Nonesterase Actions of Anticholinesterase Insecticides

  • Chapter
Handbook of Neurotoxicology
  • 459 Accesses

Abstract

Organophosphorus (OP) and carbamate compounds have been utilized for a variety of purposes including use as therapeutic agents, agricultural chemicals, plasticizers, lubricants, flame retardants, and fuel additives. Many of the pesticides in use today belong to the OP or carbamate classes of compounds. Some OP compounds, the highly toxic nerve agents, have been developed for chemical warfare, whereas some carbamates have more recently been utilized as prophylactic drugs to prevent the devastating effects of nerve agent exposures (1,2). Although these agents exhibit a wide array of chemical structures, physicochemical properties, and toxicological potencies, the acute toxicity of most OP and carbamate pesticides is initiated by inhibition of the enzyme acetylcholinesterase (AChE, EC 3.1.1.7) in the peripheral and/or central nervous system (PNS/CNS)(3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sidell, F. R. and Borak, J. (1992) Chemical warfare agents: II. Nerve agents. Ann. Emerg. Med. 21, 865–871.

    Article  PubMed  CAS  Google Scholar 

  2. Ehrich, M. (1998) Organophosphates, in Encyclopedia of Toxicology ( Wexler, P., ed.), Academic Press, San Diego, CA, pp. 467–471.

    Google Scholar 

  3. Nostrandt, A. C., Padilla, S., and Moser, V. C. (1997) The relationship of oral chlorpyrifos effects on behavior, cholinesterase inhibition, and muscarinic receptor density in rat. Pharmacol. Biochem. Behay. 58, 15–23.

    Article  CAS  Google Scholar 

  4. Gallo, M. A. and Lawryk, N. J. (1991) Organic phosphorus pesticides, in Handbook of Pesticide Toxicology ( Hayes, W. J. and Laws, E. R., eds.), Academic Press, San Diego, CA, pp. 917–1123.

    Google Scholar 

  5. Weiner, M. L. and Jortner, B. S. (1999) Organophosphate-induced delayed neurotoxicity of triarylphosphates. Neurotoxicology 20, 653–673.

    PubMed  CAS  Google Scholar 

  6. Scopes, R. K. (1982). Maintenance of active enzymes, in Protein Purification, Principles and Practice, Springer Verlag, NY, pp. 185–200.

    Google Scholar 

  7. Hamilton, S. E., Dudman, A. P., DeJersey, J., Stoops, J. K., and Zerner, B. (1975) Organo-phosphate inhibitors: the reactions of bis(p-nitrophenyl)methyl phosphate with liver carboxylesterases and alpha-chymotrypsin. Biochim. Biophys. Acta 377, 282–296.

    Article  PubMed  CAS  Google Scholar 

  8. Johnson, M. K. and Clothier, B. (1980) Biochemical events in delayed neurotoxicity: is aging of chymotrypsin inhibited by saligenin cyclic phosphates a model for aging of neurotoxic esterase? Toxicol. Lett. 5, 95–98.

    Article  PubMed  CAS  Google Scholar 

  9. Mantle, D., Saleem, M. A., Williams, F. M., Wilkins, R. M., and Shakoori, A. R. (1997) Effect of pirimiphos-methyl on proteolytic enzyme activities in rat heart, kidney, brain and liver tissues in vivo. Clin. Chem. Acta 262, 89–97.

    Article  CAS  Google Scholar 

  10. Saleem, M. A., Williams, F. M., Wilkins, R. M., Shakoori, A. R., and Mantle, D. (1998) Effect of tri-o-cresyl phosphate (TOCP) on proteolytic enzyme activities in mouse liver in vivo. J. Environ. Pathol. Toxicol. Oncol. 17, 69–73.

    PubMed  CAS  Google Scholar 

  11. Pruett, S. B., Chambers, H. W., and Chambers, J. E. (1994) A comparative study of inhibition of acetylcholinesterase, trypsin, neuropathy target esterase, and spleen cell activation by structurally related organophosphorus compounds. J. Biochem. Toxicol. 9, 319–327.

    Article  PubMed  CAS  Google Scholar 

  12. Quistad, G. B. and Casida, J. E. (2000) Sensitivity of blood-clotting factors and digestive enzymes to inhibition by organophosphorus pesticides. J. Biochem. Mol. Toxicol. 14, 51–56.

    Article  PubMed  CAS  Google Scholar 

  13. Murumatsu, M. and Kuriyama, K. (1976) Effect of organophosphorus compounds on acetylcholine synthesis in brain. Jpn. J. Pharmacol. 26, 249–254.

    Article  Google Scholar 

  14. DuBois, K. P., Doull, J., Salerno, P. R., and Coon, J. (1949) Studies on the toxicity and mechanisms of action ofp-nitrophenyl diethyl thionophosphate (parathion). J. Pharmacol. Exp. Ther. 95, 79–91.

    PubMed  CAS  Google Scholar 

  15. Frederickson, T. (1958) Further studies on fluoro-phosphorylcholines. Pharmacological properties of two new analogues. Arch. Int. Pharmacodyn. 115, 474–482.

    Google Scholar 

  16. Bonner, T. I. (1989) The molecular basis of muscarinic receptor diversity. Trends Neurosci. 12, 148–151.

    Article  PubMed  CAS  Google Scholar 

  17. McGehee, D. S. and Role, L. W. (1995) Physiological diversity of nicotinic acetylcholine receptors expressed by vertebrate neurons. Ann. Rev. Physiol. 57, 521–546.

    Article  CAS  Google Scholar 

  18. Albuquerque, E. X., Alkondon, M., Pereira, E. F., Castro, N. G., Schrattenholz, A., Barbosa, C. T., et al. (1997) Properties of neuronal nicotinic acetylcholine receptors: pharmacological characterization and modulation of synaptic function. J. Pharmacol. Exp. Ther. 280, 1117–1136.

    PubMed  CAS  Google Scholar 

  19. Bartles, E. and Nachmansohn, D. (1969) Organophosphate inhibitors of acetylcholine-receptor and —esterase tested on the electroplax. Arch. Biochem. Biophys. 133, 1–10.

    Article  Google Scholar 

  20. Eldefrawi, M. E. and Eldefrawi, A. T. (1983) Neurotransmitter receptors as targets for pesticides. J. Environ. Sci. Health [B] 18, 65–88.

    Article  CAS  Google Scholar 

  21. Bakry, N. M., el-Rashidy, A. H., Eldefrawi, A. T., and Eldefrawi, M. E. (1988) Direct actions of organophosphate anticholinesterases on nicotinic and muscarinic acetylcholine receptors. J. Biochem. Toxicol. 3, 235–259.

    Article  PubMed  CAS  Google Scholar 

  22. Seifert, S. A. and Eldefrawi, M. E. (1974) Affinity of myasthenia drugs to acetylcholinesterase and acetylcholine receptor. Biochem. Med. 10, 258–265.

    Article  PubMed  CAS  Google Scholar 

  23. Albuquerque, E. X., Deshpande, S. S., Kawabuchi, M., Aracava, Y., Idriss, M., Rickett, D. L., and Boyne, A. F. (1985) Multiple actions of anticholinesterase agents on chemosensitive synapses: molecular basis for prophylaxis and treatment of organophosphate poisoning. Fundam. Appl. Toxicol. 5, S182 - S203.

    Article  PubMed  CAS  Google Scholar 

  24. Shaw, K. P., Aracava, Y., Akaike, A., Daly, J. W., Rickett, D.L., and Albuquerque, E. X. (1985) The reversible cholinesterase inhibitor physostigmine has channel-blocking and agonist effects on the acetylcholine receptor-ion channel complex. Mol. Pharmacol. 28, 527–538.

    PubMed  CAS  Google Scholar 

  25. Akaike, A., Ikeda, S. R., Brookes, N., Pascuzzo, G. J., Rickett, D. L., and Albuquerque, E. X. (1984) The nature of the interactions of pyridostigmine with the nicotinic acetylcholine receptor-ionic channel complex. II. Patch clamp studies. Mol. Pharmacol. 25, 102–112.

    PubMed  CAS  Google Scholar 

  26. Albuquerque, E. X., Akaike, A., Shaw, K. P., and Rickett, D. L. (1984) The interaction of anticholinesterase agents with the acetylcholine receptor-ionic channel complex. Fundam. Appl. Toxicol. 4, S27 - S33.

    Article  PubMed  CAS  Google Scholar 

  27. Kuhlmann, J., Okonjo, K. O., and Maelicke, A. (1991) Desensitization is a property of the cholinergic binding region of the nicotinic acetylcholine receptor, not of the receptor-integral ion channel. FEBS Lett. 279, 216–218.

    Article  PubMed  CAS  Google Scholar 

  28. Eldefrawi, M. E., Eldefrawi, A. T., Aronstam, R. S., Maleque, M. A., Warnick, J. E., and Albuquerque, E. X. (1980) [3H]Phencyclidine: a probe for the ionic channel of the nicotinic receptor. Proc. Natl. Acad. Sci. USA 77, 7458–7462.

    Google Scholar 

  29. Mansour, N. A., Valdes, J. J., Shamoo, A. E., and Annau, Z. (1987) Biochemical interactions of carbamates and ecothiophate with the activated conformation of nicotinic acetylcholine receptor. J. Biochem. Toxicol. 2, 25–42.

    Article  PubMed  CAS  Google Scholar 

  30. Eldefrawi, M. E., Schweizer, G., Bakry, N. M., and Valdes, J. J. (1988) Desensitization of the nicotinic acetylcholine receptor by diisopropylfluorophosphate. J. Biochem. Toxicol. 3, 21–32.

    Article  PubMed  CAS  Google Scholar 

  31. Katz, E. J., Cortes, V. I., Eldefrawi, M. E., and Eldefrawi, A. T. (1997) Chlorpyrifos, parathion, and their oxons bind to and desensitize a nicotinic acetylcholine receptor: relevance to their toxicities. Toxicol. Appl. Pharmacol. 146, 227–236.

    Article  PubMed  CAS  Google Scholar 

  32. Volpe, L. S., Biagioni, T. M., and Marquis, J. K. (1985) In vitro modulation of bovine caudate muscarinic receptor number by organophosphates and carbamates. Toxicol. Appl. Pharmacol. 78, 226–234.

    Article  PubMed  CAS  Google Scholar 

  33. Katz, L. S. and Marquis, J. K. (1989) Modulation of central muscarinic receptor binding in vitro by ultralow levels of the organophosphate paraoxon. Toxicol. Appl. Pharmacol. 101, 114–123.

    Article  PubMed  CAS  Google Scholar 

  34. Ehrich, M., Intropido, L., and Costa, L. G. (1994) Interaction of organophosphorus compounds with muscarinic receptors in SH-SY5Y human neuroblastoma cells. J. Toxicol. Environ. Health 43, 51–63.

    Article  PubMed  CAS  Google Scholar 

  35. Fisher, S. K. (1988) Recognition of muscarinic cholinergic receptors in human SK-N-SH neuroblastoma cells by quaternary and tertiary ligands is dependent upon temperature, cell integrity, and the presence of agonists. Mol. Pharmacol. 33, 414–422.

    PubMed  CAS  Google Scholar 

  36. Huff, R. A. and Abou-Donia, M. B. (1994) cis-Methyldioxolane specifically recognizes the m2 muscarinic receptor. J. Neurochem. 62, 388–391.

    Google Scholar 

  37. Silveira, C. L., Eldefrawi, A. T., and Eldefrawi, M. E. (1990) Putative M2 muscarinic receptors of rat heart have high affinity for organophosphorus anticholinesterases. Toxicol. Appl. Pharmacol. 103, 474–481.

    Article  PubMed  CAS  Google Scholar 

  38. Jett, D. A., Abdallah, E. A. M., El-Fakahany, E. E., Eldefrawi, M. E., and Eldefrawi, A. T. (1991) High-affinity activation by paraoxon of a muscarinic receptor subtype in rat brain striatum. Pest. Biochem. Physiol. 39, 149–157.

    Article  CAS  Google Scholar 

  39. Ward, T. R., Ferris, D. J., Tilson, H. A., and Mundy, W. R. (1993) Correlation of the anticholinesterase activity of a series of organophosphates with their ability to compete with agonist binding to muscarinic receptors. Toxicol. Appl. Pharmacol. 122, 300–307.

    Article  PubMed  CAS  Google Scholar 

  40. Huff, R. A., Corcoran, J. J., Anderson, J. K., and Abou-Donia, M. B. (1994) Chlorpyrifos oxon binds directly to muscarinic receptors and inhibits cAMP accumulation in rat stria-turn. J. Pharmacol. Exp. Ther. 269, 329–335.

    PubMed  CAS  Google Scholar 

  41. Ward, T. R. and Mundy, W. R. (1996) Organophosphorus compounds preferentially affect second messenger systems coupled to M2/M4 receptors in rat frontal cortex. Brain Res. Bull. 39, 49–55.

    Article  PubMed  CAS  Google Scholar 

  42. Van Den Beukel, I., Dijcks, F. A., Vanderheyden, P., Vauquelin, G., and Oortgiesen, M. (1997) Differential muscarinic receptor binding of acetylcholinesterase inhibitors in rat brain, human brain and Chinese hamster ovary cells expressing human receptors. J. Pharmacol. Exp. Ther. 281, 1113–1119.

    Google Scholar 

  43. Cao, C. J., Mioduszewski, R. J., Menking, D. E., Valdes, J. J., Katz, E. J., Eldefrawi, M. E., and Eldefrawi, A. T. (1999) Cytotoxicity of organophosphate anticholinesterases. In vitro Cell Dev. Biol. Anim. 35, 493–500.

    Google Scholar 

  44. El-Sebae, A. H., Soliman, S. A., Ahmed, N. S., and Curley, A. (1981) Biochemical interaction of six OP delayed neurotoxicants with several neurotargets. J. Environ. Sci. Health B.J 16, 465–474.

    Article  CAS  Google Scholar 

  45. Johnson, P. S. and Michaelis, E. K. (1992) Characterization of organophosphate interactions at N-methyl-D-aspartate receptors in brain synaptic membranes. Mol. Pharmacol. 41, 750–756.

    PubMed  CAS  Google Scholar 

  46. Gant, D. B., Eldefrawi, M. E., and Eldefrawi, A. T. (1987) Action of organophosphates on GABAA receptor and voltage-dependent chloride channels. Fundam. Appl. Toxicol. 9, 698–704.

    Article  PubMed  CAS  Google Scholar 

  47. Lau, W-M, Freeman, S. E., and Szilagyi, M. (1988) Binding of some organophosphorus compounds at adenosine receptors in guinea pig brain membranes. Neurosci. Lett. 94, 125–130.

    Article  PubMed  CAS  Google Scholar 

  48. Lau, W-M, Szilagyi, M., and Freeman, S. E. (1991) Effects of some organophosphorus compounds on the binding of a radioligand (8-cyclopentyl 1,343H]dipropylxanthine) to adenosine receptors in ovine cardiac membranes. J. Appl. Toxicol. 11, 411–414.

    Article  PubMed  CAS  Google Scholar 

  49. Weiler, M. H. (1989) Muscarinic modulation of endogenous acetylcholine release in rat neostriatal slices. J. Pharmacol. Exp. Ther. 250, 617–623.

    PubMed  CAS  Google Scholar 

  50. Feuerstein, T. J., Lehmann, J., Sauermann, W., van Velthoven, V., and Jackisch, R. (1992) The autoinhibitory feedback control of acetylcholine release in human neocortex tissue. Brain Res. 572, 64–71.

    Article  PubMed  CAS  Google Scholar 

  51. Kitaichi, K., Hori, T., Srivastava, L. K., and Quirion, R. (1999) Antisense oligodeoxynucleotides against the muscarinic m2, but not m4, receptor supports its role as autoreceptors in the rat hippocampus. Brain Res. Mol. Brain Res. 67, 98–106.

    Article  PubMed  CAS  Google Scholar 

  52. Watson, M., Roeske, W. R., Vickroy, T. W., Smit, T. L., Akiyama, K., Gulya, K., et al. (1986) Biochemical and functional basis of putative muscarinic receptor subtypes and its implications. Trends Pharmacol. Sci. (Suppl.) 2, 44–55.

    Google Scholar 

  53. Pope, C. N., Chakraborti, T. K., Chapman, M. L., Farrar, J. D., and Arthun, D. (1991) Comparison of in vivo cholinesterase inhibition in neonatal and adult rats by three organophosphorothioate insecticides. Toxicology 68, 51–6l

    Article  PubMed  CAS  Google Scholar 

  54. Chaudhuri, J., Chakraborti, T. K., Chanda, S., and Pope, C. N. (1993) Differential modulation of organophosphate-sensitive muscarinic receptors in rat brain by parathion and chlorpyrifos. J. Biochem. Toxicol. 8, 207–216.

    Article  PubMed  CAS  Google Scholar 

  55. Liu, J. and Pope, C. N. (1996) Effects of chlorpyrifos on high-affinity choline uptake and [3H]hemicholinium-3 binding in rat brain. Fundam. Appl. Toxicol. 34, 84–90.

    Article  PubMed  CAS  Google Scholar 

  56. Pope, C. N., Chaudhuri, J., and Chakraborti, T. K. (1995) Organophosphate-sensitive cholinergic receptors: possible role in modulation of anticholinesterase toxicity, in Enzymes of the Cholinesterase Family ( Quinn, D. M., Balasubramanian, A. S., Doctor, B. P., and Taylor, P., eds.), Plenum, NY, pp. 305–312.

    Google Scholar 

  57. Liu, J. and Pope, C. N. (1998) Comparative presynaptic neurochemical changes in rat stria-turn following exposure to chlorpyrifos or parathion. J. Toxicol. Environ. Health 53, 531–544.

    Article  CAS  Google Scholar 

  58. Cancela, J. M., Bertrand, N., and Beley, A. (1995) Involvement of cAMP in the regulation of high affinity choline uptake by rat brain synaptosomes. Biochem. Biophys. Res. Commun. 213, 944–949.

    Google Scholar 

  59. Vogelsberg, V., Neff, N. H., and Hadjiconstantinou, M. (1997) Cyclic AMP-mediated enhancement of high-affinity choline transport and acetylcholine synthesis in brain. J. Neurochem. 68, 1062–1070.

    Article  PubMed  CAS  Google Scholar 

  60. Rocha, E. S., Swanson, K. L., Aracava, Y., Goolsby, J. E., Maelicke, A., and Albuquerque, E. X. (1996a). Paraoxon: cholinesterase-independent stimulation of transmitter release and selective block of ligand-gated ion channels in cultured hippocampal neurons. J. Pharmacol. Exp. Ther. 278, 1175–1187.

    PubMed  CAS  Google Scholar 

  61. Rocha, E. S., Pereira, E. F. R., Swanson, K. L., and Albuquerque, E. X. (1996b) Novel molecular targets in the central nervous system for the actions of cholinesterase inhibitors: alterations of modulatory processes. Proceedings of the 1996 Medical Defense Bioscience Review III, pp. 1635–1643.

    Google Scholar 

  62. Dam, K., Seidler, F. J., and Slotkin, T. A. (1999) Chlorpyrifos releases norepinephrine from adult and neonatal rat brain synaptosomes. Dev. Brain Res. 118, 129–133.

    Article  CAS  Google Scholar 

  63. Whitney, K. D., Seidler, F. J., and Slotkin, T. A. (1995) Developmental neurotoxicity of chlorpyrifos: cellular mechanisms. Toxicol. Appl. Pharmacol. 134, 53–62.

    Article  PubMed  CAS  Google Scholar 

  64. Campbell, C. G., Seidler, F. J., and Slotkin, T. A. (1997) Chlorpyrifos interferes with cell development in rat brain regions. Brain Res. Bull. 43, 179–189.

    Article  PubMed  CAS  Google Scholar 

  65. Johnson, D. E., Seidler, F. J., and Slotkin, T. A. (1998) Early biochemical detection of delayed neurotoxicity resulting from developmental exposure to chlorpyrifos. Brain Res. Bull. 45, 143–147.

    Article  PubMed  CAS  Google Scholar 

  66. Dam, K., Seidler, F. J., and Slotkin, T. A. (1998) Developmental neurotoxicity of chlorpyrifos: delayed targeting of DNA synthesis after repeated administration. Dev. Brain Res. 108, 39–45.

    Article  CAS  Google Scholar 

  67. Song, X., Seidler, F. J., Saleh, J. L., Zhang, J., Padilla, S., and Slotkin, T. A. (1997) Cellular mechanisms for developmental toxicity of chlorpyrifos: targeting the adenylyl cyclase signaling cascade. Toxicol. Appl. Pharmacol. 145, 158–174.

    Article  PubMed  CAS  Google Scholar 

  68. Roy, T. S., Andrews, J. E., Seidler, F. J., and Slotkin, T. A. (1998) Chlorpyrifos elicits mitotic abnormalities and apoptosis in neuroepithelium of cultured rat embryos. Teratology 58, 62–68.

    Article  PubMed  CAS  Google Scholar 

  69. Robertson, R. T. and Yu, J. (1993) Acetylcholinesterase and neural development: new tricks for an old dog? News Physiol. Sci. 8, 266–272.

    CAS  Google Scholar 

  70. Layer, P. G. and Willbold, E. (1995) Novel functions of cholinesterases in development, physiology and disease. Prog. Histochem. Cytochem. 29, 1–94.

    PubMed  CAS  Google Scholar 

  71. Small, D. H., Michaelson, S., and Sberna, G. (1996) Non-classical actions of cholinesterases: role in cellular differentiation, tumorigenesis and Alzheimer’s disease. Neurochem. Int. 28, 453–483.

    Article  PubMed  CAS  Google Scholar 

  72. Kostovic, I. and Goldman-Rakic, P. S. (1983) Transient cholinesterase staining in the mediodorsal nucleus of the thalamus and its connections in the develo** human and monkey brain. J. Comp. Neurol. 219, 431–447.

    Article  PubMed  CAS  Google Scholar 

  73. Kristt, D. A. (1983) Acetylcholinesterase in the ventral thalamus: transience and patterning during ontogenesis. Neuroscience 10, 923–939.

    Article  PubMed  CAS  Google Scholar 

  74. Layer, P. G. (1990) Cholinesterases preceeding major tracts in vertebrate neurogenesis. BioEssays 12, 415–420.

    CAS  Google Scholar 

  75. Robertson, R. T., Mostamand, F., Kageyama, G. H., Gallardo, K. A., and Yu, J. (1991) Primary auditory cortex in the rat: transient expression of acetylcholinesterase activity in develo** geniculocortical projections. Brain Res. Dev. Brain Res. 58, 81–95.

    Article  PubMed  CAS  Google Scholar 

  76. Dupree, J.I. and Bigbee, J.W. (1994) Retardation of neuritic outgrowth and cytoskeletal changes accompany acetylcholinesterase inhibitor treatment in cultured rat dorsal root ganglion neurons. J. Neurosci. Res. 39, 567–575.

    Article  PubMed  CAS  Google Scholar 

  77. Layer, P. G., Weikert, T., and Alber, R. (1993) Cholinesterases regulate neurite growth of chick nerve cells in vitro by means of a non-enzymatic mechanism. Cell. Tissue Res. 273, 219–226.

    Article  PubMed  CAS  Google Scholar 

  78. Sternfeld, M., Ming, G-L., Song, H-J., Sela, H, Timberg, R., Poo, M-M., and Soreq, H. (1998). Acetylcholinesterase enhances neurite growth and synapse development through alternative contributions of its hydrolytic capacity, core protein and variable C termini. J. Neurosci. 18, 1240–1249.

    PubMed  CAS  Google Scholar 

  79. Saito, S. (1998) Cholinesterase inhibitors induce growth cone collapse and inhibit neurite extension in primary cultured chick neurons. Neurotoxicol. Teratol. 20, 411–419.

    Article  PubMed  CAS  Google Scholar 

  80. Henschler, D., Schmuck, G., van Aerssen, M., and Schiffmann, D. (1992) The inhibitory effect of neuropathic organophosphate esters on neurite outgrowth in cell cultures: a basis for screening for delayed neurotoxicity. Toxicol. Vitro 6, 327–325. 84.

    Article  Google Scholar 

  81. Flaskos, J., McLean, W. G., and Hargreaves, A. J. (1994) The toxicity of organophosphate compounds toward cultured PC12 cells. Toxicol. Lett. 70, 71–76.

    Article  PubMed  CAS  Google Scholar 

  82. Li, W. and Casida, J. E. (1998) Organophosphorus neuropathy target esterase inhibitors selectively block outgrowth of neurite-like and cell processes in cultured cells. Toxicol. Lett. 98, 139–146.

    Article  PubMed  CAS  Google Scholar 

  83. Song, X., Violin, J. D., Seidler, F. J., and Slotkin. T. A. (1998) Modeling the developmental neurotoxicity of chlorpyrifos in vitro: macromolecular synthesis in PC12 cells. Toxicol. Appl. Pharmacol. 151, 182–191.

    Article  PubMed  CAS  Google Scholar 

  84. Das, K. P. and Barone, S. Jr. (1999) Neuronal differentiation in PC12 cells is inhibited by chlorpyrifos and its metabolites: is acetylcholinesterase inhibition the site of action? Toxicol. Appl. Pharmacol. 160, 217–230.

    Article  PubMed  CAS  Google Scholar 

  85. Appleyard, M. E. (1992) Secreted acetylcholinesterase: non-classical aspects of a classical enzyme. Trends Neurol. Sci. 15, 485–490.

    Article  CAS  Google Scholar 

  86. Greenfield, S. A. (1991) A noncholinergic action of acetylcholinesterase (AChE) in the brain: from neuronal secretion to the generation of movement. Cell Mol. Neurobiol. 11, 55–77.

    Article  PubMed  CAS  Google Scholar 

  87. Greenfield, S. A., Chubb, I. W., Grunewald, R. A., Henderson, Z., May, J., Portnoy, S.,et al. (1984) A non-cholinergie function for acetylcholinesterase in the substantia nigra: behavioural evidence. Exp. Brain Res. 54, 513–520.

    Article  PubMed  CAS  Google Scholar 

  88. Appleyard, M. E., Vercher, J. L., and Greenfield, S. A. (1988) Release of acetylcholinesterase from the guinea-pig cerebellum in vivo. Neuroscience 25, 133–138.

    Article  PubMed  CAS  Google Scholar 

  89. Webb, C. P. and Greenfield, S. A. (1992) Non-cholinergic effects of acetylcholinesterase in the substantia nigra: possible role for an ATP-sensitive potassium channel. Exp. Brain Res. 89, 49–58.

    Article  PubMed  CAS  Google Scholar 

  90. Appleyard, M. and Jahnsen, H. (1992) Actions of acetylcholinesterase in the guinea-pig cerebellar cortex in vitro. Neuroscience 47, 291–301.

    Article  PubMed  CAS  Google Scholar 

  91. Webb, C. P., Nedergaard, S., Giles, K., and Greenfield, S. A. (1996) Involvement of the NMDA receptor in a non-cholinergic action of acetylcholinesterase in guinea pig subtantia nigra pars compacta neurons. Eur. J. Neurosci. 8, 837–841.

    Article  PubMed  CAS  Google Scholar 

  92. Holmes, C., Jones, S. A., Budd, T. C., and Greenfield. (1997) Non-cholinergic, trophic action of recombinant acetylcholinesterase on mid-brain dopaminergic neurons. J. Neurosci. Res. 49, 207–218.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pope, C., Liu, J. (2002). Nonesterase Actions of Anticholinesterase Insecticides. In: Massaro, E.J. (eds) Handbook of Neurotoxicology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-132-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-132-9_3

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-193-6

  • Online ISBN: 978-1-59259-132-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation