Chickpea

  • Chapter
  • First Online:
Grain Legumes

Part of the book series: Handbook of Plant Breeding ((HBPB,volume 10))

  • 2806 Accesses

Abstract

Chickpea is a food grain legume with a continuous increasing global demand during the past years. The exceptional nutritional characteristics make this crop a high-quality source of protein for people in develo** countries and nutraceutical food in developed ones. Moreover, chickpea cultivation has low water requirement and, as other legumes, improves soil characteristics being recommendable for a sustainable agriculture. Most of the breeding programmes in progress are focused on the two main biotic stresses affecting the productivity: Fusarium wilt and Ascochyta blight. In addition, pod bored, botrytis grey mould or rust is being studied. Regarding abiotic stresses, the most important are drought and cold tolerance. In the past 20 years, conventional breeding programmes allowed the development of new cultivars reaching considerable yields. However, the application of genomics technologies is required in order to speed up the new cultivar development. Marker-assisted selection is starting to be used in breeding programmes for selecting favourable alleles. The integration of genetic maps and whole-genome sequence information opens a promising future to obtain new varieties better adapted to new climatic conditions and with enhanced productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 192.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 246.09
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 246.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbo S, Shtienberg D, Lichtenzveig J et al (2003) The chickpea, summer crop**, and a new model for pulse domestication in the ancient near east. Quart Rev Biol 78:435–448

    Article  PubMed  Google Scholar 

  • Acharjee S, Sarmah BK (2013) Biotechnologically generating ‘super chickpea’ for food and nutritional security. Plant Sci 207:108–116

    Article  CAS  PubMed  Google Scholar 

  • Akram A, Iqbal SM, Rauf CA et al (2008) Detection of resistant sources for collar rot disease in chickpea germplasm. Pakistan J Bot 40:2211–2215

    Google Scholar 

  • Amri M, Mlayeh O, Kharrat M (2009) Pathogenicity of different broomrape populations on five host plant species. In: Proc of the 10th world congress of parasitic plants, international parasitic plant society kusadasi, Turkey, 8–12 June, p 63

    Google Scholar 

  • Anbessa Y, Taran B, Warkentin TD et al (2009) Genetic analyses and conservation of QTL for Ascochyta blight resistance in chickpea (Cicer arietinum L.). Theor Appl Genet 119:757–765

    Article  CAS  PubMed  Google Scholar 

  • Anuradha C, Gaur P, Pande S et al (2011) Map** QTL for resistance to botrytis grey mould in chickpea. Euphytica 182:1–9

    Article  CAS  Google Scholar 

  • Berger JD, Turner NC (2007) The ecology of chickpea. In: Yadav SS, Redden R, Chen W, Sharma B (eds) Chickpea breeding and management. CABI, Wallingford, pp 47–71

    Chapter  Google Scholar 

  • Berrada AF, Shivakumar BG, Yaduraju NT (2007) Chickpea in crop** systems. In: Yadav SS, Redden R, Chen W et al (eds) Chickpea breeding and management. CABI, Wallingford, pp 193–212

    Chapter  Google Scholar 

  • Bhardwaj R, Sandhu JS, Kaur L et al (2010) Genetics of Ascochyta blight resistance in chickpea. Euphytica 171:337–343

    Article  Google Scholar 

  • Bouhadida M, Benjannet R, Madrid E et al (2013) Efficiency of marker-assisted selection in detection of Ascochyta blight resistance in Tunisian chickpea breeding lines. Phytopathol Mediterr 52:202–211

    CAS  Google Scholar 

  • Cancy H, Toker C (2009) Evaluation of yield criteria for drought and heat resistance in chickpea (Cicer arietinum L.). J Agron Crop Sci 195:47–54

    Article  Google Scholar 

  • Castro P, Piston F, Madrid E et al (2010) Development of chickpea near-isogenic lines for Fusarium wilt. Theor Appl Genet 121:1519–1526

    Article  CAS  PubMed  Google Scholar 

  • Castro P, Rubio J, Millán T et al (2012a) Fusarium wilt in chickpea: general aspect and molecular breeding. In: Ferrari Rios T, Reyes E (eds) Fusarium epidemiology, environmental sources and prevention. Nova Sci, Hauppauge, pp 101–122

    Google Scholar 

  • Castro P, Román B, Rubio J et al (2012b) Selection of reference genes for expression studies in Cicer arietinum L.: analysis of cyp81E3 gene expression against Ascochyta rabiei. Mol Breed 29:261–274

    Article  Google Scholar 

  • Castro P, Rubio J, Madrid E et al (2013) Efficiency of marker-assisted selection for Ascochyta blight in chickpea. J Agr Sci. doi:10.1017/S0021859613000865

    Google Scholar 

  • Chen W, Coyne CJ, Peever TL et al (2004) Characterization of chickpea differentials for pathogenicity assay of Ascochyta blight and identification of chickpea accessions resistant to Didymella rabiei. Plant Pathol 53:759–769

    Article  Google Scholar 

  • Chen W, Sharma HC, Muehlbauer F (2011) Compendium of chickpea and lentil diseases and pests. The American Phytopatologist Society (APS), St. Paul

    Google Scholar 

  • Chen W, Dugan FM, McGee R (2014) First report of dodder (Cuscuta pentagona) on chickpea (Cicer arietinum) in the United States. Plant Dis 98:165

    Article  Google Scholar 

  • Cho S, Kumar J, Shultz J et al (2002) Map** genes for double podding and other morphological traits in chickpea. Euphytica 128:285–292

    Article  CAS  Google Scholar 

  • Choudhary S, Sethy NK, Shokeen B et al (2006) Development of sequence-tagged microsatellite site markers for chickpea (Cicer arietinum L.). Mol Ecol Notes 6:93–95

    Article  CAS  Google Scholar 

  • Choudhary S, Gaur R, Gupta S et al (2012) EST-derived genic molecular markers: development and utilization for generating an advanced transcript map of chickpea. Theor Appl Genet 124:1449–62

    Article  CAS  PubMed  Google Scholar 

  • Clarke HJ, Siddique KHM, Khan TN (2005) Chickpea improvement in Southern Australia: breeding for tolerance to chilling at flowering. Indian J Pulses Res 18:1–8

    Google Scholar 

  • Cobos MJ, Fernández MJ, Rubio J et al (2005) A linkage map of chickpea (Cicer arietinum L.) based on populations from Kabuli × Desi crosses: location of genes for resistance to Fusarium wilt race 0. Theor Appl Genet 110:1347–1353

    Article  CAS  PubMed  Google Scholar 

  • Cobos MJ, Rubio J, Fernández-Romero MD et al (2007) Genetic analysis of seed size, yield and days to flowering in a chickpea recombinant inbred line population derived from a Kabuli × Desi cross. Ann Appl Biol 151:33–42

    Article  CAS  Google Scholar 

  • Cobos MJ, Winter P, Kharrat M et al (2009) Genetic analysis of agronomic traits in a wide cross of chickpea. Field Crops Res 111:130–136

    Article  Google Scholar 

  • Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Phil Trans R Soc B 363:557–572

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Coram TE, Pang ECK (2005a) Isolation and analysis of candidate Ascochyta blight defence genes in chickpea. Part I. Generation and analysis of an expressed sequence tag (EST) library. Physiol Mol Plant Pathol 66:192–200

    Article  CAS  Google Scholar 

  • Coram TE, Pang ECK (2005b) Isolation and analysis of candidate Ascochyta blight defence genes in chickpea. Part II. Microarray expression analysis of putative defence-related ESTs. Physiol Mol Plant Pathol 66:201–210

    Article  CAS  Google Scholar 

  • Coram TE, Pang ECK (2006) Expression profiling of chickpea genes differentially regulated during a resistance response to Ascochyta rabiei. Plant Biotechnol J 4:647–666

    Article  CAS  PubMed  Google Scholar 

  • Croser JS, Clarke HJ, Siddique KHM et al (2003) Low temperature stress: implications for chickpea (Cicer arietinum L.) improvement. Crit Rev Plant Sci 22:185–219

    Article  Google Scholar 

  • Derveaux S, Vandesompele J, Hellemans J (2010) How to do successful gene expression analysis using real-time PCR. Methods 50:227–230

    Article  CAS  PubMed  Google Scholar 

  • Díaz-Franco A, Pérez-García P (1995) Control químico de la roya y la rabia del garbanzo y su influencia en el rendimiento de grano. Rev Mex Fitopatol 13:123–125

    Google Scholar 

  • Faostat (2014) http://faostat.fao.org/. Accessed Oct 2014

  • Farshadfar M, Farshadfar E (2008) Genetic variability and path analysis of chickpea (Cicer arietinum L.) Landraces and Lines. J Appld Sci 8:3951–3956

    Article  Google Scholar 

  • Fikre A (2014) An overview of chickpea improvement research program in Ethiopia. Legume Perspect 3:47–49

    Google Scholar 

  • Gaur PM, Slinkard AE (1990) Genetic control and linkage relations of additional isozyme markers in chick-pea. Theor Appl Genet 80:648–656

    Article  CAS  PubMed  Google Scholar 

  • Gaur PM, Pande S, Upadhyaya HD et al (2006) Extra-large kabuli chickpea with high resistance to Fusarium wilt. Chickpea Pigeonpea Newsl 13:5–7

    Google Scholar 

  • Gaur PM, Gowda CLL, Knights EJ et al (2007) Breeding achievements. In: Yadav SS, Redden R, Chen W, Sharma B (eds) Chickpea breeding and management. CABI, Wallingford, pp 391–416

    Chapter  Google Scholar 

  • Gaur PM, Krishnamurthy L, Kashiwagi J (2008) Improving drought-avoidance root traits inchickpea (Cicer arietinum L.): current status of research at ICRISAT. Plant Prod Sci 11:3–11

    Article  Google Scholar 

  • Gaur PM, Tripathi S, Gowda CLL et al (2010) Chickpea seed production manual. ICRISAT, Patancheru

    Google Scholar 

  • Gaur PM, Jukanti AK, Varshney RK (2012) Impact of genomic technologies on chickpea breeding strategies. Agron 2:199–221

    Article  Google Scholar 

  • Gil J, Cubero JI (1993) Inheritance of seed coat thickness in chickpea (Cicer arietinum L.) and its evolutionary implications. Plant Breeding 111:257–260

    Article  Google Scholar 

  • Gil J, Nadal S, Luna D et al (1996) Variability for some physico-chemical characters in desi and kabuli chickpea types. J Sci Food Agr 71:179–184

    Article  CAS  Google Scholar 

  • Goldwasser Y, Miranda Sazo MR, Lanini WT (2012a) Control of field dodder (Cuscuta campestris) parasitizing tomato with ALS-inhibiting herbicides. Weed Technol 26:740–746

    Article  CAS  Google Scholar 

  • Goldwasser Y, Miryamchik H, Sibony M et al (2012b) Detection of resistant chickpea (Cicer arietinum) genotypes to Cuscuta campestris (field dodder). Weed Res 52:122–130

    Article  Google Scholar 

  • Gowda SJM, Radhika P, Kadoo NY et al (2009) Molecular map** of wilt resistance genes in chickpea. Mol Breeding 24:177–183

    Article  CAS  Google Scholar 

  • Gowda SJM, Radhika P, Mhase LB et al (2011) Map** of QTLs governing agronomic and yield traits in chickpea. J Appl Genet 52:9–21

    Article  CAS  PubMed  Google Scholar 

  • Gremigni P, Furbank RT, Turner NC (2004) Genetic manipulation of seed size in chickpea. In: Legumes for the benefit, agriculture, nutrition and the environment: their genomics, their products, and their improvemnet. Conference handbook of the joint 5th European conference on grain legumes and 2nd international conference on legume genomics and genetics. Dijon, France, 7–11 June, p 141

    Google Scholar 

  • Gujaria N, Kumar A, Dauthal P et al (2011) Development and use of genic molecular markers (GMMs) for construction of a transcript map of chickpea (Cicer arietinum L.). Theor Appl Genet 122:1577–1589

    Article  PubMed Central  PubMed  Google Scholar 

  • Halila I, Rubio J, Millán T et al (2010) Resistance in chickpea (Cicer arietinum) to Fusarium wilt race '0'. Plant Breeding 129:563–566

    CAS  Google Scholar 

  • Harlan JR, de Wet JMJ (1971) Towards a rational classification of cultivated plants. Taxon 20:509–517

    Article  Google Scholar 

  • Haware MP (1998) Diseases of chickpea. In: Allen DJ, Lenne JM (eds) The plant pathology of food and pasture legumes. CABI, Wallinford, pp 473–516

    Google Scholar 

  • Haware MP, Nene YL (1982) Races of Fusarium oxysporum f. sp. ciceris. Plant Dis 66:809–810

    Article  Google Scholar 

  • Haware MP, Nene YL, Pundir RPS et al (1992) Screening of world chickpea germplasm for resistance to Fusarium wilt. Field Crop Res 30:147–154

    Article  Google Scholar 

  • Hiremath PJ, Farmer A, Cannon SB et al (2011) Large-scale transcriptome analysis in chickpea (Cicer arietinum L.), an orphan legume crop of the semi-arid tropics of Asia and Africa. Plant Biotechnol J 9:922–931

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hiremath PJ, Kumar A, Penmetsa RV et al (2012) Large-scale development of cost-effective SNP marker assays for diversity assessment and genetic map** in chickpea and comparative map** in legumes. Plant Biotechnol J 10:716–732

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hospital F (2009) Challenges for effective marker-assisted selection in plants. Genetica 136:303–310

    Article  PubMed  Google Scholar 

  • Hovav R, Upadhyaya KC, Beharav A et al (2003) Major flowering time gene and polygene effects on chickpea seed weight. Plant Breeding 122:539–541

    Article  Google Scholar 

  • Hüttel B, Winter P, Weising K et al (1999) Sequence-tagged microsatellite site markers for chickpea (Cicer arietinum L.). Genome 42:210–217

    Article  PubMed  Google Scholar 

  • Imtiaz M, Materne M, Hobson K et al (2008) Molecular genetic diversity and linked resistance to Ascochyta blight in Australian chickpea breeding materials and their wild relatives. Austral J Agr Res 59:554–560

    Article  CAS  Google Scholar 

  • Indurker S, Misra H, Eapen S (2010) Agrobacterium-mediated transformation in chickpea (Cicer arietinum L.) with an insecticidal protein gene: optimisation of different factors. Physiol Mol Biol Plants 16:273–284

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Iruela M, Rubio J, Cubero JI et al (2002) Phylogenetic analysis in the genus Cicer and cultivated chickpea using RAPD and ISSR markers. Theor Appl Genet 104:643–651

    Article  CAS  PubMed  Google Scholar 

  • Jain Rajesh M, Misra G, Patel RK et al (2013) A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.). Plant J 74:715–729

    Article  CAS  Google Scholar 

  • Jaiswal P, Singh A, Kumar K et al (2004) Functional genomics of chickpea in response to ascochyta infection. 12th Plant and Animal Genome Conference. San Diego, USA, 10–15 January, 2014

    Google Scholar 

  • Jambunathan R, Singh U (1981) Studies on desi and kabuli chickpea (Cicer arietinum) cultivars-3. Mineral and trace elements composition. J Agric Food Chem 29:1091–1093

    Article  CAS  PubMed  Google Scholar 

  • Jhanwar S, Priya P, Garg R et al (2012) Transcriptome sequencing of wild chickpea as a rich resource for marker development. Plant Biotechnol J 10:690–702

    Article  CAS  PubMed  Google Scholar 

  • Jimenez-Gasco MM, Navas-Cortes JA, Jimenez-Diaz RM (2004) The Fusarium oxysporum f. sp. ciceri/Cicer arietinum pathosystem: a case study of the evolutionof plant-pathogenic fungi into races and pathotypes. Int Microbiol 7:95–104

    CAS  PubMed  Google Scholar 

  • Johnson HW, Bernard RL (1962) Soybean genetic and breeding. Adv Agron 14:149–221

    Article  Google Scholar 

  • Jukanti AK, Gaur PM, Gowda CLL et al (2012) Nutritional quality and health benefits of chickpea (Cicer arietinum L.): a review. Brit J Nutr 108:S11–S26

    Article  CAS  PubMed  Google Scholar 

  • Kanakala S, Verma HN, Vijay P et al (2013) Response of chickpea genotypes to agrobacterium-mediated delivery of chickpea chlorotic dwarf virus (CpCDV) genome and identification of resistance source. Appl Microbiol Biotechnol 97:9491–9501

    Article  CAS  PubMed  Google Scholar 

  • Kantar F, Hafeez FY, Shivakumar BG et al (2007) Chickpea: rhizobium management and nitrogen fixation In: Yadav SS, Redden R, Chen W et al (eds) Chickpea breeding and management. CABI, Wallingford, pp 179–192

    Chapter  Google Scholar 

  • Kazan K, Muehlbauer FJ, Weeden NE et al (1993) Inheritance and linkage relationships of morphological and isozyme loci in chickpea (Cicer arietinum L.). Theor Appl Genet 86:417–426

    Article  CAS  PubMed  Google Scholar 

  • Knights EJ, Southwell RJ, Schwinghamer MW et al (2008) Resistance to Phytophthora medicaginis Hansen and Maxwell in wild Cicer species and its use in breeding root rot resistant chickpea (Cicer arietinum L.). Austral J Agr Res 59:383–387

    Article  Google Scholar 

  • Krishnamurthy L, Gaur PM, Basu PS et al (2011) Large genetic variation for heat tolerance in the reference collection of chickpea (Cicer arietinum L.) germplasm. Plant Genet Resources 9:59–69

    Article  Google Scholar 

  • Kumar J, Rao BV (1996) Super early chickpea developed at ICRISAT Asia Center Int. Chickpea Pigeonpea Nwsl 3:17–18

    Google Scholar 

  • Kumar J, Choudhary AK, Solanki RK et al (2011) Towards marker-assisted selection in pulses: a review. Plant Breeding 130:297–313

    Article  CAS  Google Scholar 

  • Ladizinsky G, Adler A (1976) The origin of chickpea Cicer arietinum. Euphytica 25:211–217

    Article  Google Scholar 

  • Lichtenzveig J, Scheuring C, Dodge J et al (2005) Construction of BAC and BIBAC libraries and their applications for generation of SSR markers for genome analysis of chickpea, Cicer arietinum L. Theor Appl Genet 110:492–510

    Article  CAS  PubMed  Google Scholar 

  • Madrid E, Rubiales D, Moral A (2008) Mechanism and molecular markers associated with rust resistance in a chickpea interspecific cross (Cicer arietinum × Cicer reticulatum). Eur J Plant Pathol 121:43–53

    Article  CAS  Google Scholar 

  • Madrid E, Rajesh PN, Rubio J et al (2012) Characterization and genetic analysis of an EIN4-like sequence (CaETR-1) located in QTLAR1 implicated in Ascochyta blight resistance in chickpea. Plant Cell Rept 31:1033–1042

    Article  CAS  Google Scholar 

  • Madrid E, Chen W, Rajesh PN et al (2013) Allele-specific amplification for the detection of Ascochyta blight resistance in chickpea. Euphytica 189:183–190

    Article  CAS  Google Scholar 

  • Madrid E, Seoane P, Claros MG et al (2014) Genetic and physical map** of the QTLAR3 controlling blight resistance in chickpea (Cicer arietinum L). Euphytica. doi:10.1007/s10681–014-1084–6

    Google Scholar 

  • Malhotra RS, Singh KB, Vito M et al (2002) Registration of ILC 10765 and ILC 10766 chickpea germplasm lines resistant to cyst nematode. Crop Sci 42(5):1756

    Article  Google Scholar 

  • Malhotra RS, Bejiga G, Anbessa Y et al (2007) Registration of ‘Ejere’: a Kabuli chickpea cultivar. Crop Sci 1:112

    Google Scholar 

  • Maliro MFA, McNeil D, Kollmorgen J et al (2004) Screening chickpea (Cicer arietinum L.) and wild relatives germplasm from diverse country sources for salt tolerance. In: Proc of the international crop science congress, Brisbane, Australia, 26–1 October

    Google Scholar 

  • Manchanda G, Garg N (2008) Salinity and its effects on the functional biology of legumes. Acta Physiol Plant 30:595–618

    Article  CAS  Google Scholar 

  • Mantri NL, Ford R, Coram TE et al (2007) Transcriptional profiling of chickpea genes differentially regulated in response to high-salinity, cold and drought. BMC Genomics 8:303

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Millan T, Madrid E, Imtiaz M et al (2013) Disease resistance in chickpea in translational genomics for crop breeding Volume 1-Biotic Stress. Wiley-Blackwell, Oxford, pp 201–209

    Book  Google Scholar 

  • Millán T, Winter P, Jungling R et al (2010) A consensus genetic map of chickpea (Cicer arietinum L.) based on 10 map** populations. Euphytica 175:175–189

    Article  CAS  Google Scholar 

  • Molina C, Rotter B, Horres R et al (2008) SuperSAGE: the drought stress-responsive transcriptome of chickpea roots. BMC Genomics 9:553

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Molina C, Zaman-Allah M, Khan F et al (2011) The salt-responsive transcriptome of chickpea roots and nodules via deepSuperSAGE. BMC Plant Biol 11:31

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moreno MT, Cubero JI (1978) Variation in Cicer arietinum L. Euphytica 27:465–485

    Article  Google Scholar 

  • Muehlbauer FJ, Singh KB (1987) Genetic of chickpea. In: Saxena MC, Singh KB (eds) The chickpea. CABI, Wallingford, pp 99–125

    Google Scholar 

  • Nayak S, Zhu H, Varghese N et al (2010) Integration of novel SSR and gene-based SNP marker loci in the chickpea genetic map and establishment of new anchor points with Medicago truncatula genome. Theor Appl Genet 120:1415–1441

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pande S, Siddique KHM, Kishore GK et al (2005) Ascochyta blight of chickpea biology, pathogenicity and disease management. Aust J Agr Res 56:317–332

    Article  Google Scholar 

  • Pande S, Kishore GK, Upadhyaya HD et al (2006a) Identification of sources of multiple disease resistance in mini-core collection of chickpea. Plant Dis 90:1214–1218

    Article  Google Scholar 

  • Pande S, Ramgopal D, Kishore GK et al (2006b) Evaluation of wild Cicer species for resistance to Ascochyta blight and botrytis gray mold in controlled environment at ICRISAT, Patancheru, India. ICRISAT 2(1)

    Google Scholar 

  • Pande S, Galloway J, Gaur PM et al (2006c) Botrytis grey mould of chickpea: a review of biology, epidemiology, and disease management. Austral J Agr Res 57:1137–1150

    Article  Google Scholar 

  • Pande S, Sharma M, Gaur PM et al (2010) Host plant resistance to Ascochyta blight of chickpea. Information Bulletin Nº82. ICRISAT, Patancheru, p 40

    Google Scholar 

  • Pundir RPS, Rao NK, Van Der Maesen LJG (1985) Distribution of qualitative traits in the world germplasm of chickpea (Cicer arietinum L.). Euphytica 34:697–3

    Article  Google Scholar 

  • Ragazzi A (1982) Un grave attacco di ruggine su foglie discese. (A serious attack of rust on Cicer arietinum leaves). Informatore Fitopatológico 2:41–43

    Google Scholar 

  • Rajesh PN, Tekeoglu M, Gupta VS et al (2002) Molecular map** and characterization of an RGA locus RGAPtokin1–2171 in chickpea. Euphytica 128:427–433

    Article  CAS  Google Scholar 

  • Ramgopal D, Srivastava RK, Pande S et al (2012). Introgression of Botrytis gray mold resistance gene from Cicer reticulatum (bgmr1cr) and C. echinospermum (bgmr1ce) to chickpea. Plant Genet Resources 11:212–216

    Article  Google Scholar 

  • Roman B, Satovicb Z, Alfaro C et al (2007) Host differentiation in Orobanche foetida Poir. Flora 202:201–208

    Article  Google Scholar 

  • Roy F, Boye JI, Simpson BK (2010) Bioactive proteins and peptides in pulse crops: pea, chickpea and lentil. Food Res Intl 43:432–442

    Article  CAS  Google Scholar 

  • Rubiales D, Sillero JC, Moreno MT (1999) Resistance to Orobanche crenata in chickpea. In: Cubero JI, Moreno MT, Rubiales D, Sillero JC (eds) Resistance to orobanche: the state of the art. Junta de Andalucia, Sevilla, pp 55–62

    Google Scholar 

  • Rubiales D, Moreno I, Moreno MT et al (2001) Identification of partial resistance to chickpea rust (Uromyces ciceris-arietini). Proc 4th European Conference on Grain Legumes. Cracow, Poland, 8–12 July, 2001, pp 194–195

    Google Scholar 

  • Rubio J, Hajj-Moussa E, Kharrat M et al (2003) Two genes and linked RAPD markers involved in resistance to Fusarium oxysporum f. sp. ciceris race 0 in chickpea. Plant Breed 122:188–191

    Article  CAS  Google Scholar 

  • Rubio J, Flores F, Moreno MT et al (2004) Effects of the erect/bushy habit, single/double pod and late/early flowering genes on yield and seed size and their stability in chickpea. Field Crops Res 90:255–262

    Article  Google Scholar 

  • Rubio J, Moreno MT, Moral A (2006) Registration of RIL58-ILC72/Cr5, a chickpea germplasm line with rust and Ascochyta blight resistance. Crop Sci 46:2331–2332

    Article  Google Scholar 

  • Rubio J, Gil J, Cobos MJ et al (2009) Chickpea In: Perez de la Vega M, Torres AM, Cubero JI, Kole Ch (eds) Genetics, genomics and breeding of cool season grain legumes. Science, Enfield, pp 205–236

    Google Scholar 

  • Salimath PM, Toker C, Sandhu JS et al (2007) Conventional breeding methods In: Yadav SS, Redden R, Chen W, Sharma B (eds) Chickpea breeding and management. CABI, Wallingford, pp 369–390

    Chapter  Google Scholar 

  • Saxena NP, Krishnamurthy L, Johansen C (1993) Registration of drought-resistant chickpea germplasm. Crop Sci 33:1424

    Article  Google Scholar 

  • Sethy NK, Shokeen B, Bhatia S (2003) Isolation and characterization of sequence-tagged microsatellite sites markers in chickpea (Cicer arietinum L.). Mol Ecol Notes 3:428–430

    Article  CAS  Google Scholar 

  • Sethy N, Shokeen B, Edwards K et al (2006) Development of microsatellite markers and analysis of intraspecific genetic variability in chickpea (Cicer arietinum L.). Theor Appl Genet 112:1416–1428

    Article  CAS  PubMed  Google Scholar 

  • Sharma KD, Muehlbauer FJ (2007) Fusarium wilt of chickpea: physiological specialization, genetics of resistance and resistance gene tagging. Euphytica 157:1–14

    Article  CAS  Google Scholar 

  • Siddique KHM, Krishnamurthy L (2014) Chickpea production technology. Legume Perspect 3:29–32

    Google Scholar 

  • Siddique KHM, Loss SP, Thomson BD (2003) Cool season grain legumes in dryland Mediterranean environments of Western Australia: significance of early flowering. In: Saxena NP (ed) Management of agricultural drought. Science, Enfield, pp 151–161

    Google Scholar 

  • Singh G, Chen W, Rubiales D et al (2007) Diseases and their management. In: Yadav SS, Redden R, Chen W, Sharma B (eds) Chickpea breeding and management. CABI, Wallingford, pp 497–519

    Chapter  Google Scholar 

  • Singh KB (1987) Chickpea breeding. In: Saxena MC, Singh KB (eds) The chickpea. CABI, Wallingford, pp 127–162

    Google Scholar 

  • Singh KB, Reddy MV (1996) Improving chickpea yield by incorporating resistance to Ascochyta blight. Theor Appl Genet 92:509–515

    Article  CAS  PubMed  Google Scholar 

  • Singh NP, Shiv S, Iquebal MA et al (2009) Improved varieties of chickpea in India. Technical Bulletin, IIPR, Kanpur

    Google Scholar 

  • Singh R, Sharma P, Varshney RK et al (2008) Chickpea improvement: role of wild species and genetic markers. Biotechnol Genet Eng 25:267–314

    Article  CAS  Google Scholar 

  • Singh S, Gumber RK, Joshi N et al (2005) Introgression from wild Cicer reticulatum to cultivated chickpea for productivity and disease resistance. Plant Breeding 124:477–480

    Article  Google Scholar 

  • Singh U, Subrahmanyam N, Kumar J (1991) Cooking quality and nutritional attributes of some newly developed cultivars of chickpea. J Food Sci Agr 55:37–46

    Article  CAS  Google Scholar 

  • Stephens A, Lombardi M, Cogan NI et al (2014) Genetic marker discovery, intraspecific linkage map construction and quantitative trait locus analysis of Ascochyta blight resistance in chickpea (Cicer arietinum L.). Mol Breeding 33:297–313

    Article  CAS  Google Scholar 

  • Taran B, Warkentin T, Tullu A et al (2007) Genetic map** of Ascochyta blight resistance in chickpea (Cicer arietinum L.) using an SSR linkage map. Genome 50:26–34

    Article  CAS  Google Scholar 

  • Taran B, Warkentin TD, Vandenberg A (2013) Fast track genetic improvement of Ascochyta blight resistance and double podding in chickpea by marker-assisted backcrossing. Theor Appl Genet 126:1639–1647

    Article  CAS  PubMed  Google Scholar 

  • Tekeoglu M, Rajesh PN, Muehlbauer FJ (2002) Integration of sequence tagged microsatellite sites to the chickpea genetic map. Theor Appl Genet 105:847–854

    Article  CAS  PubMed  Google Scholar 

  • Thudi M, Bohra A, Nayak SN et al (2011) Novel SSR markers from BAC-end sequences, DArT arrays and a comprehensive genetic map with 1,291 marker loci for chickpea (Cicer arietinum L.). PLoS ONE 6(11):e27275. doi:10.1371/journalpone.0027275

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Udupa S, Weigand MF, Saxena MC et al (1998) Genoty** with RAPD and microsatellite markers resolves pathotype diversity in the Ascochyta blight pathogen in chickpea. Theor Appl Genet 97:299–307

    Article  CAS  Google Scholar 

  • Upadhyaya HD, Ortiz R (2001) A minicore subset for capturing diversity and promoting utilization of chickpea genetic resources in crop improvement. Theor Appl Genet 102:1292–1298

    Article  Google Scholar 

  • Upadhyaya HD, Bramel PJ, Singh S (2001) Development of a chickpea core subset using geographic distribution and quantitative traits. Crop Sci 41:206–210

    Article  Google Scholar 

  • Upadhyaya HD, Dwivedi SL, Baum M et al (2008a) Genetic structure, diversity and allelic richness in composite collection and reference set in chickpea (Cicer arietinum L.). BMC Plant Biol 8:106–118

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Upadhyaya HD, Gowda CLL, Sastry DVSSR (2008b) Management of germplasm collection and enhancing their use by minicore and molecular approaches. APEC-ATCWG Workshop. Capacity building for risk management systems on genetic resources, pp 35–70

    Google Scholar 

  • Upadhyaya HD, Thudi M, Dronavalli N et al (2011) Genomic tools and germplasm diversity for chickpea improvement. Plant Gen Resour Char Util 9:45–48

    Article  CAS  Google Scholar 

  • Van der Maesen LJG, Maxted N, Javadi F et al (2007) Taxonomy of the genus Cicer revisited. In: Yadav SS, Redden R, Chen W, Sharma B (eds) Chickpea breeding and management. CABI, Wallingford, pp 14–46

    Chapter  Google Scholar 

  • Van Gastel AJG, Bishaw Z, Niane AA, Gregg BR, Gan Y (2007) Chickpea seed production. In: Yadav SS, Redden R, Chen W, Sharma B (eds) Chickpea breeding and management. CABI, Wallingford, pp 417–444

    Chapter  Google Scholar 

  • Varshney RK, Song C, Saxena RK et al (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 31:240–248

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Mohan SM, Gaur PM et al (2014a) Marker-assisted backcrossing to introgress resistance to Fusarium wilt race 1 and Ascochyta blight in C214, an elite cultivar of chickpea. Plant Gen 7:1–11

    Article  CAS  Google Scholar 

  • Varshney RK, Thudi M, Nayak S et al (2014b) Genetic dissection of drought tolerance in chickpea (Cicer arietinum L.). Theor Appl Genet 127:445–462

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vláčilová K, Ohri D, Vrána J et al (2002) Development of flow cytogenetics and physical genome map** in chickpea (Cicer arietinum L.). Chrom Res 10:695–706

    Article  PubMed  Google Scholar 

  • Winter P, Pfaff T, Udupa SM et al (1999) Characterization and map** of sequence-tagged microsatellite sites in the chickpea (Cicer arietinum L.) genome. Mol Gen Genet 262:90–101

    Article  CAS  PubMed  Google Scholar 

  • Winter P, Benko-Iseppon AM, Hüttel B et al (2000) A linkage map of the chickpea (Cicer arietinum L.) genome based on recombinant inbred lines from a C. arietinum × C. reticulatum cross: localization of resistance genes for Fusarium wilt races 4 and 5. Theor Appl Genet 101:1155–1163

    Article  CAS  Google Scholar 

  • Zatloukalová P, Hřibová E, Kubaláková M et al (2011) Integration of genetic and physical maps of the chickpea (Cicer arietinum L.) genome using flow-sorted chromosomes. Chromosome Res 19:729–739

    Article  PubMed  CAS  Google Scholar 

  • Zhu H, Choi HK, Cook DR et al (2005) Bridging model and crop legumes through comparative genomics. Plant Physiol 137:1189–1196

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zohary D, Hopf M, Weiss E (2012) Domestication of plants in the old world, 4th edn. Oxford University Press, Oxford

    Book  Google Scholar 

Download references

Acknowledgments

Authors would like to acknowledge research funding support from the Spanish Ministry of Science and Innovation (MICINN, project RTA2010-00059), co financed with European Regional Development Fund (FEDER). E. Madrid is a researcher funded by the ‘Juan de la Cierva’ programme of the Ministry of Science and Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Millán .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Millán, T., Madrid, E., Cubero, J., Amri, M., Castro, P., Rubio, J. (2015). Chickpea. In: De Ron, A. (eds) Grain Legumes. Handbook of Plant Breeding, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2797-5_3

Download citation

Publish with us

Policies and ethics

Navigation