Use of Superfused Synaptosomes to Understand the Role of Receptor–Receptor Interactions as Integrative Mechanisms in Nerve Terminals from Selected Brain Region

  • Protocol
  • First Online:
Receptor-Receptor Interactions in the Central Nervous System

Abstract

Synaptosomes are sealed presynaptic nerve terminals obtained by homogenizing selected brain regions under iso-osmotic conditions. This preparation has been extensively used to study the mechanism of neurotransmitter release in vitro because they preserve the biochemical, morphological, and electrophysiological properties of the synapse. This allows an unequivocal interpretation of results obtained under accurately specified experimental conditions. By using superfused synaptosome technique, it is possible to individuate the co-localization of different receptors on the same nerve endings and the presence of synergistic/antagonistic interactions between them. The latter opportunity renders superfused synaptosome technique particularly suitable to understand the functional role of receptor–receptor interactions at the presynaptic level.

This chapter is mainly focused on a general description of the technique and on its application to investigate the functional relevance of receptor–receptor interactions in regulating neurotransmitter release from selected brain region nerve terminals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gray EG, Whittaker VP (1960) The isolation of synaptic vesicles from the central nervous system. J Physiol 153:35–37

    Article  Google Scholar 

  2. Gray EG, Whittaker VP (1962) The isolation of nerve endings from brain: an electron microscopic study of cell fragments derived by homogenisation and centrifugation. J Anat 96:82–83

    Google Scholar 

  3. Whittaker VP (1993) Thirty years of synaptosome research. J Neurocytol 22:735–742

    Article  CAS  PubMed  Google Scholar 

  4. Breukel AIM, Besselsen E, Ghijsen WEJM (1997) Synaptosomes: a model system to study release of multiple classes of transmitters. Methods Mol Biol 72:33–47

    PubMed  CAS  Google Scholar 

  5. Raiteri M, Angelini F, Levi G (1974) A simple apparatus for studying the release of neurotransmitter from synaptosomes. Eur J Pharmacol 25:411–414

    Article  CAS  PubMed  Google Scholar 

  6. Raiteri L, Raiteri M (2000) Synaptosomes still viable after 25 years of superfusion. Neurochem Res 25:1265–1274

    Article  CAS  PubMed  Google Scholar 

  7. Pittaluga A (2016) Presynaptic release-regulating mGlu1 receptors in central nervous system. Front Pharmacol 7:295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Middlemiss DN (1988) Receptor-mediated control of neurotransmitter release from brain slices or synaptosomes. Trends Pharmacol Sci 9:83–84

    Article  CAS  PubMed  Google Scholar 

  9. Ghijsen WE, Leenders AG, Lopes da Silva FH (2003) Regulation of vesicle traffic and neurotransmitter release in isolated nerve terminals. Neurochem Res 28:1443–1452

    Article  CAS  PubMed  Google Scholar 

  10. Kamat PK, Kalani A, Tyagi N (2014) Method and validation of synaptosomal preparation for isolation of synaptic membrane proteins from rat brain. MethodsX 1:102–107

    Article  PubMed  PubMed Central  Google Scholar 

  11. Fontana G, Blaustein MP (1993) Calcium buffering and free Ca2+ in rat brain synaptosomes. J Neurochem 60:843–850

    Article  CAS  PubMed  Google Scholar 

  12. Marchi M, Grilli M, Pittaluga AM (2015) Nicotinic modulation of glutamate receptor function at nerve terminal level: a fine-tuning of synaptic signals. Front Pharmacol 29:6–89

    Google Scholar 

  13. Nagy A, Delgado-Escueta AV (1984) Rapid preparation of synaptosomes from mammalian brain using nontoxic isosmotic gradient material (Percoll). J Neurochem 43:1114–1123

    Article  CAS  PubMed  Google Scholar 

  14. Dunkley PR, Jarvie PE, Robinson PJ (2008) A rapid Percoll gradient procedure for preparation of synaptosomes. Nat Protoc 3:1718–1728

    Article  CAS  PubMed  Google Scholar 

  15. Garcia-Sanz A, Badia A, Clos MV (2001) Superfusion of synaptosomes to study presynaptic mechanisms involved in neurotransmitter release from rat brain. Brain Res Brain Res Protoc 7:94–102

    Article  CAS  PubMed  Google Scholar 

  16. Galván E, Sitges M (2004) Characterization of the participation of sodium channels on the rise in Na+-induced by 4-aminopyridine (4-AP) in synaptosomes. Neurochem Res 29:347–355

    Article  PubMed  Google Scholar 

  17. Haberland N, Hetey L (1987) Studies in postmortem dopamine uptake. II Alterations of the synaptosomal catecholamine uptake in postmortem brain regions in schizophrenia. J Neural Transm 68:303–313

    Article  CAS  PubMed  Google Scholar 

  18. Ferraro L, Tanganelli S, Caló G et al (1993) Noradrenergic modulation of gamma-aminobutyric acid outflow from the human cerebral cortex. Brain Res 629:103–108

    Article  CAS  PubMed  Google Scholar 

  19. Postupna NO, Keene CD, Latimer C et al (2014) Flow cytometry analysis of synaptosomes from post-mortem human brain reveals changes specific to Lewy body and Alzheimer’s disease. Lab Investig 94:1161–1172

    Article  CAS  PubMed  Google Scholar 

  20. Jhou JF, Tai HC (2017) The study of postmortem human synaptosomes for understanding Alzheimer’s disease and other neurological disorders: a review. Neurol Ther 6(Suppl 1):57–68

    Article  PubMed  PubMed Central  Google Scholar 

  21. Dodd PR, Hardy JA, Baig EB, Kidd AM, Bird ED, Watson WE, Johnston GA (1986) Optimization of freezing, storage, and thawing conditions for the preparation of metabolically active synaptosomes from frozen rat and human brain. Neurochem Pathol 4:177–198

    Article  CAS  PubMed  Google Scholar 

  22. Valtier D, Dement WC, Mignot E (1992) Monoaminergic uptake in synaptosomes prepared from frozen brain tissue samples of normal and narcoleptic canines. Brain Res 588:115–119

    Article  CAS  PubMed  Google Scholar 

  23. Gleitz J, Beile A, Wilffert B, Tegtmeier F (1993) Cryopreservation of freshly isolated synaptosomes prepared from the cerebral cortex of rats. J Neurosci Methods 47:191–197

    Article  CAS  PubMed  Google Scholar 

  24. Dunkley PR, Jarvie PE, Heath JW et al (1986) A rapid method for isolation of synaptosomes on Percoll gradient. Brain Res 372:115–129

    Article  CAS  PubMed  Google Scholar 

  25. López-Pérez MJ (1994) Preparation of synaptosomes and mitochondria from mammalian brain. Methods Enzymol 228:403–411

    Article  PubMed  Google Scholar 

  26. Evans GJ (2015) Subcellular fractionation of the brain: preparation of synaptosomes and synaptic vesicles. Cold Spring Harb Protoc 2015:462–466

    PubMed  Google Scholar 

  27. Musante V, Summa M, Cunha RA et al (2011) Pre-synaptic glycine GlyT1 transporter–NMDA receptor interaction: relevance to NMDA autoreceptor activation in the presence of Mg2+ ions. J Neurochem 117:516–527

    Article  CAS  PubMed  Google Scholar 

  28. Beggiato S, Borelli AC, Borroto-Escuela D et al (2017) Cocaine modulates allosteric D2-σ1 receptor-receptor interactions on dopamine and glutamate nerve terminals from rat striatum. Cell Signal 40:116–124

    Article  CAS  PubMed  Google Scholar 

  29. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  30. Chiodi V, Uchigashima M, Beggiato S et al (2012) Unbalance of CB1 receptors expressed in GABAergic and glutamatergic neurons in a transgenic mouse model of Huntington’s disease. Neurobiol Dis 45:983–991

    Article  CAS  PubMed  Google Scholar 

  31. Ferraro L, Tanganelli S, Fuxe K et al (2001) Modafinil does not affect serotonin efflux from rat frontal cortex synaptosomes: comparison with known serotonergic drugs. Brain Res 894:307–310

    Article  CAS  PubMed  Google Scholar 

  32. Fuxe K, Borroto-Escuela DO (2016) Heteroreceptor complexes and their allosteric receptor-receptor interactions as a novel biological principle for integration of communication in the CNS: targets for drug development. Neuropsychopharmacology 41:380–382

    Article  CAS  PubMed  Google Scholar 

  33. Grilli M, Summa M, Salamone A et al (2012) In vitro exposure to nicotine induces endocytosis of presynaptic AMPA receptors modulating dopamine release in rat nucleus accumbens nerve terminals. Neuropharmacology 63:916–926

    Article  CAS  PubMed  Google Scholar 

  34. Chiodi V, Ferrante A, Ferraro L et al (2016) Striatal adenosine-cannabinoid receptor interactions in rats over-expressing adenosine A2A receptors. J Neurochem 136:907–917

    Article  CAS  PubMed  Google Scholar 

  35. Morató X, Luján R, López-Cano M et al (2017) The Parkinson’s disease-associated GPR37 receptor interacts with striatal adenosine A2A receptor controlling its cell surface expression and function in vivo. Sci Rep 7:9452

    Article  PubMed  PubMed Central  Google Scholar 

  36. Maurice T, Martin-Fardon R, Romieu P et al (2002) Sigma(1) receptor antagonists represent a new strategy against cocaine addiction and toxicity. Neurosci Biobehav Rev 26:499–527

    Article  CAS  PubMed  Google Scholar 

  37. Matsumoto RR, Nguyen L, Kaushal N et al (2014) Sigma (σ) receptors as potential therapeutic targets to mitigate psychostimulant effects. Adv Pharmacol 69(2014):323–386

    Article  CAS  PubMed  Google Scholar 

  38. Alonso G, Phan V, Guillemain I et al (2000) Immunocytochemical localization of the sigma(1) receptor in the adult rat central nervous system. Neuroscience 97:155–170

    Article  CAS  PubMed  Google Scholar 

  39. Navarro G, Moreno E, Bonaventura J et al (2013) Cocaine inhibits dopamine D2 receptor signaling via sigma-1-D2 receptor heteromers. PLoS One 8:e61245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Genedani S, Carone C, Guidolin D et al (2010) Differential sensitivity of A2A and especially D2 receptor trafficking to cocaine compared with lipid rafts in cotransfected CHO cell lines. Novel actions of cocaine independent of the DA transporter. J Mol Neurosci 4:347–357

    Article  CAS  Google Scholar 

  41. Ferraro L, Frankowska M, Marcellino D et al (2012) A novel mechanism of cocaine to enhance dopamine d2-like receptor mediated neurochemical and behavioral effects. An in vivo and in vitro study. Neuropsychopharmacology 37:856–1866

    Article  CAS  Google Scholar 

  42. Guidolin D, Agnati LF, Marcoli M et al (2015) G-protein-coupled receptor type A heteromers as an emerging therapeutic target. Expert Opin Ther Targets 19:265–283

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Ferraro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Beggiato, S. et al. (2018). Use of Superfused Synaptosomes to Understand the Role of Receptor–Receptor Interactions as Integrative Mechanisms in Nerve Terminals from Selected Brain Region. In: FUXE, K., Borroto-Escuela, D. (eds) Receptor-Receptor Interactions in the Central Nervous System. Neuromethods, vol 140. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8576-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8576-0_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8575-3

  • Online ISBN: 978-1-4939-8576-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation