α-Amidated Peptides: Approaches for Analysis

  • Protocol
  • First Online:
Post-Translational Modification of Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1934))

  • 1537 Accesses

Abstract

α-Amidation is a terminal modification in peptide biosynthesis that can itself be rate limiting in the overall production of bioactive α-amidated peptides. More than half of the known neural and endocrine peptides are α-amidated and in most cases this structural feature is essential for receptor recognition, signal transduction, and thus biologic function. This chapter describes methods for develo** and using analytical tools to study the biology of α-amidated peptides. The principal analytical method used to quantify α-amidated peptides is the radioimmunoassay (RIA). Detailed protocols are provided for (1) primary antibody production and characterization; (2) radiolabeling of RIA peptides; (3) sample preparation; and (4) performance of the RIA itself. Techniques are also described for the identification and verification of α-amidated peptides. Lastly, in vivo models used for studying the biology of α-amidation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Czyzyk TA, Ning Y, Hsu MS et al (2005) Deletion of peptide amidation enzymatic activity leads to edema and embryonic lethality in the mouse. Dev Biol 287:301–313

    Article  CAS  Google Scholar 

  2. Eipper B, Stoffers D, Mains R (1992) The biosynthesis of neuropeptides: peptide α-amidation. Annu Rev Neurosci 15:57–85

    Article  CAS  Google Scholar 

  3. Tsubaki M, Terashima I, Kamata K, Koga A (2013) C-terminal modification of monoclonal antibody drugs: amidated species as a general product-related substance. Int J Biol Macromol 52:139–147

    Article  CAS  Google Scholar 

  4. Itoh S (2006) Mononuclear copper active-oxygen complexes. Curr Opin Chem Biol 10:115–122

    Article  CAS  Google Scholar 

  5. Prigge ST, Mains RE, Eipper BA, Amzel LM (2000) New insights into copper monooxygenases and peptide amidation: structure, mechanism and function. Cell Mol Life Sci 57:1236–1259

    Article  CAS  Google Scholar 

  6. Klinman JP (2006) The copper-enzyme family of dopamine beta-monooxygenase and peptidylglycine alpha-hydroxylating monooxygenase: resolving the chemical pathway for substrate hydroxylation. J Biol Chem 281:3013–3016

    Article  CAS  Google Scholar 

  7. Kulathilia R, Merkler KA, Merkler DJ (1999) Enzymatic formation of C-terminal amides. Nat Prod Rep 16:145–154

    Article  Google Scholar 

  8. An Z, Chen Y, Koomen JM, Merkler DJ (2012) A mass spectrometry-based method to screen for α-amidated peptides. Proteomics 12:173–182

    Article  CAS  Google Scholar 

  9. Driscoll WJ, Mueller SA, Eipper BA, Mueller GP (1999) Differential regulation of peptide α-amidation by dexamethasone and disulfiram. Mol Pharm 55:1067–1076

    Article  CAS  Google Scholar 

  10. Gstaiger M, Aebersold R (2009) Applying mass spectrometry-based proteomics to genetics, genomics and network biology. Nat Rev Genet 10:617–627

    Article  CAS  Google Scholar 

  11. Walther TC, Mann M (2010) Mass spectrometry-based proteomics in cell biology. J Cell Biol 190:491–500

    Article  CAS  Google Scholar 

  12. Gundry RL, White MY, Murray CI et al (2009) Preparation of proteins and peptides for mass spectrometry analysis in a bottom-up proteomics workflow. Curr Protoc Mol Biol Chapter 10:Unit 10.25

    Google Scholar 

  13. Mueller GP, Driscoll WJ, Eipper BA (1999) In vivo inhibition of peptidylglycine-α-hydroxylating monooxygenase by 4-phenyl-3-butenoic acid. J Pharmacol Exp Ther 290:1331–1336

    CAS  PubMed  Google Scholar 

  14. Mueller G, Husten E, Mains R, Eipper B (1993) Peptide α-amidation and peptidylglycine-α-hydroxylating monooxygenase: control by disulfiram. Mol Pharm 44:972–980

    CAS  Google Scholar 

  15. Kolhekar AS, Roberts MS, Jiang N et al (1997) Neuropeptide amidation in Drosophila: separate genes encode the two enzymes catalyzing amidation. J Neurosci 17:1363–1376

    Article  CAS  Google Scholar 

  16. Kuo YM, Zhou B, Cosco D, Gitschier J (2001) The copper transporter CTR1 provides an essential function in mammalian embryonic development. Proc Natl Acad Sci U S A 98:6836–6841

    Article  CAS  Google Scholar 

  17. Steveson TC, Ciccotosto GD, Ma XM et al (2003) Menkes protein contributes to the function of peptidylglycine alpha-amidating monooxygenase. Endocrinology 144:188–200

    Article  CAS  Google Scholar 

  18. Shiosaka S, Kiyama H, Wanaka A, Toyama M (1986) A new method for producing a specific and high titer antibody against glutamate using colloidal gold as carrier. Brain Res 382:399–403

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory P. Mueller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mueller, G.P., Lazarus, R.C., Driscoll, W.J. (2019). α-Amidated Peptides: Approaches for Analysis. In: Kannicht, C. (eds) Post-Translational Modification of Proteins. Methods in Molecular Biology, vol 1934. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9055-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9055-9_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9053-5

  • Online ISBN: 978-1-4939-9055-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation