Human Herpesviruses: Human Herpesvirus 6

  • Living reference work entry
  • First Online:
Viral Infections of Humans

Abstract

A snapshot of human herpesvirus 6 (HHV-6) reveals several key features of this virus that are clearly established. HHV-6 causes ubiquitous infection in infancy or early childhood that is typically a self-limited illness and generally associated with complete recovery. After primary infection, HHV-6 remains latent or persistent at several different sites, including the peripheral blood mononuclear cells, the salivary glands, female genital tract, liver, and central nervous system (CNS). Reactivation of HHV-6 occurs during periods of immune compromise and is associated with disease.

However, the biography of HHV-6 is rapidly evolving. Increasing interest and research have recently allowed a better understanding of the import and pathogenesis of HHV-6. Molecular techniques for the detection and determination of viral state have further defined the epidemiologic and clinical patterns of HHV-6 according to age, presence, and replicative state in different body sites and whether infection is new or reactivated. Taken together, these new findings have led to the classification of two variants, HHV-6A and HHV-6B, into distinct species.

Also of particular note is the unique ability of HHV-6 to integrate into human chromosomes. Human telomeres appear to be the consistent site of integration of the complete viral genome, which raises the possibility of disruption of the vital functions of the telomeres. In addition, the chromosomal integration of HHV-6 passed through the germline causes the great majority of congenital HHV-6 infections and can even cause disease upon reactivation later in life. Unknown, however, is the spectrum of pathogenic ramifications of the lifelong presence of virus, which is integrated in an individual’s chromosomes.

Other important areas that remain unresolved despite ongoing research include the definitive distinction between disease, which is due to the direct or indirect effects of HHV-6 infection versus when HHV-6 DNA is detected but unrelated to disease. The ubiquity of HHV-6 infections, its wide tropism, and its subsequent latency confound this distinction and indicate that currently the diagnosis of HHV-6 disease cannot be made on the basis of HHV-6 DNA detection alone.

Yet needed are not only clinically relevant diagnostic assays that are feasible and rapidly available but also effective prophylactic and therapeutic approaches for HHV-6 disease, especially among high-risk immunocompromised individuals. Although multiple antiviral agents have been shown in vitro to be active against HHV-6 infection, large controlled clinical trials have not been conducted. Most critical are efforts to increase recognition that understanding the immunopathogenesis of HHV-6 is important and that sufficient economic support is integral to this goal.

Caroline Breese Hall died before publication of this work was completed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ablashi DV, Devin CL, Yoshikawa T, Lautenschlager I, Luppi M, Kuhl U, et al. Review part 3: human herpesvirus-6 in multiple non-neurological diseases. J Med Virol. 2010;82(11):1903–10.

    Article  PubMed  Google Scholar 

  • Achour A, Boutolleau D, Slim A, Agut H, Gautheret-Dejean A. Human herpesvirus-6 (HHV-6) DNA in plasma reflects the presence of infected blood cells rather than circulating viral particles. J Clin Virol. 2007;38(4):280–5.

    Article  CAS  PubMed  Google Scholar 

  • Agut H, Bonnafous P, Gautheret-Dejean A. Laboratory and clinical aspects of human herpesvirus 6 infections. Clin Microbiol Rev. 2015;28(2):313–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahtiluoto S, Mannonen L, Paetau A, Vaheri A, Koskiniemi M, Rautiainen P, et al. In situ hybridization detection of human herpesvirus 6 in brain tissue from fatal encephalitis. Pediatrics. 2000;105(2):431–3.

    Article  CAS  PubMed  Google Scholar 

  • Albright AV, Lavi E, Black JB, Goldberg S, O’Connor MJ, Gonzalez-Scarano F. The effect of human herpesvirus-6 (HHV-6) on cultured human neural cells: oligodendrocytes and microglia. J Neurovirol. 1998;4(5):486–94.

    Article  CAS  PubMed  Google Scholar 

  • Andre-Garnier E, Milpied N, Boutolleau D, Saiagh S, Billaudel S, Imbert-Marcille BM. Reactivation of human herpesvirus 6 during ex vivo expansion of circulating CD34+ haematopoietic stem cells. J Gen Virol. 2004;85(Pt 11):3333–6.

    Article  CAS  PubMed  Google Scholar 

  • Arbuckle JH, Medveczky PG. The molecular biology of human herpesvirus-6 latency and telomere integration. Microbes Infect. 2011;13(8–9):731–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arbuckle JH, Medveczky MM, Luka J, Hadley SH, Luegmayr A, Ablashi D, et al. The latent human herpesvirus-6A genome specifically integrates in telomeres of human chromosomes in vivo and in vitro. Proc Natl Acad Sci U S A. 2010;107(12):5563–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asano Y, Yoshikawa T, Suga S, Yazaki T, Hata T, Nagai T, et al. Viremia and neutralizing antibody response in infants with exanthem subitum. J Pediatr. 1989;114(4 Pt 1):535–9.

    Article  CAS  PubMed  Google Scholar 

  • Asano Y, Nakashima T, Yoshikawa T, Suga S, Yazaki T. Severity of human herpesvirus-6 viremia and clinical findings in infants with exanthem subitum. J Pediatr. 1991;118(6):891–5.

    Article  CAS  PubMed  Google Scholar 

  • Asano Y, Yoshikawa T, Suga S, Kobayashi I, Nakashima T, Yazaki T, et al. Clinical features of infants with primary human herpesvirus 6 infection (exanthem subitum, roseola infantum). Pediatrics. 1994;93(1):104–8.

    Article  CAS  PubMed  Google Scholar 

  • Bertelsen LB, Petersen CC, Kofod-Olsen E, Oster B, Hollsberg P, Agger R, et al. Human herpesvirus 6B induces phenotypic maturation without IL-10 and IL-12p70 production in dendritic cells. Scand J Immunol. 2010;71(6):431–9.

    Article  CAS  PubMed  Google Scholar 

  • Black JB, Pellett PE. Human herpesvirus 7. Rev Med Virol. 1999;9(4):245–62.

    Article  CAS  PubMed  Google Scholar 

  • Bonnafous P, Marlet J, Bouvet D, Salamé E, Tellier AC, Guyetant S, et al. Fatal outcome after reactivation of inherited chromosomally integrated HHV-6A (iciHHV-6A) transmitted through liver transplantation. Am J Transplant. 2018;18(6):1548–51.

    Article  CAS  PubMed  Google Scholar 

  • Braun DK, Dominguez G, Pellett PE. Human herpesvirus 6. Clin Microbiol Rev. 1997;10(3):521–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breese B. Roseola Infantum (Exanthem Subitum). N Y State J Med. 1941;41:1854–9.

    Google Scholar 

  • Byington CL, Zerr DM, Taggart EW, Nguy L, Hillyard DR, Carroll KC, et al. Human herpesvirus 6 infection in febrile infants ninety days of age and younger. Pediatr Infect Dis J. 2002;21(11):996–9.

    Article  PubMed  Google Scholar 

  • Caruso A, Rotola A, Comar M, Favilli F, Galvan M, Tosetti M, et al. HHV-6 infects human aortic and heart microvascular endothelial cells, increasing their ability to secrete proinflammatory chemokines. J Med Virol. 2002;67(4):528–33.

    Article  CAS  PubMed  Google Scholar 

  • Caserta MT, Hall CB, Schnabel K, Lofthus G, McDermott MP. Human herpesvirus (HHV)-6 and HHV-7 infections in pregnant women. J Infect Dis. 2007;196(9):1296–303.

    CAS  PubMed  Google Scholar 

  • Caserta MT, Hall CB, Schnabel K, Lofthus G, Marino A, Shelley L, et al. Diagnostic assays for active infection with human herpesvirus 6 (HHV-6). J Clin Virol. 2010;48(1):55–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caserta MT, Hall CB, Canfield RL, Davidson P, Lofthus G, Schnabel K, et al. Early developmental outcomes of children with congenital HHV-6 infection. Pediatrics. 2014;134(6):1111–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen M, Popescu N, Woodworth C, Berneman Z, Corbellino M, Lusso P, et al. Human herpesvirus 6 infects cervical epithelial cells and transactivates human papillomavirus gene expression. J Virol. 1994;68(2):1173–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chou S, Marousek GI. Analysis of interstrain variation in a putative immediate-early region of human herpesvirus 6 DNA and definition of variant-specific sequences. Virology. 1994;198(1):370–6.

    Article  CAS  PubMed  Google Scholar 

  • Clark DA. Clinical and laboratory features of human herpesvirus 6 chromosomal integration. Clin Microbiol Infect. 2016;22(4):333–9.

    Article  CAS  PubMed  Google Scholar 

  • Collin V, Flamand L. HHV-6A/B integration and the pathogenesis associated with the reactivation of chromosomally integrated HHV-6A/B. Viruses. 2017;9(7):160.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dahl H, Fjaertoft G, Norsted T, Wang FZ, Mousavi-Jazi M, Linde A. Reactivation of human herpesvirus 6 during pregnancy. J Infect Dis. 1999;180(6):2035–8.

    Article  CAS  PubMed  Google Scholar 

  • Daibata M, Taguchi T, Nemoto Y, Taguchi H, Miyoshi I. Inheritance of chromosomally integrated human herpesvirus 6 DNA. Blood. 1999;94(5):1545–9.

    Article  CAS  PubMed  Google Scholar 

  • Dantuluri KL, Konvinse KC, Crook J, Thomsen IP, Banerjee R. Human herpesvirus 6 detection during the evaluation of sepsis in infants using the FilmArray meningitis/encephalitis panel. J Pediatr. 2020;223:204–6.e1.

    Article  PubMed  Google Scholar 

  • De Bolle L, Van Loon J, De Clercq E, Naesens L. Quantitative analysis of human herpesvirus 6 cell tropism. J Med Virol. 2005a;75(1):76–85.

    Article  PubMed  Google Scholar 

  • De Bolle L, Naesens L, De Clercq E. Update on human herpesvirus 6 biology, clinical features, and therapy. Clin Microbiol Rev. 2005b;18(1):217–45.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dewhurst S, Chandran B, McIntyre K, Schnabel K, Hall CB. Phenotypic and genetic polymorphisms among human herpesvirus-6 isolates from north American infants. Virology. 1992;190(1):490–3.

    Article  CAS  PubMed  Google Scholar 

  • Dewhurst S, McIntyre K, Schnabel K, Hall CB. Human herpesvirus 6 (HHV-6) variant B accounts for the majority of symptomatic primary HHV-6 infections in a population of U.S. infants. J Clin Microbiol. 1993;31(2):416–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dominguez G, Dambaugh TR, Stamey FR, Dewhurst S, Inoue N, Pellett PE. Human herpesvirus 6B genome sequence: coding content and comparison with human herpesvirus 6A. J Virol. 1999;73(10):8040–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donati D, Akhyani N, Fogdell-Hahn A, Cermelli C, Cassiani-Ingoni R, Vortmeyer A, et al. Detection of human herpesvirus-6 in mesial temporal lobe epilepsy surgical brain resections. Neurology. 2003;61(10):1405–11.

    Article  CAS  PubMed  Google Scholar 

  • Dunne WM Jr, Jevon M. Examination of human breast milk for evidence of human herpesvirus 6 by polymerase chain reaction. J Infect Dis. 1993;168(1):250.

    Article  PubMed  Google Scholar 

  • Endo A, Watanabe K, Ohye T, Suzuki K, Matsubara T, Shimizu N, et al. Molecular and virological evidence of viral activation from chromosomally integrated human herpesvirus 6A in a patient with X-linked severe combined immunodeficiency. Clin Infect Dis. 2014;59(4):545–8.

    Article  PubMed  Google Scholar 

  • Epstein LG, Shinnar S, Hesdorffer DC, Nordli DR, Hamidullah A, Benn EK, et al. Human herpesvirus 6 and 7 in febrile status epilepticus: the FEBSTAT study. Epilepsia. 2012;53(9):1481–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flamand L, Romerio F, Reitz MS, Gallo RC. CD4 promoter transactivation by human herpesvirus 6. J Virol. 1998;72(11):8797–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flamand L, Komaroff AL, Arbuckle JH, Medveczky PG, Ablashi DV. Review, part 1: human herpesvirus-6-basic biology, diagnostic testing, and antiviral efficacy. J Med Virol. 2010;82(9):1560–8.

    Article  PubMed  Google Scholar 

  • Fotheringham J, Donati D, Akhyani N, Fogdell-Hahn A, Vortmeyer A, Heiss JD, et al. Association of human herpesvirus-6B with mesial temporal lobe epilepsy. PLoS Med. 2007;4(5):e180.

    Article  PubMed  PubMed Central  Google Scholar 

  • Glosson NL, Hudson AW. Human herpesvirus-6A and -6B encode viral immunoevasins that downregulate class I MHC molecules. Virology. 2007;365(1):125–35.

    Article  CAS  PubMed  Google Scholar 

  • Gompels UA, Carrigan DR, Carss AL, Arno J. Two groups of human herpesvirus 6 identified by sequence analyses of laboratory strains and variants from Hodgkin’s lymphoma and bone marrow transplant patients. J Gen Virol. 1993;74(Pt 4):613–22.

    Article  CAS  PubMed  Google Scholar 

  • Gompels UA, Nicholas J, Lawrence G, Jones M, Thomson BJ, Martin ME, et al. The DNA sequence of human herpesvirus-6: structure, coding content, and genome evolution. Virology. 1995;209(1):29–51.

    Article  CAS  PubMed  Google Scholar 

  • Green DA, Pereira M, Miko B, Radmard S, Whittier S, Thakur K. Clinical significance of human herpesvirus 6 positivity on the FilmArray meningitis/encephalitis panel. Clin Infect Dis. 2018;67(7):1125–8.

    Article  PubMed  Google Scholar 

  • Gupta S, Agrawal S, Gollapudi S. Differential effect of human herpesvirus 6A on cell division and apoptosis among naive and central and effector memory CD4+ and CD8+ T-cell subsets. J Virol. 2009;83(11):5442–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall C. Human herpesvirus 6, 7, and 8. In: Gershon AKS, Hotez P, editors. Krugman’s infectious diseases in children. 11th ed. Philadelphia: Mosby; 2003. p. 277–91.

    Google Scholar 

  • Hall C. Epidemiology of HHV6. In: Ablashi DKG, editor. Human herpesvirus 6: general virology, epidemiology, and clinical pathology. 2nd ed. New York: Elsevier; 2006. p. 119–29.

    Google Scholar 

  • Hall C. Human herpesviruses 6 and 7 (roseola, exanthem subitum). In: Long SPL, Prober C, editors. Principles and practice of pediatric infectious diseases. Philadelphia: Elsevier, Inc.; 2008. p. 1044–50.

    Chapter  Google Scholar 

  • Hall CB, Long CE, Schnabel KC, Caserta MT, McIntyre KM, Costanzo MA, et al. Human herpesvirus-6 infection in children. A prospective study of complications and reactivation. N Engl J Med. 1994;331(7):432–8.

    Article  CAS  PubMed  Google Scholar 

  • Hall CB, Caserta MT, Schnabel KC, Long C, Epstein LG, Insel RA, et al. Persistence of human herpesvirus 6 according to site and variant: possible greater neurotropism of variant A. Clin Infect Dis. 1998;26(1):132–7.

    Article  CAS  PubMed  Google Scholar 

  • Hall CB, Caserta MT, Schnabel KC, Boettrich C, McDermott MP, Lofthus GK, et al. Congenital infections with human herpesvirus 6 (HHV6) and human herpesvirus 7 (HHV7). J Pediatr. 2004;145(4):472–7.

    Article  CAS  PubMed  Google Scholar 

  • Hall CB, Caserta MT, Schnabel K, Shelley LM, Marino AS, Carnahan JA, et al. Chromosomal integration of human herpesvirus 6 is the major mode of congenital human herpesvirus 6 infection. Pediatrics. 2008;122(3):513–20.

    Article  PubMed  Google Scholar 

  • Hall CB, Caserta MT, Schnabel KC, Shelley LM, Carnahan JA, Marino AS, et al. Transplacental congenital human herpesvirus 6 infection caused by maternal chromosomally integrated virus. J Infect Dis. 2010;201(4):505–7.

    Article  PubMed  Google Scholar 

  • Harberts E, Yao K, Wohler JE, Maric D, Ohayon J, Henkin R, et al. Human herpesvirus-6 entry into the central nervous system through the olfactory pathway. Proc Natl Acad Sci U S A. 2011;108(33):13734–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higashimoto Y, Ohta A, Nishiyama Y, Ihira M, Sugata K, Asano Y, et al. Development of a human herpesvirus 6 species-specific immunoblotting assay. J Clin Microbiol. 2012;50(4):1245–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill JA. Human herpesvirus 6 in transplant recipients: an update on diagnostic and treatment strategies. Curr Opin Infect Dis. 2019;32(6):584–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill JAKS, Guzman Suarez BB, Ho VT, Cutler C, Koreth J, Armand P, Alyea EP, Baden LR, Antin JH, Soiffer RJ, Marty FM. Cord-blood hematopoietic stem-cell transplantation confers an increased risk for human herpesvirus-6-associated acute limbic encephalitis: a cohort analysis. Biol Blood Marrow Transplant. 2012;18(11):1638–48.

    Article  PubMed  Google Scholar 

  • Hill JA, Magaret AS, Hall-Sedlak R, Mikhaylova A, Huang ML, Sandmaier BM, et al. Outcomes of hematopoietic cell transplantation using donors or recipients with inherited chromosomally integrated HHV-6. Blood. 2017;130(8):1062–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill JA, Vande Vusse LK, **e H, Chung EL, Yeung CCS, Seo S, et al. Human herpesvirus 6B and lower respiratory tract disease after hematopoietic cell transplantation. J Clin Oncol. 2019;37(29):2670–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill JA, Nichols WG, Marty FM, Papanicolaou GA, Brundage TM, Lanier R, et al. Oral brincidofovir decreases the incidence of HHV-6B viremia after allogeneic HCT. Blood. 2020;135(17):1447–51.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hirata Y, Kondo K, Yamanishi K. Human herpesvirus 6 downregulates major histocompatibility complex class I in dendritic cells. J Med Virol. 2001;65(3):576–83.

    Article  CAS  PubMed  Google Scholar 

  • Hyde TB, Schmid DS, Cannon MJ. Cytomegalovirus seroconversion rates and risk factors: implications for congenital CMV. Rev Med Virol. 2010;20(5):311–26.

    Article  PubMed  Google Scholar 

  • Ichiyama T, Ito Y, Kubota M, Yamazaki T, Nakamura K, Furukawa S. Serum and cerebrospinal fluid levels of cytokines in acute encephalopathy associated with human herpesvirus-6 infection. Brain and Development. 2009;31(10):731–8.

    Article  PubMed  Google Scholar 

  • Inoue Y, Yasukawa M, Fujita S. Induction of T-cell apoptosis by human herpesvirus 6. J Virol. 1997;71(5):3751–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isegawa Y, ** Z, Nakano K, Sugimoto N, Yamanishi K. Human herpesvirus 6 open reading frame U12 encodes a functional beta- chemokine receptor. J Virol. 1998;72(7):6104–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isegawa Y, Mukai T, Nakano K, Kagawa M, Chen J, Mori Y, et al. Comparison of the complete DNA sequences of human herpesvirus 6 variants a and B. J Virol. 1999;73(10):8053–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isomura H, Yoshida M, Namba H, Yamada M. Interaction of human herpesvirus 6 with human CD34 positive cells. J Med Virol. 2003;70(3):444–50.

    Article  PubMed  Google Scholar 

  • Kaufer BB, Flamand L. Chromosomally integrated HHV-6: impact on virus, cell and organismal biology. Curr Opin Virol. 2014;9:111–8.

    Article  CAS  PubMed  Google Scholar 

  • Kawamura Y, Sugata K, Ihira M, Mihara T, Mutoh T, Asano Y, et al. Different characteristics of human herpesvirus 6 encephalitis between primary infection and viral reactivation. J Clin Virol. 2011;51(1):12–9.

    Article  PubMed  Google Scholar 

  • Kawamura Y, Yamazaki Y, Ohashi M, Ihira M, Yoshikawa T. Cytokine and chemokine responses in the blood and cerebrospinal fluid of patients with human herpesvirus 6B-associated acute encephalopathy with biphasic seizures and late reduced diffusion. J Med Virol. 2014;86(3):512–8.

    Article  CAS  PubMed  Google Scholar 

  • Kempe C, Shaw E, Jackson J, Silver H. Studies on the etiology of exanthema subitum (roseola infantum). J Pediatr. 1950;37:561–8.

    Article  CAS  PubMed  Google Scholar 

  • Komaroff AL, Pellett PE, Jacobson S. Human herpesviruses 6A and 6B in brain diseases: association versus causation. Clin Microbiol Rev. 2020;34(1):e00143-20.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kondo K, Kondo T, Okuno T, Takahashi M, Yamanishi K. Latent human herpesvirus 6 infection of human monocytes/macrophages. J Gen Virol. 1991;72(Pt 6):1401–8.

    Article  CAS  PubMed  Google Scholar 

  • Kumagai T, Yoshikawa T, Yoshida M, Okui T, Ihira M, Nagata N, et al. Time course characteristics of human herpesvirus 6 specific cellular immune response and natural killer cell activity in patients with exanthema subitum. J Med Virol. 2006;78(6):792–9.

    Article  CAS  PubMed  Google Scholar 

  • Lautenschlager I, Razonable RR. Human herpesvirus-6 infections in kidney, liver, lung, and heart transplantation: review. Transpl Int. 2012;25(5):493–502.

    Article  PubMed  Google Scholar 

  • Leach CT, Newton ER, McParlin S, Jenson HB. Human herpesvirus 6 infection of the female genital tract. J Infect Dis. 1994;169(6):1281–3.

    Article  CAS  PubMed  Google Scholar 

  • Lee S-O, Brown RA, Razonable RR. Clinical significance of pretransplant chromosomally integrated human herpesvirus-6 in liver transplant recipients. Transplantation. 2011;92(2):224–9.

    Article  PubMed  Google Scholar 

  • Leong HN, Tuke PW, Tedder RS, Khanom AB, Eglin RP, Atkinson CE, et al. The prevalence of chromosomally integrated human herpesvirus 6 genomes in the blood of UK blood donors. J Med Virol. 2007;79(1):45–51.

    Article  CAS  PubMed  Google Scholar 

  • Li H, Meng S, Levine SM, Stratton CW, Tang YW. Sensitive, qualitative detection of human herpesvirus-6 and simultaneous differentiation of variants A and B. J Clin Virol. 2009;46(1):20–3.

    Article  CAS  PubMed  Google Scholar 

  • Li L, Gu B, Zhou F, Chi J, Wang F, Liu G, et al. Human herpesvirus 6A infects human embryonic fibroblasts and induces G2/M arrest and cell death. J Med Virol. 2012;84(4):657–63.

    Article  CAS  PubMed  Google Scholar 

  • Luka J, Okano M, Thiele G. Isolation of human herpesvirus-6 from clinical specimens using human fibroblast cultures. J Clin Lab Anal. 1990;4(6):483–6.

    Article  CAS  PubMed  Google Scholar 

  • Lusso P, De Maria A, Malnati M, Lori F, DeRocco SE, Baseler M, et al. Induction of CD4 and susceptibility to HIV-1 infection in human CD8+ T lymphocytes by human herpesvirus 6. Nature. 1991;349(6309):533–5.

    Article  CAS  PubMed  Google Scholar 

  • Luttichau HR, Clark-Lewis I, Jensen PO, Moser C, Gerstoft J, Schwartz TW. A highly selective CCR2 chemokine agonist encoded by human herpesvirus 6. J Biol Chem. 2003;278(13):10928–33.

    Article  PubMed  Google Scholar 

  • Maeda T, Okuno T, Hayashi K, Nagata M, Ueda M, Terashima K, et al. Outcomes of infants whose mothers are positive for human herpesvirus-6 DNA within the genital tract in early gestation. Acta Paediatr Jpn. 1997;39(6):653–7.

    Article  CAS  PubMed  Google Scholar 

  • Mayer BT, Krantz EM, Wald A, Corey L, Casper C, Gantt S, et al. Estimating the risk of human herpesvirus 6 and cytomegalovirus transmission to Ugandan infants from viral shedding in saliva by household contacts. Viruses. 2020;12(2):171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milne RS, Mattick C, Nicholson L, Devaraj P, Alcami A, Gompels UA. RANTES binding and down-regulation by a novel human herpesvirus-6 beta chemokine receptor. J Immunol. 2000;164(5):2396–404.

    Article  CAS  PubMed  Google Scholar 

  • Miura H, Kawamura Y, Hattori F, Kozawa K, Ihira M, Ohye T, et al. Chromosomally integrated human herpesvirus 6 in the Japanese population. J Med Virol. 2018;90(10):1636–42.

    Article  CAS  PubMed  Google Scholar 

  • Miura H, Kawamura Y, Ohye T, Hattori F, Kozawa K, Ihira M, et al. Inherited chromosomally integrated human herpesvirus 6 is a risk factor for spontaneous abortion. J Infect Dis. 2021;223(10):1717–23.

    Article  CAS  PubMed  Google Scholar 

  • Mori Y. Recent topics related to human herpesvirus 6 cell tropism. Cell Microbiol. 2009;11(7):1001–6.

    Article  CAS  PubMed  Google Scholar 

  • Morissette G, Flamand L. Herpesviruses and chromosomal integration. J Virol. 2010;84(23):12100–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nacheva EP, Ward KN, Brazma D, Virgili A, Howard J, Leong HN, et al. Human herpesvirus 6 integrates within telomeric regions as evidenced by five different chromosomal sites. J Med Virol. 2008;80(11):1952–8.

    Article  PubMed  Google Scholar 

  • Nagamata S, Nagasaka M, Kawabata A, Kishimoto K, Hasegawa D, Kosaka Y, et al. Human CD134 (OX40) expressed on T cells plays a key role for human herpesvirus 6B replication after allogeneic hematopoietic stem cell transplantation. J Clin Virol. 2018;102:50–5.

    Article  CAS  PubMed  Google Scholar 

  • Nahdi I, Boukoum H, Nabil Ben Salem A, Ben Romdane F, Hammami S, Chebel S, et al. Detection of herpes simplex virus (1 and 2), varicella-zoster virus, cytomegalovirus, human herpesvirus 6 and enterovirus in immunocompetent Tunisian patients with acute neuromeningeal disorder. J Med Virol. 2012;84(2):282–9.

    Article  PubMed  Google Scholar 

  • Nakayama H, Yamazaki R, Kato J, Koda Y, Sakurai M, Abe R, et al. Human herpesvirus 6 reactivation evaluated by digital polymerase chain reaction and its association with dynamics of CD134-positive T cells after allogeneic hematopoietic stem cell transplantation. J Infect Dis. 2019;220(6):1001–7.

    Article  CAS  PubMed  Google Scholar 

  • Nastke MD, Becerra A, Yin L, Dominguez-Amorocho O, Gibson L, Stern LJ, et al. Human CD4+ T cell response to human herpesvirus 6. J Virol. 2012;86(9):4776–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neipel F, Ellinger K, Fleckenstein B. The unique region of the human herpesvirus 6 genome is essentially collinear with the UL segment of human cytomegalovirus. J Gen Virol. 1991;72(Pt 9):2293–7.

    Article  CAS  PubMed  Google Scholar 

  • Nukui M, Mori Y, Murphy EA. A human herpesvirus 6A-encoded microRNA: role in viral lytic replication. J Virol. 2015;89(5):2615–27.

    Article  PubMed  Google Scholar 

  • Ogata M, Kikuchi H, Satou T, Kawano R, Ikewaki J, Kohno K, et al. Human herpesvirus 6 DNA in plasma after allogeneic stem cell transplantation: incidence and clinical significance. J Infect Dis. 2006;193(1):68–79.

    Article  CAS  PubMed  Google Scholar 

  • Ogata M, Satou T, Kawano R, Takakura S, Goto K, Ikewaki J, et al. Correlations of HHV-6 viral load and plasma IL-6 concentration with HHV-6 encephalitis in allogeneic stem cell transplant recipients. Bone Marrow Transplant. 2010;45(1):129–36.

    Article  CAS  PubMed  Google Scholar 

  • Ogata M, Oshima K, Ikebe T, Takano K, Kanamori H, Kondo T, et al. Clinical characteristics and outcome of human herpesvirus-6 encephalitis after allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant. 2017;52(11):1563–70.

    Article  CAS  PubMed  Google Scholar 

  • Ogata M, Takano K, Moriuchi Y, Kondo T, Ueki T, Nakano N, et al. Effects of prophylactic Foscarnet on human herpesvirus-6 reactivation and encephalitis in cord blood transplant recipients: a prospective multicenter trial with an historical control group. Biol Blood Marrow Transplant. 2018;24(6):1264–73.

    Article  CAS  PubMed  Google Scholar 

  • Okuno T, Mukai T, Baba K, Ohsumi Y, Takahashi M, Yamanishi K. Outbreak of exanthem subitum in an orphanage. J Pediatr. 1991;119(5):759–61.

    Article  CAS  PubMed  Google Scholar 

  • Okuno T, Oishi H, Hayashi K, Nonogaki M, Tanaka K, Yamanishi K. Human herpesviruses 6 and 7 in cervixes of pregnant women. J Clin Microbiol. 1995;33(7):1968–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pellett PE, Ablashi DV, Ambros PF, Agut H, Caserta MT, Descamps V, et al. Chromosomally integrated human herpesvirus 6: questions and answers. Rev Med Virol. 2012;22(3):144–55.

    Article  CAS  PubMed  Google Scholar 

  • Phan TL, Lautenschlager I, Razonable RR, Munoz FM. HHV-6 in liver transplantation: a literature review. Liver Int. 2018a;38(2):210–23.

    Article  PubMed  Google Scholar 

  • Phan TL, Carlin K, Ljungman P, Politikos I, Boussiotis V, Boeckh M, et al. Human herpesvirus-6B reactivation is a risk factor for grades II to IV acute graft-versus-host disease after hematopoietic stem cell transplantation: a systematic review and meta-analysis. Biol Blood Marrow Transplant. 2018b;24(11):2324–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potenza L, Barozzi P, Torelli G, Luppi M. Translational challenges of human herpesvirus 6 chromosomal integration. Future Microbiol. 2010;5(7):993–5.

    Article  CAS  PubMed  Google Scholar 

  • Pritchett JC, Green JS, Thomm AM, Knox KK, Verneris MR, Lund TC. CD4+ T cells coexpressing CD134 (OX40) harbor significantly increased levels of human herpesvirus 6B DNA following umbilical cord blood transplantation. J Infect Dis. 2016;214(12):1911–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pruksananonda P, Hall CB, Insel RA, McIntyre K, Pellett PE, Long CE, et al. Primary human herpesvirus 6 infection in young children. N Engl J Med. 1992;326(22):1445–50.

    Article  CAS  PubMed  Google Scholar 

  • Rhoads MP, Magaret AS, Zerr DM. Family saliva sharing behaviors and age of human herpesvirus-6B infection. J Infect. 2007;54(6):623–6.

    Article  PubMed  Google Scholar 

  • Rotola A, Ravaioli T, Gonelli A, Dewhurst S, Cassai E, Di Luca D. U94 of human herpesvirus 6 is expressed in latently infected peripheral blood mononuclear cells and blocks viral gene expression in transformed lymphocytes in culture. Proc Natl Acad Sci U S A. 1998;95(23):13911–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salahuddin SZ, Ablashi DV, Markham PD, Josephs SF, Sturzenegger S, Kaplan M, et al. Isolation of a new virus, HBLV, in patients with lymphoproliferative disorders. Science. 1986;234(4776):596–601.

    Article  CAS  PubMed  Google Scholar 

  • Santoro F, Kennedy PE, Locatelli G, Malnati MS, Berger EA, Lusso P. CD46 is a cellular receptor for human herpesvirus 6. Cell. 1999;99(7):817–27.

    Article  CAS  PubMed  Google Scholar 

  • Santoro F, Greenstone HL, Insinga A, Liszewski MK, Atkinson JP, Lusso P, et al. Interaction of glycoprotein H of human herpesvirus 6 with the cellular receptor CD46. J Biol Chem. 2003;278(28):25964–9.

    Article  CAS  PubMed  Google Scholar 

  • Secchiero P, Carrigan DR, Asano Y, Benedetti L, Crowley RW, Komaroff AL, et al. Detection of human herpesvirus 6 in plasma of children with primary infection and immunosuppressed patients by polymerase chain reaction. J Infect Dis. 1995;171(2):273–80.

    Article  CAS  PubMed  Google Scholar 

  • Sedlak RH, Hill JA, Nguyen T, Cho M, Levin G, Cook L, et al. Detection of human herpesvirus 6B (HHV-6B) reactivation in hematopoietic cell transplant recipients with inherited chromosomally integrated HHV-6A by droplet digital PCR. J Clin Microbiol. 2016;54(5):1223–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simmons A, Demmrich Y, La Vista A, Smith K. Replication of human herpesvirus 6 in epithelial cells in vitro. J Infect Dis. 1992;166(1):202–5.

    Article  CAS  PubMed  Google Scholar 

  • Suga S, Yoshikawa T, Asano Y, Yazaki T, Ozaki T. Neutralizing antibody assay for human herpesvirus-6. J Med Virol. 1990;30(1):14–9.

    Article  CAS  PubMed  Google Scholar 

  • Suga S, Suzuki K, Ihira M, Yoshikawa T, Kajita Y, Ozaki T, et al. Clinical characteristics of febrile convulsions during primary HHV-6 infection. Arch Dis Child. 2000;82(1):62–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sullivan BM, Coscoy L. Downregulation of the T-cell receptor complex and impairment of T-cell activation by human herpesvirus 6 u24 protein. J Virol. 2008;82(2):602–8.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Sonoda S, Higashi K, Kondo T, Takahashi H, Takahashi M, et al. Predominant CD4 T-lymphocyte tropism of human herpesvirus 6-related virus. J Virol. 1989;63(7):3161–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi K, Segal E, Kondo T, Mukai T, Moriyama M, Takahashi M, et al. Interferon and natural killer cell activity in patients with exanthem subitum. Pediatr Infect Dis J. 1992;11(5):369–73.

    Article  CAS  PubMed  Google Scholar 

  • Takemoto M, Imasawa T, Yamanishi K, Mori Y. Role of dendritic cells infected with human herpesvirus 6 in virus transmission to CD4(+) T cells. Virology. 2009;385(2):294–302.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka-Taya K, Sashihara J, Kurahashi H, Amo K, Miyagawa H, Kondo K, et al. Human herpesvirus 6 (HHV-6) is transmitted from parent to child in an integrated form and characterization of cases with chromosomally integrated HHV-6 DNA. J Med Virol. 2004;73(3):465–73.

    Article  PubMed  Google Scholar 

  • Tang H, Serada S, Kawabata A, Ota M, Hayashi E, Naka T, et al. CD134 is a cellular receptor specific for human herpesvirus-6B entry. Proc Natl Acad Sci U S A. 2013;110(22):9096–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thader-Voigt A, Jacobs E, Lehmann W, Bandt D. Development of a microwell adapted immunoblot system with recombinant antigens for distinguishing human herpesvirus (HHV)6A and HHV6B and detection of human cytomegalovirus. Clin Chem Lab Med. 2011;49(11):1891–8.

    Article  PubMed  Google Scholar 

  • Theodore WH, Epstein L, Gaillard WD, Shinnar S, Wainwright MS, Jacobson S. Human herpes virus 6B: a possible role in epilepsy? Epilepsia. 2008;49(11):1828–37.

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomson BJ, Efstathiou S, Honess RW. Acquisition of the human adeno-associated virus type-2 rep gene by human herpesvirus type-6. Nature. 1991;351(6321):78–80.

    Article  CAS  PubMed  Google Scholar 

  • Thomson BJ, Weindler FW, Gray D, Schwaab V, Heilbronn R. Human herpesvirus 6 (HHV-6) is a helper virus for adeno-associated virus type 2 (AAV-2) and the AAV-2 rep gene homologue in HHV-6 can mediate AAV-2 DNA replication and regulate gene expression. Virology. 1994;204(1):304–11.

    Article  CAS  PubMed  Google Scholar 

  • Toomey D, Phan TL, Nguyen V, Phan TT, Ogata M. Retrospective case analysis of antiviral therapies for HHV-6 encephalitis after hematopoietic stem cell transplantation. Transpl Infect Dis. 2021;23(1):e13443.

    Article  CAS  PubMed  Google Scholar 

  • Tuddenham L, Jung JS, Chane-Woon-Ming B, Dölken L, Pfeffer S. Small RNA deep sequencing identifies microRNAs and other small noncoding RNAs from human herpesvirus 6B. J Virol. 2012;86(3):1638–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Loon NM, Gummuluru S, Sherwood DJ, Marentes R, Hall CB, Dewhurst S. Direct sequence analysis of human herpesvirus 6 (HHV-6) sequences from infants and comparison of HHV-6 sequences from mother/infant pairs. Clin Infect Dis. 1995;21(4):1017–9.

    Article  PubMed  Google Scholar 

  • Vellucci A, Leibovitch EC, Jacobson S. Using droplet digital PCR to detect coinfection of human herpesviruses 6A and 6B (HHV-6A and HHV-6B) in clinical samples. Methods Mol Biol. 2018;1768:99–109.

    Article  CAS  PubMed  Google Scholar 

  • Wainwright MS, Martin PL, Morse RP, Lacaze M, Provenzale JM, Coleman RE, et al. Human herpesvirus 6 limbic encephalitis after stem cell transplantation. Ann Neurol. 2001;50(5):612–9.

    Article  CAS  PubMed  Google Scholar 

  • Ward KN. The natural history and laboratory diagnosis of human herpesviruses-6 and -7 infections in the immunocompetent. J Clin Virol. 2005;32(3):183–93.

    Article  CAS  PubMed  Google Scholar 

  • Ward KN, Andrews NJ, Verity CM, Miller E, Ross EM. Human herpesviruses-6 and -7 each cause significant neurological morbidity in Britain and Ireland. Arch Dis Child. 2005;90(6):619–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward KN, Leong HN, Nacheva EP, Howard J, Atkinson CE, Davies NW, et al. Human herpesvirus 6 chromosomal integration in immunocompetent patients results in high levels of viral DNA in blood, sera, and hair follicles. J Clin Microbiol. 2006;44(4):1571–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whyte ML, Smith KA, Buchberger A, Berg Luecke L, Tjan LH, Mori Y, et al. The Roseoloviruses downregulate the protein tyrosine phosphatase PTPRC (CD45). J Virol. 2021;95(14):e0162820.

    Article  PubMed  Google Scholar 

  • Yamane A, Mori T, Suzuki S, Mihara A, Yamazaki R, Aisa Y, et al. Risk factors for develo** human herpesvirus 6 (HHV-6) reactivation after allogeneic hematopoietic stem cell transplantation and its association with central nervous system disorders. Biol Blood Marrow Transplant. 2007;13(1):100–6.

    Article  CAS  PubMed  Google Scholar 

  • Yamanishi KYM, Pellett P. Human herpesviruses 6 and 7. In: Knipe DHP, Griffin D, Lamb R, Martin M, editors. Fields virology. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2007. p. 2819–45.

    Google Scholar 

  • Yamanishi K, Okuno T, Shiraki K, Takahashi M, Kondo T, Asano Y, et al. Identification of human herpesvirus-6 as a causal agent for exanthem subitum. Lancet. 1988;1(8594):1065–7.

    Article  CAS  PubMed  Google Scholar 

  • Yang CH, Sahoo MK, Fitzpatrick M, Lau AH, Pinsky BA, Martinez OM. Evaluating for human herpesvirus 6 in the liver explants of children with liver failure of unknown etiology. J Infect Dis. 2019;220(3):361–9.

    Article  PubMed  Google Scholar 

  • Yasukawa M, Inoue Y, Ohminami H, Terada K, Fujita S. Apoptosis of CD4+ T lymphocytes in human herpesvirus-6 infection. J Gen Virol. 1998;79(Pt 1):143–7.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida M, Torigoe S, Ikeue K, Yamada M. Neutralizing antibody responses to human herpesviruses 6 and 7 do not cross-react with each other, and maternal neutralizing antibodies contribute to sequential infection with these viruses in childhood. Clin Diagn Lab Immunol. 2002a;9(2):388–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida M, Torigoe S, Yamada M. Elucidation of the cross-reactive immunoglobulin M response to human herpesviruses 6 and 7 on the basis of neutralizing antibodies. Clin Diagn Lab Immunol. 2002b;9(2):394–402.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshikawa T, Nakashima T, Suga S, Asano Y, Yazaki T, Kimura H, et al. Human herpesvirus-6 DNA in cerebrospinal fluid of a child with exanthem subitum and meningoencephalitis. Pediatrics. 1992;89(5 Pt 1):888–90.

    CAS  PubMed  Google Scholar 

  • Yoshikawa T, Black JB, Ihira M, Suzuki K, Suga S, Iida K, et al. Comparison of specific serological assays for diagnosing human herpesvirus 6 infection after liver transplantation. Clin Diagn Lab Immunol. 2001;8(1):170–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshikawa T, Ohashi M, Miyake F, Fujita A, Usui C, Sugata K, et al. Exanthem subitum-associated encephalitis: nationwide survey in Japan. Pediatr Neurol. 2009;41(5):353–8.

    Article  PubMed  Google Scholar 

  • Yoshikawa T, Kato Y, Ihira M, Nishimura N, Ozaki T, Kumagai T, et al. Kinetics of cytokine and chemokine responses in patients with primary human herpesvirus 6 infection. J Clin Virol. 2011;50(1):65–8.

    Article  CAS  PubMed  Google Scholar 

  • Zahorsky J. Roseola infantilis. Pediatrics. 1910;22:60–4.

    Google Scholar 

  • Zerr DM, Gupta D, Huang ML, Carter R, Corey L. Effect of antivirals on human herpesvirus 6 replication in hematopoietic stem cell transplant recipients. Clin Infect Dis. 2002;34(3):309–17.

    Article  CAS  PubMed  Google Scholar 

  • Zerr DM, Meier AS, Selke SS, Frenkel LM, Huang ML, Wald A, et al. A population-based study of primary human herpesvirus 6 infection. N Engl J Med. 2005;352(8):768–76.

    Article  CAS  PubMed  Google Scholar 

  • Zou P, Isegawa Y, Nakano K, Haque M, Horiguchi Y, Yamanishi K. Human herpesvirus 6 open reading frame U83 encodes a functional chemokine. J Virol. 1999;73(7):5926–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brenda L. Tesini .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Tesini, B.L., Caserta, M.T. (2023). Human Herpesviruses: Human Herpesvirus 6. In: Kaslow, R.A., Stanberry, L.R., Powers, A.M. (eds) Viral Infections of Humans. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9544-8_37-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9544-8_37-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-9544-8

  • Online ISBN: 978-1-4939-9544-8

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Navigation