran insects. Plant Physiol. 85, 1103–1109.

    Article  CAS  Google Scholar 

  52. Fischhoff, D. A., Bowdish, K. S., Perlak, F. J., Marrone, P. G., McCormick, S. M., Niedermeyer, J. G., et al. (1993) Insect resistant rice generated by a modified delta endotoxin genes of Bacillus thuringiensis. BioTechnology 11, 1151–1155.

    Article  Google Scholar 

  53. Vaeck, M., Reynaerts, A., Hoftey, H., Jansens, S., DeBeuckleer, M., Dean, C., et al. (1987) Transgenic plants protected from insect attack. Nature 327, 33–37.

    Article  Google Scholar 

  54. Fujimoto, H., Itoh, K., Yamamoto, M., Kayozuka, J., and Shimamoto, K. (1993) Insect resistant rice generated by a modified delta endotoxin genes of Bacillus thuringiensis. BioTechnology 11, 1151–1155.

    Article  CAS  Google Scholar 

  55. Armstrong, C. L., Parker, G. B., Pershing, J. C., Brown, S. M., Sanders, P. R., Duncan, D. R., et al. (1995. Field evaluation of European corn borer control in progeny of 173 transgenic corn events expressing an insecticidal protein from Bacillus thuringiensis. Crop Sci. 35, 550–557.

    Article  Google Scholar 

  56. Moellenbeck, D. J., Peters, M. L., Bing, J. W., Rouse, J. R., Higgins, L. S., Sims, L., et al. (2001) Insecticidal proteins from Bacillus thuringiensis protect corn from corn rootworms. Nat. Biotechnol. 19, 668–672.

    Article  CAS  Google Scholar 

  57. Kumar, P. A., Mandaokar, A., Sreenivasu, K., Chakrabarti, S. K., Bisaria, S., Sharma, S. R., et al. (1998) Insect-resistant transgenic brinjal plants. Mol. Breed. 4, 33–37.

    Article  CAS  Google Scholar 

  58. Perlak, F. J., Stone, T. B., Muskopf, Y. N., Petersen, L. J., Parker, G. B., McPherson, S. A., et al. (1993) Genetically improved potatoes: protection from damage by Colorado potato beetles. Plant Mol. Biol. 22, 313–321.

    Article  CAS  Google Scholar 

  59. Della-Cioppa, G., Bauer, S. C., Taylor, M. L., Rochester, D. E., Klein, B. K., Shah, D. M., et al. (1987) Targeting a herbicide-resistant enzyme from Escherichia coli to chloroplasts of higher plants. BioTechnology 5, 597–584.

    Google Scholar 

  60. Thompson, G. A., Hiatt, W. R., Facciotti, D., Stalker, D. M., and Comai, L. (1987) Expression in plants of a bacterial gene coding for glyphosate resistance. Weed Sci. 351, 19–23.

    Google Scholar 

  61. Re, D., Padgette, S., Delannay, X., LaVallee, B., Eichholtz, D., Barry, G., et al. (1992) Characterization of EPSPS enzymes and their use in the production of RoundupTM tolerant soybean. Miami Short Rep. 2, 77.

    Google Scholar 

  62. Fuchs, R. L., Re, D. B., Rogers, S. G., Hammond, B. G., and Padgette, S. R. (1994) Commercialization of soybeans with the Roundup ReadyTM gene, in The Biosafety Results of Field Tests of Genetically Modified Plants and Microorganisms, (Jones, D. D., ed.), Proc. 3rd Intl. Symp., Monterey, CA, Division of Agriculture and Natural Resources, University of California, pp. 233–244.

    Google Scholar 

  63. Ateh, C. and Harvey, R.. (1999) Annual weed control by glyphosate in glyphosate-resistant soybean. Weed Technol. 13, 394–398.

    CAS  Google Scholar 

  64. Baldwin, F. (1999) The value and exploitation of herbicide-tolerant crops in the US. Brighton Crop Protection Conference: Weeds. Proc. Intl. Conf. Brighton, UK 2, 653–660.

    Google Scholar 

  65. McKinley, T. L., Roberts, R. K., Hayes, R. M., and English, B. C. (1999) Economic comparison of herbicides for johnsongrass (Sorghum halepense) control in glyphosate-tolerant soybean (Glycine max). Weed Technol. 13, 30–36.

    CAS  Google Scholar 

  66. Webster, E. P., Bryant, K. J., and Earnest, L. D. (1999) Weed control and economics in nontransgenic and glyphosate-resistant soybean (Glycine max). Weed Technol. 13, 586–593.

    CAS  Google Scholar 

  67. Penaloza-Vazquez, A., Mena, G. L., Oropeza, A., and Bailey, A. M. (1997) The genes involved in glyphosate utilization by Pseudomonas pseudomallei and the tolerance conferred to plants. Dev. Plant Pathol. 9, 417–423.

    Article  CAS  Google Scholar 

  68. Guerinot, M. L. (2000) The green revolution strikes gold. Science 287, 241–243.

    Article  CAS  Google Scholar 

  69. Ye, X., Al-Babili, S., Kloti, A., Zhang, J., Lucca, P., Beyer, P., et al. (2000) Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287, 303–305.

    Article  CAS  Google Scholar 

  70. Hood, E. E., Kusnadi, A., Nikolov, Z., and Howard, J. A. (1999) Molecular farming of industrial proteins from transgenic maize. Adv. Exp. Med. Biol. 464, 127–147.

    Article  CAS  Google Scholar 

  71. Hood, E. E., Witcher, D. R., Maddock, S., Meyer, T., Baszczynski, C., Bailey, M., et al. (1997) Commercial production of avidin from transgenic maize: characterization of transformant, production, processing, extraction and purification. Mol. Breed. 3, 291–306.

    Article  CAS  Google Scholar 

  72. Kusnadi, A., Hood, E., Witcher, D., Howard, J., and Nikolov, Z. . (1998) Production and purification of two recombinant proteins from transgenic corn. Biotechnol. Progr. 14, 149–155.

    Article  CAS  Google Scholar 

  73. Bakker, H., Bardo, M., Moldhoff, J., Gomord, V., Elbers, I., Stevens, L. H., et al. (2001) Galactose-extended glycans of antibodies produced by transgenic plants. Proc. Nat. Acad. Sci. USA 98, 2899–2904.

    Article  CAS  Google Scholar 

  74. Meyerowitz, E. (1987) Arabidopsis thaliana. Annu. Rev. Genet. 21, 93–111.

    Article  CAS  Google Scholar 

  75. Meyerowitz, E. and Pruitt, R. (1985) Arabidopsis thaliana and plant molecular genetics. Science 229, 1214–1218.

    Article  CAS  Google Scholar 

  76. Pang, P. and Meyerowitz, E. (1987) Arabidopsis thaliana: a model system for plant molecular biology. BioTechnology 5, 1177–1181.

    Article  CAS  Google Scholar 

  77. Arabidopsis Genome Initiative. (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815.

    Article  Google Scholar 

  78. Lloyd, A. M., Barnason, A. R., Rogers, S. G., Byrne, M. C., Fraley, R. T., and Horsch, R. B. (1986) Transformation of Arabidopsis thaliana with Agrobacterium tumefaciens. Science 234, 464–466.

    Article  CAS  Google Scholar 

  79. Valvekens, D., Van Montagu, M., and Van Lijsebettens, M. (1988) Agrobacterium tumefaciensmediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc. Natl. Acad. Sci. USA 85, 5536–5540.

    Article  CAS  Google Scholar 

  80. Bilang, R. and Potrykus, I. (1993) Transformation in Arabidopsis, in Biotechnology in Agriculture and Forestry, Vol. 22, Plant Protoplasts and Genetic Engineering III, (Bajaj, Y. P. S., ed.), Springer-Verlag, Heidelberg, Germany, pp.123–134.

    Chapter  Google Scholar 

  81. Bent, A. F. (2000) Arabidopsis in planta transformation: uses, mechanisms, and prospects for transformation of other species. Plant Physiol. 124, 1540–1547.

    Article  CAS  Google Scholar 

  82. Feldman, K. and Marks, M. (1987) Agrobacterium-mediated transformation of geminating seeds of Arabidopsis thaliana: a non-tissue culture approach. Molec. Gen. Genet. 208, 1–9.

    Article  Google Scholar 

  83. Bechtold, N., Jaudeau, B., Jolivet, S., Maba, B., Vezon, D., Voisin, R., et al. (2000) The maternal chromosome set is the target of the T-DNA in the in planta transformation of Arabidopsis thaliana. Genetics 155, 1875–1887.

    CAS  Google Scholar 

  84. Clough, S. and Bent, A. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. PlantJ. 16, 735–743.

    Article  CAS  Google Scholar 

  85. Liu, F., Cao, M. Q., Yao, L., Li, Y., Robaglia, C., and Tourneur, C. (1998) In planta transformation of pakchoi (Brassica campestris L. ssp. Chinensis) by infiltration of adult plants with Agrobacterium. Acta Hortic. 467, 187–192.

    Google Scholar 

  86. Trieu, A. T., Burleigh, S. H., Kardailsky, I. V., Maldonado-Mendoza, I. E., Versaw, W. K., Blaylock, L. A., et al. (2000) Transformation of Medicago truncatula via infiltration of seedlings or flowering plants with Agrobacterium. Plant J. 22, 531–541.

    Article  CAS  Google Scholar 

  87. Hess, D. (1987) Pollen-based techniques in genetic manipulation, in International Review of Cytology, (Giles, K. L. and Prakash, J., eds.), Academic Press, Orlando, FL, pp. 367–395.

    Google Scholar 

  88. DeWet, J. M. J., DeWet, A. E., Brink, D. E., Hepburn, A. G., and Woods, J. H. (1986) Gametophyte transformation in maize, in Biotechnology and Ecology of Pollen (Mulcahy, D. C., Bergamini-Mulcahy, G., and Ottaviano, E., eds.), Springer-Verlag, New York, NY, pp. 59–64.

    Chapter  Google Scholar 

  89. Ohta, Y. (1986) High efficiency genetic transformation of maize by a mixture of pollen and exogenous DNA. Proc. Natl. Acad. Sci. USA 83, 715–719.

    Article  CAS  Google Scholar 

  90. Zhou, G. Y., Weng, J., Zeng, Y., Huang, J., Qiean, S., and Liu, G. (1983) Introduction of exogenous DNA into cotton embryos, in Methods in Enzymology, (Wu, R., Grossman, L., and Moldave, K., eds.), Academic Press, New York, NY, pp. 433–481.

    Google Scholar 

  91. Jian, W., Shen, W. F., Wang, Z. F., Chen, K. Q., Yang, W. X., Gohg, Z. Z., et al. (1984) A molecular demonstration of the introduction into cotton embryos of exogenous DNA. Acta. Biochem. Biophys. Sin. 16, 325–327.

    Google Scholar 

  92. Picard, E., Jacquemin, J. M., Granier, F., Bobin, M., and Forgeois, P. (1988) Genetic transformation of wheat by plasmid DNA uptake during pollen tube germination. 7th International Wheat Genetics Symposium, Cambridge University Press, Cambridge, UK, pp. 779–787.

    Google Scholar 

  93. Langridge, P., Brettschneider, R., Lasseri, P., and Lorz, H. (1992) Transformation of cereals via Agrobacterium and the pollen pathway: a critical assessment. Plant J. 2, 631–638.

    Article  CAS  Google Scholar 

  94. Hu, C. Y. and Wang, L. (1999) In planta soybean transformation technologies developed in China: procedure, confirmation, and field performance. In Vitro Cell. Dev. Biol. 35, 417–420.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Petolino, J.F., Roberts, J.L., Jayakumar, P. (2003). Plant Cell Culture. In: Vinci, V.A., Parekh, S.R. (eds) Handbook of Industrial Cell Culture. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-346-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-346-0_10

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-315-2

  • Online ISBN: 978-1-59259-346-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation