Reactive Oxygen Species in Proliferative Signaling

  • Chapter
Signaling Networks and Cell Cycle Control

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 286 Accesses

Abstract

The traditional view of reactive oxygen species (ROS), such as H2O2 and superoxide (O2 ), as toxic byproducts of aerobic metabolism, and their use as antimicrobial agents by the immune system, might make the notion that ROS can act as positive regulators of cell proliferation somewhat counterintuitive. Nonetheless, evidence has accumulated over the past 10 years that strongly supports ROS regulation of a variety of cellular processes, including proliferation. The picture that has emerged indicates that ROS are previously unappreciated components of established regulatory pathways. More specifically, it appears that ROS act as messengers in signal transduction pathways (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Thailand)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 149.99
Price excludes VAT (Thailand)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 149.99
Price excludes VAT (Thailand)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Finkel T. Oxygen radicals and signaling. Curr Opin Cell Biol 1998; 10: 243–253.

    Article  Google Scholar 

  2. Rosner JL, Storz G. Regulation of bacterial responses to oxidative stress. Curr Top Cell Regul 1997; 35: 163–177.

    Article  PubMed  CAS  Google Scholar 

  3. Demple B. Study of redox-regulated transcription factors in prokaryotes. Methods 1997; 11: 267–278.

    Article  PubMed  CAS  Google Scholar 

  4. Storz G, Tartaglia LA, Ames BN. Transcriptional regulator of oxidative stress-inducible genes: Direct activation by oxidation. Science 1990; 248: 189–194.

    Article  PubMed  CAS  Google Scholar 

  5. Hennet T, Richter C, and Peterhans E. Tumour necrosis factor-alpha induces superoxide anion generation in mitochondria of L929 cells. Biochem J 1993; 289: 587–592.

    PubMed  CAS  Google Scholar 

  6. Matsubara T, Ziff M. Superoxide anion release by human endothelial cells: Synergism between a phorbol ester and a calcium ionophore. J Cell Physiol 1986; 127: 207–210.

    Article  PubMed  CAS  Google Scholar 

  7. Rosen GM, Freeman BA. Detection of superoxide generated by endothelial cells. Proc Natl Acad Sci USA 1984; 81: 7269–7273.

    Article  PubMed  CAS  Google Scholar 

  8. Griendling KK, Minieri CA, Ollerenshaw JD, and Alexander RW. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 1994; 74: 1141–1148.

    Article  PubMed  CAS  Google Scholar 

  9. Lo YY, Cruz TF. Involvement of reactive oxygen species in cytokine and growth factor induction of c-fos expression in chondrocytes. J Biol Chem 1995; 270:11, 727–11, 730.

    Google Scholar 

  10. Cui XL, Douglas JG. Arachidonic acid activates c-jun N-terminal kinase through NADPH oxidase in rabbit proximal tubular epithelial cells. Proc Natl Acad Sci USA 1997; 94: 37713776.

    Google Scholar 

  11. Jones SA, Wood JD, Coffey MJ, Jones OT. The functional expression of p47-phox and p67-phox may contribute to the generation of superoxide by an NADPH oxidase-like system in human fibroblasts. FEBS Lett 1994; 355: 178–182.

    Article  PubMed  CAS  Google Scholar 

  12. Ushio-Fukai M, Zafari AM, Fukui T, Ishizaka N, Griendling KK. p22Ph°x is a critical component of the superoxide-generating NADH/NADPH oxidase system and regulates angiotensin II-induced hypertrophy in vascular smooth muscle cells. J Biol Chem 1996; 271: 23317–23321.

    Google Scholar 

  13. Segal AW, Abo A. The biochemical basis of the NADPH oxidase of phagocytes. Trends Biochem Sci 1993; 18: 43–47.

    Article  PubMed  CAS  Google Scholar 

  14. Bokoch GM. Regulation of the human neutrophil NADPH oxidase by the Rac GTP-binding proteins. Curr Opin Cell Biol 1994; 6: 212–218.

    Article  PubMed  CAS  Google Scholar 

  15. Sundaresan M, Yu ZX, Ferrans VJ, Sulciner DJ, Gutkind JS, Irani K, Goldschmidt-Clermont PJ, Finkel T. Regulation of reactive-oxygen-species generation in fibroblasts by Rac 1. Biochem J 1996; 318: 379–382.

    PubMed  CAS  Google Scholar 

  16. Abate C, Patel L, Rauscher F, Curran T. Redox regulation of fos and jun DNA-binding activity in vitro. Science 1990; 249: 1157–1161.

    Article  PubMed  CAS  Google Scholar 

  17. Xanthoudakis S, Curran T. Identification and characterization of Ref-1, a nuclear protein that facilitates AP-1 DNA-binding activity. EMBO J 1992; 11: 653–665.

    PubMed  CAS  Google Scholar 

  18. Xanthoudakis S, Miao G, Wang F, Pan YC, Curran T. Redox activation of Fos-Jun DNA binding activity is mediated by a DNA repair enzyme. EMBO J 1992; 11: 3323–3335.

    PubMed  CAS  Google Scholar 

  19. Schenk H, Klein M, Erdbrugger W, Droge W, Schulze OK. Distinct effects of thioredoxin and antioxidants on the activation of transcription factors NF-kappa B and AP-1. Proc Natl Acad Sci USA 1994; 91: 1672–1676.

    Article  PubMed  CAS  Google Scholar 

  20. Hirota K, Matsui M, Iwata S, Nishiyama A, Mori K, Yodoi J. AP-1 transcriptional activity is regulated by a direct association between thioredoxin and Ref-1. Proc Natl Acad Sci USA 1997; 94: 3633–3638.

    Article  PubMed  CAS  Google Scholar 

  21. Doan TN, Gentry DL, Taylor AA, Elliott SJ. Hydrogen peroxide activates agonist-sensitive Ca“-flux pathways in canine venous endothelial cells. Biochem J 1994; 297: 209–215.

    PubMed  CAS  Google Scholar 

  22. Dreher D, Jomot L, Junod AF. Effects of hypoxanthine-xanthine oxidase on Ca“ stores and protein synthesis in human endothelial cells. Circ Res 1995; 76: 388–395.

    Article  PubMed  CAS  Google Scholar 

  23. Rooney TA, Renard DC, Sass EJ, Thomas AP. Oscillatory cytosolic calcium waves independent of stimulated inositol 1,4,5-trisphosphate formation in hepatocytes. J Biol Chem 1991; 266:12, 272–12, 282.

    Google Scholar 

  24. Roveri A, Coassin M, Maiorino M, Zamburlini A, van AF, Ratti E, Ursini F. Effect of hydrogen peroxide on calcium homeostasis in smooth muscle cells. Arch Biochem Biophys 1992; 297: 265–270.

    Article  PubMed  CAS  Google Scholar 

  25. Sweetman LL, Zhang NY, Peterson H, Gopalakrishna R, Sevanian A. Effect of linoleic acid hydroperoxide on endothelial cell calcium homeostasis and phospholipid hydrolysis. Arch Biochem Biophys 1995; 323: 97–107.

    Article  PubMed  CAS  Google Scholar 

  26. Grover AK, Samson SE, Fomin VP. Peroxide inactivates calcium pumps in pig coronary artery. Am J Physiol 1992; 263: H537 - H543.

    PubMed  CAS  Google Scholar 

  27. Suzuki YJ, Ford GD Inhibition of Ca“-ATPase of vascular smooth muscle sarcoplasmic reticulum by reactive oxygen intermediates. Am J Physiol 1991; 261: H568 - H574.

    PubMed  CAS  Google Scholar 

  28. Henschke PN, Elliott SJ. Oxidized glutathione decreases luminal Ca’ content of the endothelial cell ins(1,4,5)P3-sensitive Ca’ store. Biochem J 1995; 312: 485–489.

    PubMed  CAS  Google Scholar 

  29. Missiaen L, Taylor CW, Berridge MJ. Spontaneous calcium release from inositol trisphosphate-sensitive calcium stores. Nature 1991; 352: 241–244.

    Article  PubMed  CAS  Google Scholar 

  30. Renard DC, Seitz MB, Thomas AP. Oxidized glutathione causes sensitization of calcium release to inositol 1,4,5-trisphosphate in permeabilized hepatocytes. Biochem J 1992; 284: 507–512.

    PubMed  CAS  Google Scholar 

  31. Koshio O, Akanuma Y, Kasuga M. Hydrogen peroxide stimulates tyrosine phosphorylation of the insulin receptor and its tyrosine kinase activity in intact cells. Biochem J 1988; 250: 95101.

    Google Scholar 

  32. Hayes GR, Lockwood DH. Role of insulin receptor phosphorylation in the insulinomimetic effects of hydrogen peroxide. Proc Natl Acad Sci USA 1987; 84: 8115–8119.

    Article  PubMed  CAS  Google Scholar 

  33. Nakamura K, Hori T, Sato N, Sugie K, Kawakami T, Yodoi J. Redox regulation of a src family protein tyrosine kinase p56`°k in T cells. Oncogene 1993; 8: 3133–3139.

    PubMed  CAS  Google Scholar 

  34. Schieven GL, Kirihara JM, Burg DL, Geahlen RL, Ledbetter JA. p72sYk tyrosine kinase is activated by oxidizing conditions that induce lymphocyte tyrosine phosphorylation and Cat+ signals. J Biol Chem 1993; 268:16, 688–16, 692.

    Google Scholar 

  35. Larsson R, Cerutti P. Translocation and enhancement of phosphotransferase activity of protein kinase C following exposure in mouse epidermal cells to oxidants. Cancer Res 1989; 49: 5627–5632.

    PubMed  CAS  Google Scholar 

  36. Gopalakrishna R, Anderson WB. Ca2+- and phospholipid-independent activation of protein kinase C by selective oxidative modification of the regulatory domain. Proc Natl Acad Sci USA 1989; 86: 6758–6762.

    Article  PubMed  CAS  Google Scholar 

  37. Sundaresan M, Yu ZX, Ferrans VJ, Irani K, Finkel T. Requirement for generation of H202 for platelet-derived growth factor signal transduction. Science 1995; 270: 296–299.

    Article  PubMed  CAS  Google Scholar 

  38. Stevenson MA, Pollock SS, Coleman CN, Calderwood SK. X-irradiation, phorbol esters, and H202 stimulate mitogen-activated protein kinase activity in NIH-3T3 cells through the formation of reactive oxygen intermediates. Cancer Res 1994; 54: 12–15.

    PubMed  CAS  Google Scholar 

  39. Guyton KZ, Liu Y, Gorospe M, Xu Q, Holbrook NJ. Activation of mitogen-activated protein kinase by H202. Role in cell survival following oxidant injury. J Biol Chem 1996; 271: 4138–4142.

    Article  PubMed  CAS  Google Scholar 

  40. Kamata H, Tanaka C, Yagisawa H, Matsuda S, Gotoh Y, Nishida E, Hirata H. Suppression of nerve growth factor-induced neuronal differentiation of PC12 cells. N-Acetylcysteine uncouples the signal transduction from ras to the mitogen-activated protein kinase cascade. J Biol Chem 1996; 271: 33, 018–33, 025.

    Google Scholar 

  41. Wilhelm D, Bender K, Knebel A, Angel P. The level of intracellular glutathione is a key regulator for the induction of stress-activated signal transduction pathways including Jun N-terminal protein kinases and p38 kinase by alkylating agents. Mol Cell Biol 1997; 17: 4792–4800.

    PubMed  CAS  Google Scholar 

  42. Fischer EH, Charbonneau H, Tonks NK. Protein tyrosine phosphatases: A diverse family of intracellular and transmembrane enzymes. Science 1991; 253: 401–406.

    Article  PubMed  CAS  Google Scholar 

  43. Hecht D, Zick Y. Selective inhibition of protein tyrosine phosphatase activities by H202 and vanadate in vitro. Biochem Biophys Res Commun 1992; 188: 773–779.

    Article  PubMed  CAS  Google Scholar 

  44. Knebel A, Rahmsdorf HJ, Ullrich A, Herrlich P. Dephosphorylation of receptor tyrosine kinases as target of regulation by radiation, oxidants or alkylating agents. EMBO J 1996; 15: 5314–5325.

    PubMed  CAS  Google Scholar 

  45. Schreck R, Rieber P, Baeuerle PA. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J 1991; 10: 2247–2258.

    PubMed  CAS  Google Scholar 

  46. Schmidt KN, Amstad P, Cerutti P, Baeuerle PA. Identification of hydrogen peroxide as the relevant messenger in the activation pathway of transcription factor NF-kappaB. Adv Exp Med Biol 1996; 387: 63–68.

    PubMed  CAS  Google Scholar 

  47. Sulciner DJ, Irani K, Yu ZX, Ferrans VJ, Goldschmidt CP, Finkel T. racl regulates a cytokine-stimulated, redox-dependent pathway necessary for NF-kappaB activation. Mol Cell Biol 1996; 16: 7115–7121.

    PubMed  CAS  Google Scholar 

  48. Perona R, Montaner S, Saniger L, Sanchez-Perez I, Bravo R, Lacal JC. Activation of the nuclear factor-kappaB by Rho, CDC42, and Rac-1 proteins. Genes Dev 1997; 11: 463–475.

    Article  PubMed  CAS  Google Scholar 

  49. Wang GL, Jiang BH, Rue EA, and Semenza GL. Hypoxia-inducible factor 1 is a basichelix-loop-helix-PAS heterodimer regulated by cellular 02 tension. Proc Nall Acad Sci USA 1995; 92: 5510–5514.

    Article  CAS  Google Scholar 

  50. Wang GL, Jiang BH, Semenza GL. Effect of altered redox states on expression and DNA-binding activity of hypoxia-inducible factor 1. Biochem Biophys Res Commun 1995; 212: 550–556.

    Article  PubMed  CAS  Google Scholar 

  51. Huang LE, Arany Z, Livingston DM, Bunn HF. Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its alpha subunit. J Biol Chem 1996; 271:32, 253–32, 259.

    Google Scholar 

  52. Shang F, Gong X, Taylor A. Activity of ubiquitin-dependent pathway in response to oxidative stress. Ubiquitin-activating enzyme is transiently up-regulated. JBiol Chem 1997; 272: 23, 086–23, 093.

    Google Scholar 

  53. Salceda S, Caro J. Hypoxia-inducible factor lalpha (HIF-lalpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem 1997; 272:22, 642–22, 647.

    Google Scholar 

  54. Karin M, Liu ZG, Zandi E. AP-1 function and regulation. Curr Opin Cell Biol 1997; 9: 240246.

    Google Scholar 

  55. Murrell GA, Francis MJ, Bromley L. Modulation of fibroblast proliferation by oxygen free radicals. Biochem J 1990; 265: 659–665.

    PubMed  CAS  Google Scholar 

  56. Stirpe F, Higgins T, Tazzari PL, Rozengurt E. Stimulation by xanthine oxidase of 3T3 Swiss fibroblasts and human lymphocytes. Exp Cell Res 1991; 192: 635–638.

    Article  PubMed  CAS  Google Scholar 

  57. Burdon RH, Gill VM, Rice-Evans C. Oxidative stress and heat shock protein induction in human cells. Free Radic Res Commun 1987; 3: 129–139.

    Article  PubMed  CAS  Google Scholar 

  58. Shibanuma M, Kuroki T, Nose K. Stimulation by hydrogen peroxide of DNA synthesis, competence family gene expression and phosphorylation of a specific protein in quiescent Balb/3T3 cells. Oncogene 1990; 5: 1025–1032.

    PubMed  CAS  Google Scholar 

  59. Craven PA, Pfanstiel J, DeRubertis FR. Role of reactive oxygen in bile salt stimulation of colonic epithelial proliferation. J Clin Invest 1986; 77: 850–859.

    Article  PubMed  CAS  Google Scholar 

  60. Nose K, Shibanuma M, Kikuchi K, Kageyama H, Sakiyama S, Kuroki T. Transcriptional activation of early-response genes by hydrogen peroxide in a mouse osteoblastic cell line. Eur J Biochem 1991; 201: 99–106.

    Article  PubMed  CAS  Google Scholar 

  61. Rao GN, Berk BC. Active oxygen species stimulate vascular smooth muscle cell growth and proto-oncogene expression. Circ Res 1992; 70: 593–599.

    Article  PubMed  CAS  Google Scholar 

  62. Burdon RH, Gill V. Cellularly generated active oxygen species and HeLa cell proliferation. Free Radic Res Commun 1993; 19: 203–213.

    Article  PubMed  CAS  Google Scholar 

  63. Church SL, Grant JW, Ridnour LA, Oberley LW, Swanson PE, Meltzer PS, Trent JM. Increased manganese superoxide dismutase expression suppresses the malignant phenotype of human melanoma cells. Proc Nall Acad Sci USA 1993; 90: 3113–3117.

    Article  CAS  Google Scholar 

  64. Irani K, **a Y, Zweier JL, Sollott SJ, Der CJ, Fearon ER, Sundaresan M, Finkel T, Goldschmidt CP. Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts. Science 1997; 275: 1649–1652.

    Article  PubMed  CAS  Google Scholar 

  65. Ohba M, Shibanuma M, Kuroki T, Nose K. Production of hydrogen peroxide by transforming growth factor-beta 1 and its involvement in induction of egr-1 in mouse osteoblastic cells. J Cell Biol 1994; 126: 1079–1088.

    Article  PubMed  CAS  Google Scholar 

  66. Lo YYC, Wong JMS, Cruz TF. Reactive oxygen species mediate cytokine activation of c-Jun NH2-terminal kinases. J Biol Chem 1996; 271:15, 703–15, 707.

    Google Scholar 

  67. Frenkel K. Carcinogen-mediated oxidant formation and oxidative DNA damage. Pharmacol Ther 1992; 53: 127–166.

    Article  PubMed  CAS  Google Scholar 

  68. Santos L, Tip** PG. Attenuation of adjuvant arthritis in rats by treatment with oxygen radical scavengers. Immunol Cell Biol 1994; 72: 406–414.

    Article  PubMed  CAS  Google Scholar 

  69. Stefanovic RM, Stadler J, Evans CH. Nitric oxide and arthritis. Arthritis Rheum 1993; 36: 1036–1044.

    Article  Google Scholar 

  70. Szatrowski TP, Nathan CF. Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 1991; 51: 794–798.

    PubMed  CAS  Google Scholar 

  71. Williams LT. Signal transduction by the platelet-derived growth factor receptor. Science 1989; 243: 1564–1570.

    Article  PubMed  CAS  Google Scholar 

  72. Bae YS, Kang SW, Seo MS, Baines IC, Tekle E, Chock PB, Rhee SG. Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. J Biol Chem 1997; 272: 217–221.

    Article  PubMed  CAS  Google Scholar 

  73. Diaz MN, Frei B, Vita JA, Keaney JF. Jr. Antioxidants and atherosclerotic heart disease. N Engl J Med 1997; 337: 408–416.

    Article  PubMed  CAS  Google Scholar 

  74. Harrison DG, Ohara Y. Physiologic consequences of increased vascular oxidant stresses in hypercholesterolemia and atherosclerosis: Implications for impaired vasomotion. Am J Cardiol 1995; 75: 75B - 81B.

    Article  PubMed  CAS  Google Scholar 

  75. Li YS, Shyy JY, Li S, Lee J, Su B, Karin M, Chien S. The Ras-JNK pathway is involved in shear-induced gene expression. Mol Cell Biol 1996; 16: 5947–5954.

    PubMed  CAS  Google Scholar 

  76. Jo H, Sipos K, Go YM, Law R, Rong J, McDonald JM. Differential effect of shear stress on extracellular signal-regulated kinase and N-terminal Jun kinase in endothelial cells. G12_ and G beta/gamma-dependent signaling pathways. J Biol Chem 1997; 272: 1395–1401.

    Article  PubMed  CAS  Google Scholar 

  77. Topper JN, Cai J, Falb D, Gimbrone MA Jr. Identification of vascular endothelial genes differentially responsive to fluid mechanical stimuli: Cyclooxygenase-2, manganese superoxide dismutase, and endothelial cell nitric oxide synthase are selectively up-regulated by steady laminar shear stress. Proc Nail Acad Sci USA 1996; 93:10, 417–10, 422.

    Google Scholar 

  78. Inoue N, Ramasamy S, Fukai T, Nerem RM, Harrison DG. Shear stress modulates expression of Cu/Zn superoxide dismutase in human aortic endothelial cells. Circ Res 1996; 79: 32–37.

    Article  PubMed  CAS  Google Scholar 

  79. Rajagopalan S, Kurz S, Munzel T, Tarpey M, Freeman BA, Griendling KK, Harrison DG. Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J Clin Invest 1996; 97: 1916–1923.

    Article  PubMed  CAS  Google Scholar 

  80. Fukui T, Ishizaka N, Rajagopalan S, Laursen JB, Capers Q/T, Taylor WR, Harrison DG, de LH, Wilcox JN, Griendling KK. p22phox mRNA expression and NADPH oxidase activity are increased in aortas from hypertensive rats. Circ Res 1997; 80: 45–51.

    Article  PubMed  CAS  Google Scholar 

  81. Jacobson MD. Reactive oxygen species and programmed cell death. Trends Biochem Sci 1996; 21: 83–86.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Finkel, T., Sullivan, D.M. (2000). Reactive Oxygen Species in Proliferative Signaling. In: Gutkind, J.S. (eds) Signaling Networks and Cell Cycle Control. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-218-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-218-0_19

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9695-6

  • Online ISBN: 978-1-59259-218-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation