Abstract

All steroid hormones are made from cholesterol, which is primarily taken up by steroidogenic cells from circulating lipoproteins. The intracellular mechanisms by which cholesterol is delivered to cellular destinations remains under investigation. Steroidogenic cells must transport large amounts of cholesterol to, and then into, the mitochondria, where the cholesterol side-chain cleavage enzyme, P450scc, resides. P450scc is the first enzyme in steroidogenesis, converting insoluble cholesterol to soluble pregnenolone. The combination of genetic studies of a rare disease, congenital lipoid adrenal hyperplasia (lipoid CAH), and studies of the cell biology of mitochondrial cholesterol import led to the discovery of the steroidogenic acute regulatory protein (StAR). StAR acts exclusively on the outer mitochondrial membrane to trigger mitochondrial cholesterol import, but the precise mechanism of its action remains unclear. Lipoid CAH is caused by StAR mutations and is thus the StAR knockout experiment of nature. Recent work has shown that P450scc mutations cause a disease that is a phenocopy of lipoid CAH. The discovery of StAR led to the discovery of the broader family of structurally related StAR-related lipid transfer (START)-domain proteins. It appears that some of these START proteins may also be involved in intracellular cholesterol trafficking upstream from StAR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

3βHSD:

3β-hydroxysteroid dehydrogenase

ACAT:

acyl-coenzyme A cholesteroacyl transferase

ACTH:

adrenocorticotropic hormone

ANT:

adenine nucleotide

CRAC:

cholesterol recognition amino acid consensus domain

ER:

endoplasmic reticulum

FAD:

flavin adenine dinucleotide

HDL:

high density lipoproteins

HSL:

hormone-sensitive neutral lipase

HMGCoA:

3-hydroxy-3-methylglutaryl co-enzyme A

IMM:

inner mitochondrial membrane

IMS:

intramembranous space

Km:

Michaelis constant

LAL:

lysosomal acid lipase

LDL:

low-density lipoproteins

LH:

luteinizing hormone

MENTAL:

MLN64 N-terminal

MENTHO:

MLN64 N-terminal domain homologue

MLN64:

metastatic lymph node clone 64

NADPH:

nicotinamide adenine dinucleotide phosphate

NPC:

Niemann-Pick type C

OMM:

outer mitochondrial membrane

PAP7:

TSPO-associated protein 7 (ACBD3)

PBR:

peripheral benzodiazepine receptor

PCP:

phosphate carrier protein

PKA:

protein kinase A

PKAR1A:

protein kinase A regulatory subunit 1α

PRAX1:

TSPO-associated protein 1

P450scc:

mitochondrial cytochrome P450 specific for cholesterol side-chain cleavage

SF1:

steroidogenic factor 1

SOAT:

sterol O-acetyltransferase

SR-B1:

scavenger receptor B1

StAR:

steroidogenic acute regulatory protein

START:

StAR-related lipid transfer domain

SREBPs:

sterol regulatory element binding proteins

TSPO:

18 kDa translocator protein,

VDAC1:

voltage-dependent anion channel

References

  1. Tilp A. Hochgradige Verfettung der Nebenniere eines Sauglings. Verhandlungen der Deutschensch Gesellschaft fur Pathologie.1913;16:305–7.

    Google Scholar 

  2. Brutschy P. Hochgradige Lipoidhyperplasie beider Nebennieren mit herdformigen Kalkablagerunger bei einem Fall von Hypospadiasis penisscrotalis und doppelseitigem Kryptorchismus mit unechter akzessorischer Nebenniere am rechten Hoden (Pseudohermaphroditismus masculinus externus). Frankfurter Zeitschriff für Pathologie. 1920;24:203–40.

    Google Scholar 

  3. Zahn J. Ueber intersexualitat und Nebennierenhyperplasie. Schweiz Med Wochenschr. 1948;78:480–6.

    CAS  PubMed  Google Scholar 

  4. Sandison AT. A form of lipoidosis of the adrenal cortex in an infant. Arch Dis Childh. 1955;30:538–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Prader A, Gurtner HP. Das Syndrom des Pseudohermaphroditismus masculinus bei kongenitaler Nebennierenrindenhyperplasie ohne Androgenuberproduktion (adrenaler Pseudohermaphroditismus masculinus). Helvetica Paediatrica Acta. 1955;10:397–412.

    CAS  PubMed  Google Scholar 

  6. Prader A, Siebenmann RE. Nebenniereninsuffzienz bie kongenitaler Lipoidhyperplasie der Nebennieren. Helvetica Paediatrica Acta. 1957;12:569–95.

    CAS  PubMed  Google Scholar 

  7. Prader A, Anders CJPA. Zur Genetik der kongenitalen Lipoidhyperplasie der Nebennieren. Helvetica Paediatrica Acta. 1962;17:285–9.

    CAS  PubMed  Google Scholar 

  8. Shimizu K, Hayano M, Gut M, Dorfman RI. The transformation of 20α; hydroxycholesterol to isocaproic acid and C21 steroids. J Biol Chem. 1961;236:695–9.

    CAS  Google Scholar 

  9. Camacho AM, Kowarski A, Migeon CJ, Brough A. Congenital adrenal hyperplasia due to a deficiency of one of the enzymes involved in the biosynthesis of pregnenolone. J Clin Endocrinol Metab. 1968;28:153–61.

    CAS  PubMed  Google Scholar 

  10. Degenhart HJ, Visser KHA, Boon H, O’Doherty NJD. Evidence for deficiency of 20β cholesterol hydroxylase activity in adrenal tissue of a patient with lipoid adrenal hyperplasia. Acta Endocrinol. 1972;71:512–8.

    CAS  PubMed  Google Scholar 

  11. Lin D, Sugawara T, Strauss JF 3rd, Clark BJ, Stocco DM, Saenger P, Rogol A, Miller WL. Role of steroidogenic acute regulatory protein in adrenal and gonadal steroidogenesis. Science. 1995;267:1828–31.

    CAS  PubMed  Google Scholar 

  12. Simpson ER, Boyd GS. The cholesterol side-chain cleavage system of bovine adrenal cortex. Euro J Biochem. 1967;2:275–85.

    CAS  Google Scholar 

  13. Shikita M, Hall PF. Cytochrome P-450 from bovine adrenocortical mitochondria: An enzyme for the side chain cleavage of cholesterol. I. Purification and properties. J Biol Chem. 1973;248:5596–604.

    Google Scholar 

  14. Katagiri M, Takemori S, Itageki E, Suhara K, Gomi T, Sato H. Characterization of purified cytochrome P450scc and P450-11β from bovine adrenocortical mitochondria. Adv Exp Med Biol. 1976;74:281−95.

    Google Scholar 

  15. Koizumi S, Kyoya S, Miyawaki T, Kidani H, Funabashi T, Nakashima H, Nakanuma Y, Ohta G, Itagaki E, Katagiri M. Cholesterol side-chain cleavage enzyme activity and cytochrome P450 content in adrenal mitochondria of a patient with congenital lipoid adrenal hyperplasia (Prader disease). Clin Chim Acta. 1977;77:301–6.

    CAS  PubMed  Google Scholar 

  16. Hauffa BP, Miller WL, Grumbach MM, Conte FA, Kaplan SL. Congenital adrenal hyperplasia due to deficient cholesterol side-chain cleavage activity (20, 22 desmolase) in a patient treated for 18 years. Clin Endocrinol. 1985;23:481–93.

    CAS  Google Scholar 

  17. Chung B, Matteson KJ, Voutilainen R, Mohandas TK, Miller WL. Human cholesterol side-chain cleavage enzyme, P450scc: cDNA cloning, assignment of the gene to chromosome 15, and expression in the placenta. Proc Natl Acad Sci USA. 1986;83:8962–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Matteson KJ, Chung B, Urdea MS, Miller WL. Study of cholesterol side-chain cleavage (20, 22 desmolase) deficiency causing congenital lipoid adrenal hyperplasia using bovine-sequence P450scc oligodeoxyribonucleotide probes. Endocrinology. 1986;118:1296–305.

    CAS  PubMed  Google Scholar 

  19. Morohashi K, Sogawa K, Omura T, Fujii-Kuriyama Y. Gene structure of human cytochrome P-450(scc), cholesterol desmolase. J Biochem. 1987;101:879–87.

    CAS  PubMed  Google Scholar 

  20. Lin D, Gitelman SE, Saenger P, Miller WL. Normal genes for the cholesterol side chain cleavage enzyme, P450scc, in congenital lipoid adrenal hyperplasia. J Clin Invest. 1991;88:1955–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Besman MJ, Yanagibashi K, Lee TD, Kawamura M, Hall PF, Shively JE. Identification of des-(Gly-Ile)-endozepine as an effector of corticotropin-dependent adrenal steroidogenesis: Stimulation of cholesterol delivery is mediated by the peripheral benzodiazepine receptor. Proc Natl Acad Sci USA. 1989;86:4897–901.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Lin D, Chang YJ, Strauss JF 3rd, Miller WL. The human peripheral benzodiazepine receptor gene: cloning and characterization of alternative splicing in normal tissues and in a patient with congenital lipoid adrenal hyperplasia. Genomics. 1993;18:643–50.

    CAS  PubMed  Google Scholar 

  23. Stocco DM, Clark BJ. Regulation of the acute production of steroids in steroidogenic cells. Endocr Rev. 1996;17:221–44.

    CAS  PubMed  Google Scholar 

  24. Pon LA, Orme-Johnson NR. Acute stimulation of steroidogenesis in corpus luteum and adrenal cortex by peptide hormones. J Biol Chem. 1986;261:6594–9.

    CAS  PubMed  Google Scholar 

  25. Pon LA, Hartigan JA, Orme-Johnson NR. Acute ACTH regulation of adrenal corticosteroid biosynthesis: Rapid accumulation of a phosphoprotein. J Biol Chem. 1986;261:13309–16.

    CAS  PubMed  Google Scholar 

  26. Epstein LF, Orme-Johnson NR. Regulation of steroid hormone biosynthesis. Identification of precursors of a phosphoprotein targeted to the mitochondrion in stimulated rat adrenal cortex cells. J Biol Chem. 1991;266:19739–45.

    CAS  PubMed  Google Scholar 

  27. Stocco DM, Sodeman TC. The 30 kDa mitochondrial proteins induced by hormone stimulation in MA-10 mouse Leydig tumor cells are processed from larger precursors. J Biol Chem. 1991;266:19731–8.

    CAS  PubMed  Google Scholar 

  28. Clark BJ, Wells J, King SR, Stocco DM. The purification, cloning and expression of a novel luteinizing hormone-induced mitochondrial protein in MA-10 cells mouse Leydig tumor cells. Characterization of the steroidogenic acute regulatory protein (StAR). J Biol Chem. 1994;269:28314–22.

    CAS  PubMed  Google Scholar 

  29. Saenger P, Klonari Z, Black SM, Compagnone N, Mellon SH, Fleischer A, Abrams CAL, Shackleton CHL, Miller WL. Prenatal diagnosis of congenital lipoid adrenal hyperplasia. J Clin Endocrinol Metab. 1995;80:200–5.

    CAS  PubMed  Google Scholar 

  30. Sugawara T, Holt JA, Driscoll D, Strauss JF 3rd, Lin D, Miller WL, Patterson D, Clancy KP, Hart IM, Clark BJ, Stocco DM. Human steroidogenic acute regulatory protein (StAR): functional activity in COS-1 cells, tissue-specific expression, and map** of the structural gene to 8p11.2 and an expressed pseudogene to chromosome 13. Proc Natl Acad Sci USA. 1995;92:4778–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Harikrishna JA, Black SM, Szklarz GD, Miller WL. Construction and function of fusion enzymes of the human cytochrome P450scc system. DNA Cell Biol. 1993;12:371–9.

    CAS  PubMed  Google Scholar 

  32. Black SM, Harikrishna JA, Szklarz GD, Miller WL. The mitochondrial environment is required for activity of the cholesterol side-chain cleavage enzyme, cytochrome P450scc. Proc Natl Acad Sci USA. 1994;91:7247–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Toff ME, Schleyer H, Strauss JF 3rd. Metabolism of 25-hydroxycholesterol by rat luteal mitochondria and dispersed cells. Endocrinology. 1982. 111:1785–90.

    Google Scholar 

  34. Tee MK, Lin D, Sugawara T, Holt JA, Guiguen Y, Buckingham B, Strauss JF 3rd, Miller WL. T → A transversion 11 bp from a splice acceptor site in the gene for steroidogenic acute regulatory protein causes congenital lipoid adrenal hyperplasia. Hum Mol Genet. 1995;4:2299–305.

    CAS  PubMed  Google Scholar 

  35. Bose HS, Sugawara T, Strauss JF 3rd, Miller WL. The pathophysiology and genetics of congenital lipoid adrenal hyperplasia. N Engl J Med. 1996;335:1870–8.

    CAS  PubMed  Google Scholar 

  36. Miller WL, Auchus RJ. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev. 2011;32:81–151.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Miller WL, Bose HS. Early steps in steroidogenesis: intracellular cholesterol trafficking. J Lipid Res. 2011;52:2111–35.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Porter FD, Herman GE. Malformation syndromes caused by disorders of cholesterol synthesis. J Lipid Res. 2011;52:6–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Illingworth D, Kenney TA, Orwoll ES. Adrenal function in heterozygous and homozygous hypobetalipoproteinemia. J Clin Endocrinol Metab. 1982;54:27–33.

    CAS  PubMed  Google Scholar 

  40. Dobs AS, Schrott H, Davidson MH, Bays H, Stein EA, Kush D, Wu M, Mitchel Y, Illingworth RD. Effects of high-dose simvastatin on adrenal and gonadal steroidogenesis in men with hypercholesterolemia. Metabolism. 2000;49:1234–8.

    CAS  PubMed  Google Scholar 

  41. Lohse P, Maas S, Sewell AC, van Diggelen OP, Seidel D. Molecular defects underlying Wolman disease appear to be more heterogeneous than those resulting in cholesteryl ester storage disease. J Lipid Res. 1999;40:221–8.

    CAS  PubMed  Google Scholar 

  42. Vanier MT, Millat G. Niemann-Pick disease type C. Clin Genet. 2003;64:269–81.

    CAS  PubMed  Google Scholar 

  43. Xu S, Benoff B, Liou HL, Lobel P, Stock AM. Structural basis of sterol binding by NPC2, a lysosomal protein deficient in Niemann-Pick type C2 disease. J Biol Chem. 2007;282:23525–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Kwon HJ, Abi-Mosleh L, Wang ML, Deisenhofer J, Goldstein JL, Brown MS, Infante RE. Structure of N-terminal domain of NPC1 reveals distinct subdomains for binding and transfer of cholesterol. Cell. 2009;137:1213–24.

    PubMed Central  PubMed  Google Scholar 

  45. Alpy F, Tomasetto C. MLN64 and MENTHO, two mediators of endosomal cholesterol transport. Biochem Soc Trans. 2006;34:343–5.

    CAS  PubMed  Google Scholar 

  46. Zhang M, Liu P, Dwyer NK, Christenson LK, Fujimoto T, Martinez F, Comly M, Hanover JA, Blanchette-Mackie EJ, Strauss JF 3rd. MLN64 mediates mobilization of lysosomal cholesterol to steroidogenic mitochondria. J Biol Chem. 2002;277:33300–10.

    CAS  PubMed  Google Scholar 

  47. Alpy F, Wendling C, Rio MC, Tomasetto C. MENTHO, a MLN64 homologue devoid of the START domain. J Biol Chem. 2002;277:50780–7.

    CAS  PubMed  Google Scholar 

  48. Alpy F, Stoeckel ME, Dierich A, Escola JM, Wendling C, Chenard MP, Vanier MT, Gruenberg J, Tomasetto C, Rio MC. The steroidogenic acute regulatory protein homolog MLN64, a late endosomal cholesterol-binding protein. J Biol Chem. 2001;276:4261–9.

    CAS  PubMed  Google Scholar 

  49. Clark BJ. The mammalian START domain protein family in lipid transport in health and disease. J Endocrinol. 2012;212:257–75.

    CAS  PubMed  Google Scholar 

  50. Watari H, Arakane F, Moog-Lutz C, Callen CB, Tomasetto C, Gerton GL, Rio MC, Baker ME, Strauss JF 3rd. MLN64 contains a domain with homology to the steroidogenic acute regulatory protein (StAR) that stimulates steroidogenesis. Proc Natl Acad Sci USA. 1997;94:8462–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Bose HS, Whittal RM, Huang MC, Baldwin MA, Miller WL. N-218 MLN64, a protein with StAR-like steroidogenic activity, is folded and cleaved similarly to StAR. Biochemistry. 2000;39:11722–31.

    CAS  PubMed  Google Scholar 

  52. Olvera-Sanchez S, Espinosa-Garcia MT, Monreal J, Flores-Herrera O, Martinez F. Mitochondrial heat shock protein participates in placental steroidogenesis. Placenta. 2011;32:222–9.

    CAS  PubMed  Google Scholar 

  53. Kishida T, Kostetskii I, Zhang Z, Martinez F, Liu P, Walkley SU, Dwyer NK, Blanchette-Mackie EJ, Radice GL, Strauss JF 3rd. Targeted mutation of the MLN64 START domain causes only modest alterations in cellular sterol metabolism. J Biol Chem. 2004;279:19276–85.

    CAS  PubMed  Google Scholar 

  54. Charman M, Kennedy BE, Osborne N, Karten B. MLN64 mediates egress of cholesterol from endosomes to mitochondria in the absence of functional Niemann-Pick Type C1 protein. J Lipid Res. 2010;51:1023–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Rodriguez-Agudo D, Ren S, Wong E, Marques D, Redford K, Gil G, Hylemon PB, Pandak WM. Intracellular cholesterol transporter StarD4 binds free cholesterol and increases cholesteryl ester formation. J Lipid Res. 2008;49:1409–19.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Chen Y-C, Meier RK, Zheng S, Khundmiri SJ, Tseng MT, Lederer ED, Epstein PN, Clark BJ. Steroidogenic acute regulatory (StAR)-related lipid transfer domain protein 5 (STARD5): localization and regulation in renal tubules. Am J Physiol Renal Physiol. 2009. 297:F380–8. http://ajprenal.physiology.org/content/297/2/F380.full. http://en.wikipedia.org/wiki/American_Journal_of_Physiology.

  57. Letourneau D, Lorin A, Lefebvre A, Frappier V, Gaudreault F, Najmanovich R, Lavigne P, Lehoux JG. StAR-related lipid transfer domain protein 5 binds primary bile acids. J Lipid Res. 2012;53:2677–89.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Bose HS, Whittal RM, Ran Y, Bose M, Baker BY, Miller WL. StAR-like activity and molten globule behavior of StARD6, a male germ-line protein. Biochemistry. 2008;47:2277–88.

    CAS  PubMed  Google Scholar 

  59. Riegelhaupt JJ, Waase MP, Garbarino J, Cruz DE, Breslow JL. Targeted disruption of steroidogenic acute regulatory protein D4 leads to modest weight reduction and minor alterations in lipid metabolism. J Lipid Res. 2010;51:1134–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Stevens VL, Xu T, Lambeth JD. Cholesterol pools in rat adrenal mitochondria: use of cholesterol oxidase to infer a complex pool structure. Endocrinology. 1992;130:1557–63.

    CAS  PubMed  Google Scholar 

  61. Tsujishita Y, Hurley JH. Structure and lipid transport mechanism of a StAR-related domain. Nat Struct Biol. 2000;7:408–14.

    CAS  PubMed  Google Scholar 

  62. Mathieu AP, Fleury A, Ducharme L, Lavigne P, LeHoux JG. Insights into steroidogenic acute regulatory protein (StAR)-dependent cholesterol transfer in mitochondria: evidence from molecular modeling and structure-based thermodynamics supporting the existence of partially unfolded states of StAR. J Mol Endocrinol. 2002;29:327–45.

    CAS  PubMed  Google Scholar 

  63. Yaworsky DC, Baker BY, Bose HS, Best KB, Jensen LB, Bell JD, Baldwin MA, Miller WL. pH-dependent interactions of the carboxyl-terminal helix of steroidogenic acute regulatory protein with synthetic membranes. J Biol Chem. 2005;280:2045–54.

    CAS  PubMed  Google Scholar 

  64. Thorsell AG, Lee WH, Persson C, Siponen MI, Nilsson M, Busam RD, Kotenyova T, Schuler H, Lethio L. Comparative structural analysis of lipid-binding START domains. PLoS ONE. 2011;6:e19521–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Romanowski MJ, Soccio RE, Breslow JL, Burley SK. Crystal structure of the Mus musculus cholesterol-regulated START protein 4 (StarD4) containing a StAR-related lipid transfer domain. Proc Natl Acad Sci USA. 2002;99:6949–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Miller WL. StAR search what we know about how the steroidogenic acute regulatory protein mediates mitochondrial cholesterol import. Mol Endocrinol. 2007;21:589–601.

    CAS  PubMed  Google Scholar 

  67. Arakane F, Sugawara T, Nishino H, Liu Z, Holt JA, Pain D, Stocco DM, Miller WL, Strauss JF 3rd. Steroidogenic acute regulatory protein (StAR) retains activity in the absence of its mitochondrial import sequence: implications for the mechanism of StAR action. Proc Natl Acad Sci USA. 1996;93:13731–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Bose HS, Lingappa VR, Miller WL. Rapid regulation of steroidogenesis by mitochondrial protein import. Nature. 2002;417:87–91.

    CAS  PubMed  Google Scholar 

  69. Bose HS, Whittal RM, Baldwin MA, Miller WL. The active form of the steroidogenic acute regulatory protein, StAR, appears to be a molten globule. Proc Natl Acad Sci USA. 1999;96:7250–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Baker BY, Yaworsky DC, Miller WL. A pH-dependent molten globule transition is required for activity of the steroidogenic acute regulatory protein, StAR. J Biol Chem. 2005;280:41753–60.

    CAS  PubMed  Google Scholar 

  71. Tuckey RC, Headlam MJ, Bose HS, Miller WL. Transfer of cholesterol between phospholipid vesicles mediated by the steroidogenic acute regulatory protein (StAR). J Biol Chem. 2002;277:47123–8.

    CAS  PubMed  Google Scholar 

  72. Baker BY, Epand RF, Epand RM, Miller WL. Cholesterol binding does not predict activity of the steroidogenic acute regulatory protein, StAR. J Biol Chem. 2007;282:10223–32.

    CAS  PubMed  Google Scholar 

  73. Arakane F, King SR, Du Y, Kallen CB, Walsh LP, Watari H, Stocco DM, Strauss JF 3rd. Phosphorylation of steroidogenic acute regulatory protein (StAR) modulates its steroidogenic activity. J Biol Chem. 1997;272:32656–62.

    CAS  PubMed  Google Scholar 

  74. Dyson MT, Kowalewski MP, Manna PR, Stocco DM. The differential regulation of steroidogenic acute regulatory protein-mediated steroidogenesis by type I and type II PKA in MA-10 cells. Mol Cell Endocrinol. 2009;300:94–103.

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Shen WJ, Patel S, Natu V, Hong R, Wang J, Azhar S, Kraemer FB. Interaction of hormone-sensitive lipase with steroidogenic acute regulatory protein. J Biol Chem. 2003;278:43870–6.

    CAS  PubMed  Google Scholar 

  76. Artemenko IP, Zhao D, Hales DB, Hales KH, Jefcoate CR. Mitochondrial processing of newly synthesized steroidogenic acute regulatory protein (StAR), but not total StAR, mediates cholesterol transfer to cytochrome P450 side chain cleavage enzyme in adrenal cells. J Biol Chem. 2001;276:46583–96.

    CAS  PubMed  Google Scholar 

  77. Bose M, Whittal RM, Miller WL, Bose HS. Steroidogenic activity of StAR requires contact with mitochondrial VDAC1 and phosphate carrier protein. J Biol Chem. 2008;283:8837–45.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Rone MB, Midzak AS, Issop L, Rammouz G, Jagannathan S, Fan J, Ye X, Blonder J, Veenstra T, Papadopoulos V. Identification of a dynamic mitochondrial protein complex driving cholesterol import, trafficking, and metabolism to steroid hormones. Mol Endocrinol. 2012;26:1868–82.

    CAS  PubMed  Google Scholar 

  79. Papadopoulos V, Miller WL. Role of mitochondria in steroidogenesis. Best Pract Res Clin Endocrinol Metab. 2012;26:771–90.

    CAS  PubMed  Google Scholar 

  80. Papadopoulos V, Baraldi M, Guilarte TR, Knudsen TB, Lacapere JJ, Lindemann P, Norenberg MD, Nutt D, Weizman A, Zhang MR, Gavish M. New nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol Sci. 2006;27:402–9.

    CAS  PubMed  Google Scholar 

  81. Antkiewicz-Michaluk L, Guidotti A, Krueger KE. Molecular characterization and mitochondrial density of a recognition site for peripheral-type benzodiazepine ligands. Mol Pharmacol. 1988;34:272–8.

    CAS  PubMed  Google Scholar 

  82. Papadopoulos V, Mukhin AG, Costa E, Krueger KE. The peripheral-type benzodiazepine receptor is functionally linked to Leydig cell steroidogenesis. J Biol Chem. 1990;265:3772–9.

    CAS  PubMed  Google Scholar 

  83. Rone MB, Liu J, Blonder J, Ye X, Veenstra TD, Young JC, Papadopoulos V. Targeting and insertion of the cholesterol-binding translocator protein into the outer mitochondrial membrane. BioChemistry. 2009;48:6909–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Lacapere JJ, Papadopoulos V. Peripheral-type benzodiazepine receptor: structure and function of a cholesterol-binding protein in steroid and bile acid biosynthesis. Steroids. 2003;68:569–85.

    CAS  PubMed  Google Scholar 

  85. Fan J, Liu J, Culty M, Papadopoulos V. Acyl-coenzyme A binding domain containing 3 (ACBD3; PAP7; GCP60): an emerging signaling molecule. Prog Lipid Res. 2010;49:218–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Liu J, Rone MB, Papadopoulos V. Protein-protein interactions mediate mitochondrial cholesterol transport and steroid biosynthesis. J Biol Chem. 2006;281:38879–93.

    CAS  PubMed  Google Scholar 

  87. McEnery MW, Snowman AM, Trifiletti RR, Snyder SH. Isolation of the mitochondrial benzodiazepine receptor: association with the voltage-dependent anion channel and the adenine nucleotide carrier. Proc Natl Acad Sci USA. 1992;89:3170–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Bayrhuber M, Meins T, Habeck M, Becker S, Giller K, Villinger S, Vonrhein C, Griesinger C, Zweckstetter M, Zeth K. Structure of the human voltage-dependent anion channel. Proc Natl Acad Sci USA. 2008;105:15370–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Hiller S, Garces RG, Malia TJ, Orekhov VY, Colombini M, Wagner G. Solution structure of the integral human membrane protein VDAC-1 in detergent micelles. Science. 2008;321:1206–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Mannella CA, Forte M, Colombini M. Toward the molecular structure of the mitochondrial channel, VDAC. J Bioenergy Biomembr. 1992;24:7–19.

    CAS  Google Scholar 

  91. Brdiczka DG, Zorov DB, Sheu SS. Mitochondrial contact sites: their role in energy metabolism and apoptosis. Biochim Biophys Acta. 2006;1762:148–63.

    CAS  PubMed  Google Scholar 

  92. Korkhov VM, Sachse C, Short JM, Tate CG. Three-dimensional structure of TspO by electron cryomicroscopy of helical crystals. Structure. 2010;18:677–87.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Jamin N, Neumann JM, Ostuni MA, Vu TK, Yao ZX, Murail S, Robert JC, Giatzakis C, Papadopoulos V, Lacapere JJ. Characterization of the cholesterol recognition amino acid consensus sequence of the peripheral-type benzodiazepine receptor. Mol Endocrinol. 2005;19:588–94.

    CAS  PubMed  Google Scholar 

  94. Midzak A, Akula N, Lecanu L, Papadopoulos V. Novel androstenetriol interacts with the mitochondrial translocator protein and controls steroidogenesis. J Biol Chem. 2011;286:9875–87.

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Papadopoulos V, Amri H, Li H, Boujrad N, Vidic B, Garnier M. Targeted disruption of the peripheral-type benzodiazepine receptor gene inhibits steroidogenesis in the R2C Leydig tumor cell line. J Biol Chem. 1997;272:32129–35.

    CAS  PubMed  Google Scholar 

  96. Li H, Yao Z, Degenhardt B, Teper G, Papadopoulos V. Cholesterol binding at the cholesterol recognition/interaction amino acid consensus (CRAC) of the peripheral-type benzodiazepine receptor and inhibition of steroidogenesis by an HIV TAT-CRAC peptide. Proc Natl Acad Sci USA. 2001;98:1267–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Morohaku K, Pelton SH, Daugherty DJ, Butler WR, Deng W, Selvaraj V. Translocator protein/peripheral benzodiazepine receptor is not required for steroid hormone biosynthesis Endocrinology. 2014;155:89–97. doi:10.1210/en.2013−1556

    Google Scholar 

  98. Miller WL. Congenital lipoid adrenal hyperplasia: the human gene knockout of the steroidogenic acute regulatory protein. J Mol Endocrinol. 1997;19:227–40.

    CAS  PubMed  Google Scholar 

  99. Ogata T, Matsuo N, Saito M, Prader A. The testicular lesion and sexual differentiation in congenital lipoid adrenal hyperplasia. Helv Paediatr Acta. 1989;43:531–8.

    CAS  PubMed  Google Scholar 

  100. Chen X, Baker BY, Abduljabbar MA, Miller WL. A genetic isolate of congenital lipoid adrenal hyperplasia with atypical clinical findings. J Clin Endocrinol Metab. 2005;90:835–40.

    CAS  PubMed  Google Scholar 

  101. Bose HS, Pescovitz OH, Miller WL. Spontaneous feminization in a 46, XX female patient with congenital lipoid adrenal hyperplasia caused by a homozygous frame-shift mutation in the steroidogenic acute regulatory protein. J Clin Endocrinol Metab. 1997;82:1511–5.

    CAS  PubMed  Google Scholar 

  102. Fujieda K, Tajima T, Nakae J, Sageshima S, Tachibana K, Suwa S, Sugawara T, Strauss JF 3rd. Spontaneous puberty in 46, XX subjects with congenital lipoid adrenal hyperplasia. Ovarian steroidogenesis is spared to some extent despite inactivating mutations in the steroidogenic acute regulatory protein (StAR) gene. J Clin Invest. 1997;99:1265–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Voutilainen R, Miller WL. Developmental expression of genes for the steroidogenic enzymes P450scc (20, 22 desmolase), P450c17 (17α-hydroxylase/17, 20 lyase) and P450c21 (21-hydroxylase) in the human fetus. J Clin Endocrinol Metab. 1986;63:1145–50.

    CAS  PubMed  Google Scholar 

  104. Hasegawa T, Zhao LP, Caron KM, Majdic G, Suzuki T, Shizawa S, Sasano H, Parker KL. Developmental roles of the steroidogenic acute regulatory protein (StAR) as revealed by StAR knockout mice. Mol Endocrinol. 2000;14:1462–71.

    CAS  PubMed  Google Scholar 

  105. Nakae J, Tajima T, Sugawara T, Arakane F, Hanaki K, Hotsubo T, Igarashi N, Igarashi Y, Ishii T, Koda N, Kondo T, Kohno H, Nakagawa Y, Tachibana K, Takeshima Y, Tsubouchi K, Strauss JF 3rd, Fujieda K. Analysis of the steroidogenic acute regulatory protein (StAR) gene in Japanese patients with congential lipoid adrenal hyperplasia. Hum Mol Genet. 1997;6:571–6.

    CAS  PubMed  Google Scholar 

  106. Kim JM, Choi JH, Lee JH, Kim GH, Lee BH, Kim HS, Shin JH, Shin CH, Kim CJ, Yu J, Lee DY, Cho WK, Suh BK, Lee JE, Chung HR, Yoo HW. High allele frequency of the p.Q258X mutation and identification of a novel mis-splicing mutation in the STAR gene in Korean patients with congenital lipoid adrenal hyperplasia. Eur J Endocrinol. 2011;165:771–8.

    CAS  PubMed  Google Scholar 

  107. Flück CE, Maret A, Mallet D, Portrat-Doyen S, Achermann JC, Leheup B, Theintz GE, Mullis PE, Morel Y. A novel mutation L260P of the steroidogenic acute regulatory protein gene in three unrelated patients of Swiss ancestry with congenital lipoid adrenal hyperplasia. J Clin Endocrinol Metab. 2005;90:5304–8.

    PubMed  Google Scholar 

  108. Gassner HL, Toppari J, Quinteiro Gonzalez S, Miller WL. Near-miss apparent SIDS from adrenal crisis. J Pediatr. 2004;145:178–83.

    PubMed  Google Scholar 

  109. Baker BY, Lin L, Kim CJ, Raza J, Smith CP, Miller WL, Achermann JC. Nonclassic congenital lipoid adrenal hyperplasia: a new disorder of the steroidogenic acute regulatory protein with very late presentation and normal male genitalia. J Clin Endocrinol Metab. 2006;91:4781–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Metherell LA, Naville D, Halaby G, Begeot M, Huebner A, Nurnberg G, Nurnberg P, Green J, Tomlinson JW, Krone NP, Lin L, Racine M, Berney DM, Achermann JC, Arlt W, Clark AJ. Nonclassic lipoid congenital adrenal hyperplasia masquerading as familial glucocorticoid deficiency. J Clin Endocrinol Metab. 2009;94:3865–7381.

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Sahakitrungruang T, Soccio RE, Lang-Muritano M, Walker JM, Achermann JC, Miller WL. Clinical, genetic, and functional characterization of four patients carrying partial loss-of-function mutations in the steroidogenic acute regulatory protein (StAR). J Clin Endocrinol Metab. 2010;95:3352–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Kirkland RT, Kirkland JL, Johnson CM, Horning MG, Librik L, Clayton GW. Congenital lipoid adrenal hyperplasia in an eight-year-old phenotypic female. J Clin Endocrinol Metab. 1973;36:488–96.

    CAS  PubMed  Google Scholar 

  113. Linder BL, Esteban NV, Yergey AL, Winterer JC, Loriaux DL, Cassorla F. Cortisol production rate in childhood and adolescence. J Pediatr. 1990;117:892–6.

    CAS  PubMed  Google Scholar 

  114. Esteban NV, Loughlin T, Yergey AL, Zawadzki JK, Booth JD, Winterer JC, Loriaux DL. Daily cortisol production rates in man determined by stable isotope dilution/mass spectrometry. J Clin Endocrinol Metab. 1991;72:39–45.

    CAS  PubMed  Google Scholar 

  115. Kerrigan JR, Veldhuis JD, Leyo SA, Iranmanesh A, Rogol AD. Estimation of daily cortisol production and clearance rates in normal pubertal males by deconvolution analysis. J. Clin Endocrinol Metab. 1993;76:1505–10.

    CAS  Google Scholar 

  116. Khoury K, Barbar E, Ainmelk Y, Ouellet A, LeHoux JG. Gonadal function, first cases of pregnancy, and child delivery in a woman with lipoid congenital adrenal hyperplasia. J Clin Endocrinol Metab. 2009;94:1333–7.

    CAS  PubMed  Google Scholar 

  117. Tajima T, Fujieda K, Kouda N, Nakae J, Miller WL. Heterozygous mutation in the cholesterol side chain cleavage enzyme (P450scc) gene in a patient with 46, XY sex reversal and adrenal insufficiency. J Clin Endocrinol Metab. 2001;86:3820–5.

    CAS  PubMed  Google Scholar 

  118. Nebert DW, Wikvall K, Miller WL. Human cytochromes P450 in health and disease. Phil Trans R Soc B. 2013;368:20120431. http://dx.doi.org/10.1098/rstb.2012.0431.

    PubMed Central  PubMed  Google Scholar 

  119. Miller WL. Minireview: regulation of steroidogenesis by electron transfer. Endocrinology. 2005;146:2544–50.

    CAS  PubMed  Google Scholar 

  120. Kuwada M, Kitajima R, Suzuki H, Horie S. Purification and properties of cytochrome P-450(SCC) from pig testis mitochondria. Biochem Biophys Res Commun. 1991;176:1501–8.

    CAS  PubMed  Google Scholar 

  121. Mast N, Annalora AJ, Lodowski DT, Palczewski K, Stout CD, Pikuleva IA. Structural basis for three-step sequential catalysis by the cholesterol side chain cleavage enzyme CYP11A1. J Biol Chem. 2011;286:5607–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Strushkevich N, MacKenzie F, Cherkesova T, Grabovec I, Usanov S, Park HW. Structural basis for pregnenolone biosynthesis by the mitochondrial monooxygenase system. Proc Natl Acad Sci USA. 2011;108:10139–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Freeman MR, Dobritsa A, Gaines P, Segraves WA, Carlson JR. The dare gene: steroid hormone production, olfactory behavior, and neural degeneration in Drosophila. Development. 1999;126:4591–602.

    CAS  PubMed  Google Scholar 

  124. Yang X, Iwamoto K, Wang M, Artwohl J, Mason JI, Pang S. Inherited congenital adrenal hyperplasia in the rabbit is caused by a deletion in the gene encoding cytochrome P450 cholesterol side-chain cleavage enzyme. Endocrinology. 1993;132:1977–82.

    CAS  PubMed  Google Scholar 

  125. Hu MC, Hsu NC, El Hadj NB, Pai CI, Chu HP, Wang CKL, Chung BC. Steroid deficiency syndromes in mice with targeted disruption of Cyp11a1. Mol Endocrinol. 2002;16:1943–50.

    CAS  PubMed  Google Scholar 

  126. Miller WL. Why nobody has P450scc (20, 22 desmolase) deficiency. (Letter to the Editor). J Clin Endocrinol Metab. 1998;83:1399–400.

    CAS  PubMed  Google Scholar 

  127. Tee MK, Abramsohn M, Loewenthal N, Harris M, Siwach S, Kaplinsky A, Markus B, Birk O, Sheffield VC, Pavari R, Hershkovitz E, Miller WL. Varied clinical presentations with mutations in CYP11A1 encoding the cholesterol side chain cleavage enzyme, P450scc. J Clin Endocrinol Metab. 2013;98:713–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Rubtsov P, Karmanov M, Sverdlova P, Spirin P, Tiulpakov A. A novel homozygous mutation in CYP11A1 gene is associated with late onset adrenal insufficiency and hypospadias in a 46 XY patient. J Clin Endocrinol Metab. 2009;94:936–9.

    CAS  PubMed  Google Scholar 

  129. Sahakitrungruang T, Tee MK, Blackett PR, Miller WL. Partial defect in the cholesterol side-chain cleavage enzyme P450scc (CYP11A1) resembling nonclassic congenital lipoid adrenal hyperplasia. J Clin Endocrinol Metab. 2011;96:792–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Gucev Z, Tee MK, Chitayat D, Wherrett D, Miller WL. Distinguishing deficiencies of StAR and P450scc causing neonatal adrenal failure. J Pediatr. 2013;162:819–22.

    CAS  PubMed  Google Scholar 

  131. Schimmer BP, White PC. Steroidogenic factor 1: Its roles in differentiation, development and disease. Mol Endocrinol. 2010;24:1322–37.

    CAS  PubMed  Google Scholar 

  132. Achermann JC, Ito M, Hindmarsh PC, Jameson JL. A mutation in the gene encoding steroidogenic factor-1 causes XY sex reversal and adrenal failure in humans. Nat Genet. 1999;22:125–6.

    CAS  PubMed  Google Scholar 

  133. Camats N, Pandey AV, Fernandez-Cancio M, Andaluz P, Janner M, Toran N, Moreno F, Bereket A, Akcay T, Garcia-Garcia E, Munoz MT, Gracia R, Nistal M, Castano L, Mullis PE, Carrascosa A, Audi L, Flück CE. Ten novel mutations in the NR5A1 gene cause disordered sex development in 46, XY and ovarian insufficiency in 46, XX individuals. J Clin Endocrinol Metab. 2012;97:E1294–306.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter L. Miller M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Miller, W. (2014). Congenital Lipoid Adrenal Hyperplasia. In: Clark, B., Stocco, D. (eds) Cholesterol Transporters of the START Domain Protein Family in Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1112-7_4

Download citation

Publish with us

Policies and ethics

Navigation