Steroidogenic Acute Regulatory Protein (StAR) and Atherogenesis

  • Chapter
  • First Online:
Cholesterol Transporters of the START Domain Protein Family in Health and Disease

Abstract

Atherosclerosis, the primary cause of coronary heart disease, is characterised by a low-grade unresolved inflammation associated with accumulation of cholesterol and cholesteryl-ester laden macrophages within the intima of the vessel wall. Steroidogenic acute regulatory protein (StAR/STARD1) is endogenously expressed, and regulated, in a number of vascular tissues, including endothelial cells and monocyte-macrophages where it is thought to traffic cholesterol from the outer to the inner mitochondrial membrane, determining the rate at which substrate is supplied to sterol 27-hydroxylase (CYP27A1). The CYP27A1 enzyme converts cholesterol to oxysterol derivatives, which act as activating ligands for nuclear Liver X Receptors, master regulators of lipid metabolism and inflammatory responses. Forced overexpression of StAR/STARD1 in macrophages and endothelial cells increases the cholesterol efflux process mediated by adenosine triphosphate (ATP)-binding cassette transporters (ABCA1/G1) and apolipoprotein acceptors, and inhibits nuclear factor-κB signalling, resulting in repression of an array of inflammatory genes. Thus, StAR/STARD1 may represent a novel target for treatment of atherosclerosis and coronary heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 106.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Taylor Janice, Allen Anne-Marie, Borthwick Faye, Graham Annette (2009) Q-PCR analysis of StAR-induced genes involved in lipid and lipoprotein metabolism. Glasgow Caledonian University.

  2. 2.

    Borthwick Faye, Graham Annette (2009) Gonadotropin-dependent regulation of genes involved in the cholesterol efflux pathway. Glasgow Caledonian University.

Abbreviations

ACAT:

Acyl CoA: Cholesterol AcylTransferase

ACBD:

Acyl CoA Binding Domain Protein

ANT:

Adenine Nucleotide Transporter

Apo:

Apolipoprotein

ASTAD3A:

ATPase Family AAA Domain-containing Protein 3A

CD:

Cluster of Differentiation

CETP:

Cholesteryl Ester Transfer Protein

ChREBP:

Binding Protein

CTX:

Cerebrotendinous Xanthomatosis

COX:

Cyclooxygenase

CXCL16:

Chemokine (C-X-C motif) Ligand 16

CYP11A1:

Cytochrome P450 Side Chain Cleavage Enzyme

CYP27A1:

Sterol 27-Hydroxylase

CYP51A1:

Lanosterol 14α-methylase

DR:

Direct Repeat

ER:

Estrogen Receptor

FAS:

Fatty Acid Synthase

GM-CSF:

Granulocyte Macrophage Colony Stimulating Factor

HDL:

High-density Lipoprotein

HDL-C:

HDL-cholesterol

HMG CoA Reductase:

3-Hydroxy 3-MethylGlutaryl CoA Reductase

IFN:

Interferon

IL:

Interleukin

iNOS:

Inducible Nitric Oxide Synthase

LCAT:

Lecithin:Cholesterol AcylTransferase

LDL:

Low Density Lipoprotein

LOX-1:

Lectin-like Oxidized LDL Receptor

LPS:

Lipopolysaccharide

LXR:

Liver X Receptor

LXRE:

Response Element

LDL:

Low Density Lipoprotein

MCP:

Monocyte Chemotactic Protein

M-CSF:

Macrophage Colony Stimulating Factor

MLN64; STARD3:

Metastatic Lymph Node 64

NF-κB:

Nuclear Factor Kappa B

NCoR:

Nuclear Receptor Co-Repressor

PKA:

Protein Kinase A

PLTP:

Phospholipid Transfer Protein

PPAR:

Peroxisome Proliferator Activated Receptor

RXR:

Retinoid X Receptor

SCD:

Stearoyl CoA Desaturase

SERM:

Selective Estrogen Receptor Modulator

SMRT:

Silencing Mediator of Retinoid and Thyroid receptors

SR-AI/AII:

Scavenger Receptor AI/AII

SRE:

Sterol Regulatory Element

SREBP:

Binding Protein

StAR; STARD1:

Steroidogenic Acute Regulatory protein

STARD3:

StAR-related Lipid Transfer Domain 3 Protein

TGF:

Transforming Growth Factor

TNF:

Tumour Necrosis Factor

TSPO:

18 kDa Translocator Protein

VCAM:

Vascular Cell Adhesion Molecule

VDAC:

Voltage Dependent Anion Channel

References

  1. Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011;473:317–25.

    Article  CAS  PubMed  Google Scholar 

  2. Woollard KJ. Immunological aspects of atherosclerosis. Clin Sci. 2013;125:221–35.

    Article  CAS  PubMed  Google Scholar 

  3. Wolfs IMJ, Donners MMPC, de Winther MPJ. Differentiation factors and cytokines in the atherosclerotic plaque micro-environment as a trigger for macrophage polarisation. Thromb Haemost. 2011;106:763–71.

    Google Scholar 

  4. Gerrity RG. The role of the monocyte in atherogenesis. Am J Pathol. 1981;103:181–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Sawamura T, Kakino A, Fujita Y. LOX-1: a multiligand receptor at the crossroads of response to danger signals. Curr Opin Lipidol. 2012;23:439–45.

    Article  CAS  PubMed  Google Scholar 

  6. Kzhyshkowska J, Neyen C, Gordon S. The role of macrophage scavenger receptors in atherosclerosis. Immunobiology. 2012;217:492–502.

    Article  CAS  PubMed  Google Scholar 

  7. Andres V, Pello O, Silvestre-Roig C. Macrophage proliferation and apoptosis in atherosclerosis. Curr Opin Lipidol. 2012;23:429–38.

    Article  CAS  PubMed  Google Scholar 

  8. Rye K-A, Barter PJ. Predictive value of different HDL particles for the protection against or risk of coronary heart disease. Biochim Biophys Acta. 2012;1821:473–80.

    Google Scholar 

  9. Tall AR. Cholesterol efflux pathways and other potential mechanisms involved in the atheroprotective effect of high density lipoproteins. J Intern Med. 2008;263:256–73.

    Article  CAS  PubMed  Google Scholar 

  10. Gordon DJ, Knoke J, Probstfield JL, Superko R, Tyroler HA. High-density lipoprotein cholesterol and coronary heart disease in hypercholesterolaemic men: The Lipid Research Clinics Coronary Primary Prevention Trial. Circulation. 1986;74:1217–25.

    Article  CAS  PubMed  Google Scholar 

  11. Barter PJ, Nicholls S, Rye KA, Anantharamaiah GM, Navab M, Fogelman AM. Antiinflammatory properties of HDL. Circ Res. 2004;95:764−72

    Google Scholar 

  12. Scanu AM, Edelstein C. HDL: bridging past and present with a look to the future. FASEB J. 2008;22:4044−54

    Google Scholar 

  13. Soehnlen O, Swirski FP. Hypercholesterolaemia links haematopoiesis with atherosclerosis. Trends EndocrinolMetab. 2012. http://dx.doi.org.10.10106/j.tem.2012.10.008

    Google Scholar 

  14. Murphy AJ, Westerterp M, Yvan-Charvet L, Tall AR. Anti-atherogenic mechanisms of high density lipoprotein: effects on myeloid cells. Biochim Biophys Acta. 2012;1821:513–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Rosenson RS, Brewer HB Jr, Davidson WS, Fayad ZA, Fuster V, Goldstein J, Hellerstein M, Jiang XC, Phillips MC, Rader DJ, Remaley AT, Rothblat GH, Tall AR, Yvan-Charvet L. Cholesterol efflux and atheroprotection: advancing the concept of reverse cholesterol transport. Circulation. 2012;125:1905–19.

    Article  PubMed  Google Scholar 

  16. Cavalier C, Lorenzi I, Rohrer L, von Eckardstein A. Lipid efflux by the ATP binding cassette transporters, ABCA1 and ABCG1. Biochim Biophys Acta. 2006;1761:655–66.

    Google Scholar 

  17. Janowski BA, Willy PJ, Devi TR, Falck JR, Mangelsdorf DJ. An oxysterol signalling pathway mediated by the nuclear receptor LXRα. Nature. 1996;383:728–31.

    Article  CAS  PubMed  Google Scholar 

  18. Janowski BA, Grogan MJ, Jones SA, Wisely GB, Kliewer SA, Corey EJ, Mangelsdorf D. Structural requirements of ligands for the oxysterol liver X receptors LXRα and LXRβ. Proc Natl Acad Sci USA. 1999;96:266–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Venkateswaran A, Laffitte B, Joseph SB, Mak PA, Wilpitz DC, Edwards PA, Tontonez P. Control of cellular cholesterol efflux by the nuclear oxysterol receptor LXRα. Proc Natl Acad Sci USA. 2000;97:12097–102.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Wang Y, Rogers PM, Su C, Varga G, Stayrook KR, Burris YP. Regulation of cholesterologenesis by the oxysterol receptor LXRα. J Biol Chem. 2008;283:26332–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Zelcer N, Hong C, Boydjian R, Tontonez P. LXR regulates cholesterol uptake through Idol-dependent ubiquitination of the LDL receptor. Science. 2009;325:100–104.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Shibata N, Glass CK. Macrophages, oxysterols and atherosclerosis. Circ. J. 2010;74:2045–51.

    CAS  Google Scholar 

  23. Javitt NB. Oxysterols: novel biologic roles for the 21st century. Steroids. 2008;73:149–57.

    Article  CAS  PubMed  Google Scholar 

  24. Ghisletti S, Huang W, Ogawa S, Pascual G, Lin ME, Willson TM, Rosenfeld MG, Glass CK. Parallel SUMOylation-dependent pathways mediate gene- and signal-specific transrepression by LXRs and PPARγ. Mol Cell. 2007;25:57–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Im S-S, Osborne TF. Liver X receptors in atherosclerosis and inflammation. Circ Res. 2011;108:996–1001.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Joseph SB, Castrillo A, Laffitte BA, Mangelsdorf D, Tontonoz P. Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nat Med. 2003;9:213–9.

    Article  CAS  PubMed  Google Scholar 

  27. Schultz JR, Tu H, Luk A, Repa JJ, Medina JC, Li L, Schwendner S, Wang S, Thoolen M, Mangelsdorf DJ, Lustig KD, Shan B. Role of LXRs in control of lipogenesis. Genes Dev. 2000;14:2831–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Cha JY, Repa JJ. The liver X receptor (LXR) and hepatic lipogenesis. The carbohydrate-response element binding protein is a target gene of LXR. J Biol Chem. 2007;282:743–51.

    Article  CAS  PubMed  Google Scholar 

  29. Bjorkhem I, Diczfalusy U, Lutjohann D. Removal of cholesterol from extrahepatic sources by oxidative mechanisms. CurrOpin. Lipidol. 1999;10:161–5.

    Article  CAS  Google Scholar 

  30. Fu X, Menke G, Chen Y, Zhou G, Macnaul KL, Wright SD, Sparrow CP, Lund EG. 27-hydroxycholesterol is an endogenous ligand for liver X receptor in cholesterol-loaded cells. J Biol Chem. 2001;276:38373–87.

    Google Scholar 

  31. Lund E, Bjorkhem I, Furster C, Wikvall K. 24-, 25- and 27-hydroxylation of cholesterol by a purified preparation of 27-hydroxylase form pig liver. Biochim Biophys Acta. 1993;1155:177–82.

    Article  Google Scholar 

  32. Chen W, Chen G, Head DL, Mangelsdorf DJ, Russell DW. Enzymatic reduction of oxysterols impairs LXR signalling in cultured cells and the livers of mice. Cell Metab. 2007;5:73–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Szanto A, Benko S, Szatmari I, Balint BL, Furtos I, Ruhl R, Molnar S, Csiba L, Garuti R, Calandra S, Larsson H, Diczfalusy U, Nagy I. Transcriptional regulation of human CYP27 integrates retinoid, peroxisome proliferator-activated receptor, and liver X receptor signalling in macrophages. Mol Cell Biol. 2004;24:8154–66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Blorn T, Back N, Mutka AL, Bittman R, Li Z, de Lera A, Kovanen PT, Diczfalusy U, Ikonen E. FTY720 stimulates 27-hydroxycholesterol production and confers atheroprotective effects in human primary macrophages. Circ Res. 2010;106:720–9.

    Google Scholar 

  35. Zhu Y, Liao H, **e X, Yuan Y, Lee TS, Wang N, Wang X, Shyy JY, Stemerman MB. Oxidized LDL downregulates ATP binding cassette transporter-1 in human vascular endothelial cells via inhibiting liver X receptor. Cardiovasc Res. 2005;68:425–32.

    Article  CAS  PubMed  Google Scholar 

  36. Brauner R, Johannes C, Ploessl F, Bracher F, Lorenz RI. Phytosterols reduce cholesterol absorption by inhibition of 27-hydroxycholesterol generation, LXRα activation and expression of the basolateral sterol exporter ATP binding cassette transporter A1 in Caco-2 enterocytes. J Nutr. 2012;142:981–9.

    Article  CAS  PubMed  Google Scholar 

  37. Li T, Chen W, Chiang JY. PXR induces CYP27A1 and regulates cholesterol metabolism in the intestine. J Lipid Res. 2007;48:373–84.

    Article  CAS  PubMed  Google Scholar 

  38. Kim WS, Chan SL, Hill AF, Guillemin GJ, Garner B. Impact of 27-hydroxycholesterol on amyloid beta peptide production and ATP-binding cassette transporter expression in primary human neurons. J Alzheimers Dis. 2009;16:121–31.

    CAS  PubMed  Google Scholar 

  39. Escher G, Krozowski Z, Croft KD, Sviridov D. Expression of sterol 27-hydroxylase (CYP27A1) enhances cholesterol efflux. J BiolChem. 2003;278:11015–9.

    CAS  Google Scholar 

  40. Zhang JR, Coleman T, Langmade SJ, Scherrer DE, Lane L, Lanier MH, Feng C, Sands MS, Schaffer JE, Semenkovich CF, Ory DS. Niemann Pick C1 protects against atherosclerosis in mice via regulation of macrophage intracellular cholesterol trafficking. J. Clin. Invest. 2008;118:2281−90.

    Google Scholar 

  41. Bowden KL, Bilbey NJ, Bilawchuk LM, Boadu E, Sidhu R, Ory DS, Du H, Chan T, Francis GA. Lysosomal acid lipase deficiency impairs regulation of ABCA1 gene and formation of high density lipoproteins in cholesteryl ester storage disease. J Biol Chem. 2011;286:30624−35.

    Google Scholar 

  42. Gallus GN, Dotti MT, Federico A. Clinical and molecular diagnosis of cerebrotendinous xanthomatosis with a review of the mutations in the CYP27A1 gene. Neurol Sci. 2006;27:143–9.

    Article  CAS  PubMed  Google Scholar 

  43. Valdivielso P, Calandra S, Duran JC, Garuti R, Herrera E. Coronary heart disease in a patient with cerebrotendinus xanthomatosis. J Int Med. 2004;255:680–3.

    Article  CAS  Google Scholar 

  44. Lorbek G, Lewinsha M, Rozman D. Cytochrome P450 s in the synthesis of cholesterol and bile acids - from mouse models to human diseases. FEBS J. 2012;279:1516–33.

    Article  CAS  PubMed  Google Scholar 

  45. Pandak WM, Ren S, Marques D, Hall E, Redford K, Mallonee D, Bohdan P, Heuman D, Gil G, Hylemon P. Transport of cholesterol into mitochondria is rate-limiting for bile acid synthesis via the alternative pathway in primary rat hepatocytes. J Biol Chem. 2002;277:48158–64.

    Article  CAS  PubMed  Google Scholar 

  46. Bjorkhem I, Diczfalusy U, Lutjohann D. Removal of cholesterol from extrahepatic sources by oxidative mechanisms. Curr Opin Lipidol. 1999;10:161–5.

    Article  CAS  PubMed  Google Scholar 

  47. Rone MB, Fan J, Papadopoulos V. Cholesterol transport in steroid biosynthesis: role of protein-protein interactions and implications in disease states. Biochim Biophys Acta. 2009;179:646–58.

    Article  Google Scholar 

  48. Manna PR, Dyson MT, Stocco DM. Regulation of the steroidogenic acute regulatory protein gene expression: present and future perspectives. Mol Hum Reprod. 2009;6:321–33.

    Article  Google Scholar 

  49. Miller WL. Bose HS. Early steps in steroidogenesis: intracellular cholesterol trafficking. J Lipid Res. 2011;52:2111–35.

    Google Scholar 

  50. Rone MB, Midzak AS, Issop L, Rammouz G, Jagannathan S, Fan J, Ye X, Blonder J, Veenstra T, Papadopoulos V. Identification of a dynamic mitochondrial protein complex driving cholesterol import, trafficking, and metabolism to steroid hormones. MolEndocrinol. 2012;26:1868–82.

    CAS  Google Scholar 

  51. Anuka E, Gal M, Stocco DM, Orly J. Expression and roles of steroidogenic acute regulatory (StAR) protein in ‘non-classical’, extra-adrenal and extra-gonadal cells and tissues. Mol Cell Endocrinol. 2013;371:47–61.

    Article  CAS  PubMed  Google Scholar 

  52. Ning Y, Chen S, Li X, Ma Y, Zhao F, Yin L. Cholesterol, LDL and 25-hydroxycholesterol regulate expression of the steroidogenic acute regulatory protein in microvascular endothelial cell line (bEnd.3). Biochem. Biophys Res Commun. 2006;342:1249–56.

    Article  CAS  Google Scholar 

  53. Castillo SS, Doger MM, Bolkent S, Yanardag R. Cholesterol efflux and the effect of combined treatment with niacin and chromium on aorta of hyperlipidaemic rat. Mol Cell Biochem. 2007. doi:10.1007/s11010-007-9623-2.

    Google Scholar 

  54. Ma Y, Ren S, Pandak WM, Li X, Ning Y, Lu C, Zhao F, Yin L. The effects of inflammatory cytokines on steroidogenic acute regulatory protein expression in macrophages. Inflamm Res. 2007;56:495–501.

    Article  CAS  PubMed  Google Scholar 

  55. Borthwick F, Taylor JM, Bartholomew C, Graham A. Differential regulation of the STARD1 subfamily of START lipid trafficking proteins in human macrophages. FEBS Lett. 2009;583:1147–53.

    Article  CAS  PubMed  Google Scholar 

  56. Borthwick F, Allen A-M, Taylor JM, Graham A. Overexpression of STARD3 in human monocyte/macrophages induces an anti-atherogenic lipid phenotype. Clin Sci. 2010;119:265–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Christenson LK, Osborne TF, McAllister JM, Strauss JF III. Conditional response of the human steroidogenic acute regulatory protein gene promoter to sterol regulatory element binding protein-1a. Endocrinology. 2001;142:28–36.

    CAS  PubMed  Google Scholar 

  58. Castillo SS, Doger MM, Bolkent S, Yanardag R. Cholesterol efflux and the effect of combined treatment with niacin and chromium on aorta of hyperlipidaemic rat. Mol Cell Biochem. 2008;308:151–9.

    Article  Google Scholar 

  59. Niu N, Yu H, Wang Y, Wang LJ, Li Q, Guo M. Combined effects of niacin and chromium treatment on vascular endothelial dysfunction in hyperlipidaemic rats. Mol Biol Rep. 2009;36:1275−81

    Google Scholar 

  60. Kamanna VS, Kashyap KL. Mechanism of action of niacin. Am J Cardiol. 2008;101(supple):20B–26B.

    Google Scholar 

  61. Manna PR, Dyson MT, Stocco DM. Regulation of the steroidogenic acute regulatory protein gene expression: present and future perspectives. Mol Hum Reprod. 2009;15:321–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Ning Y, Ren S, Zhao F, Yin L. Overexpression of the steroidogenic acute regulatory protein increases the expression of ATP-binding cassette transporters in microvascular endothelial cells (bEnd.3). J Zhejiang Univ Sci B. 2010;11:350–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Tian D, Qiu Y, Zhan Y, Li X, Wang X, Yin L, Ning Y. Overexpression of steroidogenic acute regulatory protein in rat aortic endothelial cells attenuates palmitic acid-induced inflammation and reduction in nitric oxide bioavailability. Cardiovasc Diabetol. 2012;11:144. doi:10.1186/1475-2849-11-144

    Google Scholar 

  64. Ning Y, Bai Q, Lu H, Li X, Pandak WM, Zhao F, Chen S, Ren S, Yin L. Overexpression of mitochondrial cholesterol delivery protein, StAR, decrease intracellular lipids and inflammatory factors secretion in macrophages. Atherosclerosis. 2009;204:114–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Taylor JMW, Borthwick F, Bartholomew C, Graham A. Overexpression of steroidogenic acute regulatory protein increases macrophage cholesterol efflux to apolipoprotein AI. Cardiovasc Res. 2010;86:526–34.

    Article  CAS  PubMed  Google Scholar 

  66. Mack JT, Brown CB, Garrett TE, Uys JD, Townsend DM, Tew KD. Ablation of the ATP-binding cassette transporter, Abca2, modifies response to estrogen-based therapies. Biomed and Pharmacother. 2012;66:403–8.

    Google Scholar 

  67. Calpe-Berdiel, L, Zhao Y, de Graauw M, Ye D, van Santbrink PJ, Mommaas AM, Foks A, Bot M, Meurs I, Kuiper J, Mack JT, Van Eck M, Tew KD, van Berkel TJC. Macrophage ABCA2 deletion modulates intracellular cholesterol deposition, affects macrophage apoptosis and decreases early atherosclerosis in LDL receptor knockout mice. Atherosclerosis. 2012;223:332–41.

    Article  PubMed  Google Scholar 

  68. Ogita M, Miyauchi K, Dohi T, Tsuboi S, Miyazaki T, Yokoyama T, Yokoyama K, Shimada K, Kurata T, Jiang M, Bujo H, Daida H. Increased circulating soluble LR11 in patients with acute coronary syndrome. ClinChimActa. 2013;415:191–4.

    CAS  Google Scholar 

  69. Sheikine Y, Sirsjo A. CXCL16/SR-PSOX—a friend or foe in atherosclerosis? Atherosclerosis. 2008;197:487–95.

    Article  CAS  PubMed  Google Scholar 

  70. Bai Q, Li X, Ning Y, Zhao F, Yin L. Mitochondrial cholesterol transporter, StAR, inhibits human THP-1 monocyte-derived macrophage apoptosis. Lipids. 2009;45:29–36.

    Article  PubMed  Google Scholar 

  71. Hasegawa T, Zhao L, Caron KM, Majdic G, Suzuki T, Shizawa S, Sasano H, Parker KL. Developmental roles of the steroidogenic acute regulatory protein (StAR) as revealed by StAR knockout mice. Mol Endocrinol. 2000;14:1462–71.

    Article  CAS  PubMed  Google Scholar 

  72. Ishii T, Hasegawa T, Pai CI, Yvgi-Ohana N, Timberg R, Zhao L, Majdic G, Chung BC, Orly J, Parker KI. The roles of circulating high-density lipoproteins and trophic hormones in the phenotype of knockout mice lacking the steroidogenic acute regulatory protein. Mol Endocrinol. 2002;16:2297–309.

    Article  CAS  PubMed  Google Scholar 

  73. Ishii T, Mitsui T, Suzuki S, Matsuzaki Y, Hasegawa T. A genome-wide expression profile of adrenocortical cells in knockout mice lacking steroidogenic acute regulatory protein. Endocrinology. 2012;153:2714–23.

    Article  CAS  PubMed  Google Scholar 

  74. Ning Y, Xu L, Ren S, Pandak WM, Chen S, Yin L. StAR overexpression decreases serum and tissue lipids in apolipoprotein E-deficient mice. Lipids. 2009;44:511–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Young MJ, Clyne CD, Cole TJ, Funder JW. Cardiac steroidogenesis in the normal and failing heart. J Clin Endocrinol Metab. 2001;86:5121–6.

    Article  CAS  PubMed  Google Scholar 

  76. Casal AJ, Silvestre JS, Delcayre C, Capponi AM. Expression and modulation of steroidogenic acute regulatory protein messenger ribonucleic acid in rat cardiomyocytes and after myocardial infarction. Endocrinology. 2003;144:1861–8.

    Google Scholar 

  77. Anuka A, Yiygi-Ohana N, Eimerl S, Garfinkel B, Melamed-Book N, Chepurkol E, Aravot D, Zinman T, Shainberg A, Hochhauser E, Orly J. Infarct-induced steroidogenic acute regulatory protein: a survival role in cardiac fibroblasts. Mol Endocrinol. 2013;27:1502–17.

    Google Scholar 

  78. Haidar B, Denis M, Marcil M, Krimbou L, Genest J Jr. Apolipoprotein A-I activates cellular cAMP signalling through the ABCA1 transporter. J Biol Chem. 2004;279:9963–9.

    Google Scholar 

  79. Allen AM, Taylor JMW, Graham A. Mitochondrial (dys)function and regulation of macrophage cholesterol efflux. Clin Sci. 2013;124:509–15.

    Google Scholar 

  80. Sobenin IA, Chistiakov DA, Bobryshev YB, Postnov AY, Orekhov AN. Mitochondrial mutations in atherosclerosis: new solutions in research and possible clinical applications. Curr Pharm Des. 2013 Feb 15. Epub ahead of print.

    Google Scholar 

  81. Madamanchi NR, Runge MS. Mitochondrial dysfunction in atherosclerosis. Circ Res. 2007;100:460–73.

    Google Scholar 

  82. Umetani M, Domoto H, Gormley AK, Yuhanna IS, Cummins CL, Javitt NB, Korach KS, Shaul PW, Mangelsdorf DJ. 27-hydroxycholesterol is an endogenous SERM that inhibits the cardiovascular effects of estrogen. Nat Med. 2007;13:1185–92.

    Article  CAS  PubMed  Google Scholar 

  83. Umetani M, Shaul PW. 27-hydroxycholesterol: the first identified endogenous SERM. Trends Endocrinol Metab. 2011;22:130–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Baker ME. What are the physiological estrogens? Steroids. 2013;78:337–40.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annette Graham Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Graham, A., Borthwick, F., Taylor, J. (2014). Steroidogenic Acute Regulatory Protein (StAR) and Atherogenesis. In: Clark, B., Stocco, D. (eds) Cholesterol Transporters of the START Domain Protein Family in Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1112-7_5

Download citation

Publish with us

Policies and ethics

Navigation