Regulation of Cell Fate by Processed Vg1 Protein

  • Chapter
Organization of the Early Vertebrate Embryo

Part of the book series: NATO ASI Series ((NSSA,volume 279))

  • 74 Accesses

Summary

Mesoderm induction during Xenopus development has been extensively studied, and two members of the transforming growth factor-β family, activin βB and Vg1, have emerged as strong candidates for the natural inducer of dorsal mesoderm. Analysis of Vg1 activity has relied on injection of hybrid Vg1 molecules, which have not been shown to direct efficient secretion of active ligand and therefore, the mechanism of mesoderm induction by processed Vg1 is unclear. Injection of Xenopus oocytes with a chimeric activin-Vg1 mRNA, encoding the pro-region of activin βB fused to the mature region of Vg1, directed the processing and secretion of mature Vg1, resulting in soluble preparations with a concentration of 100–500 ng/ml. Treatment of animal pole expiants with mature Vg1 resulted in formation of dorsal mesodermal tissues and dose-dependent activation of both dorsal and ventrolateral mesodermal markers. At high doses mature Vg1 induced formation of “embryoids” with a rudimentary axial pattern, head structures including eyes, and a functional neuromuscular system. Furthermore, truncated forms of the activin and FGF receptors, which block mesoderm induction in the intact embryo, fully inhibited mature Vg1 activity. Follistatin, a specific inhibitor of activin βB which does not block endogenous mesoderm induction, failed to inhibit Vg1. The results support a role for endogenous Vgl in dorsal mesoderm induction during Xenopus development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Amaya, E., Musci, T. J. and Kirschner, M. W. (1991) Expression of a dominant negative mutant of the FGF receptor disrupts mesoderm formation in Xenopus embryos. Cell 66: 257–270.

    Article  PubMed  CAS  Google Scholar 

  • Asashima, M., Nakano, H., Shimada, K., Kinoshita, K., Ishii, K., Shibai, H. and Ueno, N. (1990a) Mesodermal induction in early amphibian embryos by activin A (erythroid differentiation factor). Roux’s Arch. Dev. Biol. 198: 330–335.

    Article  CAS  Google Scholar 

  • Asashima, M., Nakano, H., Uchiyama, H., Davids, M., Plessow, S., Loppnow-Blinde, B., Hoppe, P., Dau, H. and Tiedemann, H. (1990b) The vegetalizing factor belongs to a family of mesoderm inducing proteins related to erythroid differentiation factor. Naturwissenschaften 77: 389–391.

    Article  PubMed  CAS  Google Scholar 

  • Asashima, M., Nakano, H., Uchiyama, H., Sugino, H., Nakamura, T., Eto, Y., Ejima, D., Nishimatsu, S. I., Ueno, N. and Kinoshita, K. (1991) Presence of activin (erythroid differentiation factor) in unfertilized eggs and blastulae of Xenopus laevis. Proc. Natl. Acad. Sci. USA 88: 6511–6514.

    Article  PubMed  CAS  Google Scholar 

  • Blumberg, B., Wright, C. V., De Robertis, E. M. and Cho, K. W. (1991) Organizer-specific homeobox genes in Xenopus laevis embryos. Science 253:194–196.

    Article  PubMed  CAS  Google Scholar 

  • Boterenbrood, E. C. and Nieuwkoop, P. D. (1973) The formation of the mesoderm in urodelean amphibians. V. Its regional induction by the endoderm. Roux Arch. EntwMech. Org. 173: 319–332.

    Article  Google Scholar 

  • Christian, J. L., McMahon, J. A., McMahon, A. P. and Moon, R. T. (1991) Xwnt-8, a Xenopus Wnt-1/int-1-related gene responsive to mesoderm inducing factors may play a role in ventral mesodermal patterning during embryogenesis. Development 111: 1045–1056.

    PubMed  CAS  Google Scholar 

  • Christian, J. L. and Moon, R. T. (1993) Interactions between Xwnt-8 and Spemann organizer signaling pathways generate dorsoventral pattern in the embryonic mesoderm of Xenopus. Genes Dev. 7:13–28.

    Article  PubMed  CAS  Google Scholar 

  • Christian, J. L., Olson, D. J. and Moon, R. T. (1992) Xwnt-8 modifies the character of mesoderm induced by bFGF in isolated Xenopus ectoderm. EMBO J. 11: 33–41.

    PubMed  CAS  Google Scholar 

  • Cornell, R. and Kimelman, D. (1994) Activin-mediated mesoderm induction requires FGF. Development 120: 453–462.

    PubMed  CAS  Google Scholar 

  • Dale, L., Howes, G., Price, B. M. J. and Smith, J. C. (1992) Bone morphogenetic protein 4: a ventralizing factor in Xenopus development. Development 115: 573–585.

    PubMed  CAS  Google Scholar 

  • Dale, L., Matthews, G. and Colman, A. (1993) Secretion and mesoderm-inducing activity of the TGF-β-related domain of Xenopus Vgl. EMBO J. 12: 4471–4480.

    PubMed  CAS  Google Scholar 

  • Dale, L., Matthews, G., Tabe, L. and Colman, A. (1989) Developmental expression of the protein product of Vg1, a localized maternal mRNA in the frog Xenopus laevis. EMBO J. 8: 1057–1065.

    PubMed  CAS  Google Scholar 

  • Dale, L. and Slack, J. M. W. (1987) Regional specification within the mesoderm of early embryos of Xenopus laevis. Development 100: 279–295.

    PubMed  CAS  Google Scholar 

  • Dohrmann, C. E., Hemmati, B. A., Thomsen, G. H., Fields, A., Woolf, T. M. and Melton, D. A. (1993) Expression of activin mRNA during early development in Xenopus laevis. Dev. Biol. 157: 474–83.

    Article  PubMed  CAS  Google Scholar 

  • Elinson, R. P. and Kao, K. R. (1989) The location of dorsal information in frog early development. Dev. Growth Diff. 31: 423–430.

    Article  Google Scholar 

  • Elinson, R. P. and Rowning, B. (1988) A transient array of parallel microtubules in frog eggs: potential tracks for a cytoplasmic rotation that specifies the dorso-ventral axis. Dev. Biol. 128: 185–97.

    Article  PubMed  CAS  Google Scholar 

  • Fukui, A., Nakamura, T., Sugino, K., Takio, K., Uchiyama, H., Asashima, M. and Sugino, H. (1993) Isolation and characterization of Xenopus follistatin and activin. Dev. Biol. 159: 131–139.

    Article  PubMed  Google Scholar 

  • Fukui, A., Nakamura, T., Uchiyama, H., Sugino, K., Sugino, H. and Asashima, M. (1994) Identification of activins A, AB, and B and follistatin proteins in Xenopus embryos. Dev. Biol. 163: 279–281.

    Article  PubMed  CAS  Google Scholar 

  • Gerhart, J., Danilchik, M., Doniach, T., Roberts, S., Rowning, B. and Stewart, R. (1989) Cortical rotation of the Xenopus egg: consequences for the anteroposterior pattern of embryonic dorsal development. Development 107 (Suppl.): 37–51.

    PubMed  Google Scholar 

  • Gimlich, R. L. and Gerhart, J. C. (1984) Early cellular interactions promote embryonic axis formation in Xenopus laevis. Dev. Biol. 104: 117–130.

    Article  PubMed  CAS  Google Scholar 

  • Graff, J. M., Thies, R. S., Song, J. J., Celeste, A. J. and Melton, D. A. (1994) Studies with a Xenopus BMP receptor suggest that ventral mesoderm-inducing signals override dorsal signals invivo. Cell 79: 169–179.

    Article  PubMed  CAS  Google Scholar 

  • Gray, A. M. and Mason, A. J. (1990) Requirement for activin A and transforming growth factor-β1 pro-regions in homodimer assembly. Science 247:1328–1330.

    Article  PubMed  CAS  Google Scholar 

  • Hamburger, V. (1988) “The Heritage of Experimental Embryology: Hans Spemann and the Organizer,” Oxford University Press, New York.

    Google Scholar 

  • Hemmati-Brivanlou, A., Kelley, O. G. and Melton, D. A. (1994) Follistatin, an antagonist of activin, is present in the Spemann organizer and displays direct neuralizing activity. Cell 77: 283–295.

    Article  PubMed  CAS  Google Scholar 

  • Hemmati-Brivanlou, A. and Melton, D. A. (1992) A truncated activin receptor dominantly inhibits mesoderm induction and formation of axial structures in Xenopus embryos. Nature 359: 609–614.

    Article  PubMed  CAS  Google Scholar 

  • Jones, C. M., Lyons, K. M., Lapan, P. M., Wright, C. V. E., Hogan, B. J. M (1992) DVR-4 (bone morphogenetic protein-4) as a postero-ventralizing factor in Xenopus mesoderm induction. Development 115: 639–647.

    PubMed  CAS  Google Scholar 

  • Jones, E. A., Abel, M. H. and Woodland, H. R. (1993) The possible role of mesodermal growth factors in the formation of endoderm in Xenopus laevis. Roux’s Arch. Dev. Biol. 202: 233–239.

    Article  CAS  Google Scholar 

  • Kageura, H. (1990) Spatial distribution of the capacity to initiate a secondary embryo in the 32-cell embryo of Xenopus laevis. Dev. Biol. 142: 432–8.

    Article  PubMed  CAS  Google Scholar 

  • Kimelman, D. and Kirschner, M. (1987) Synergistic induction of mesoderm by FGF and TGFβ and the identification of FGF in the early Xenopus embryo. Cell 51: 869–877.

    Article  PubMed  CAS  Google Scholar 

  • Kingsley, D. M. (1994) The TGF-β superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev. 8:133–146.

    Article  PubMed  CAS  Google Scholar 

  • Kintner, C. R. and Melton, D. A. (1987) Expression of Xenopus N-CAM RNA in ectoderm is an early response to neural induction. Development 99: 311–325.

    PubMed  CAS  Google Scholar 

  • Klein, P. S. and Melton, D. A. (1994) Hormonal regulation of embryogenesis: the formation of mesoderm in Xenopus laevis. Endo. Rev. 15: 326–340.

    CAS  Google Scholar 

  • Kogawa, K., Nakamura, T., Sugino, K., Takio, K., Titani, K. and Sugino, H. (1991) Activin-binding protein is present in pituitary. Endocrinology 128:1434–1440.

    Article  PubMed  CAS  Google Scholar 

  • Koster, M., Plessow, S., Clement, J. H., Lorenz, A., Tiedemann, H. and Knochel, W. (1991) Bone morphogenetic protein 4 (BMP4), a member of the TGF-β family, in early embryos of Xenopus laevis: analysis of mesoderm inducing activity. Mech. Dev. 33: 191–200.

    Article  PubMed  CAS  Google Scholar 

  • Krieg, P., Varnum, S., Wormington, M. and Melton, D. A. (1989) The mRNA encoding elongation factor lα (EF1α) is a major transcript at the mid-blastula transition in Xenopus. Dev. Biol. 133: 93–100.

    Article  PubMed  CAS  Google Scholar 

  • Krieg, P. A. and Melton, D. A. (1987) In vitro RNA synthesis with SP6 RNA polymerase. Meth. Enzymol. 155: 397–415.

    Article  PubMed  CAS  Google Scholar 

  • Ku, M. and Melton, D. A. (1993) Xwnt-11: a maternally expressed Xenopus wnt gene. Development 119: 1161–1173.

    PubMed  CAS  Google Scholar 

  • LaBonne, C. and Whitman, M. (1994) Mesoderm induction by activin requires FGF-mediated intracellular signals. Development 120: 463–472.

    PubMed  CAS  Google Scholar 

  • Massague, J., Attisano, L. and Wrana, J. L. (1994) The TGF-β family and its composite receptors. TICB 4: 172–178.

    Article  CAS  Google Scholar 

  • Melton, D. A. (1987) Translocation of a localized maternal mRNA to the vegetal pole of Xenopus oocytes. Nature 328: 80–82.

    Article  PubMed  CAS  Google Scholar 

  • Moon, R. T. and Christian, J. L. (1992) Competence modifiers synergize with growth factors during mesoderm induction and patterning in Xenopus. Cell 71: 709–712.

    Article  PubMed  CAS  Google Scholar 

  • Mowry, K. and Melton, D. (1992) Vegetal messenger RNA localization directed by a 340-nt sequence element in Xenopus oocytes. Science 255: 991–994.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, T., Takio, K., Eto, Y., Shibai, H., Titani, K. and Sugino, H. (1990) Activin-binding protein from rat ovary is follistatin. Science 247: 836–838.

    Article  PubMed  CAS  Google Scholar 

  • Nieuwkoop, P. D. (1969a) The formation of mesoderm in urodelean amphibians. I. Induction by the endoderm. Roux Arch. EntwMech. Org. 162: 341–373.

    Article  Google Scholar 

  • Nieuwkoop, P. D. (1969b) The formation of the mesoderm in urodelean amphibians II. The origin of the dorso-ventral polarity of the mesoderm. Roux Arch. EntwMech. Org. 163: 298–315.

    Article  Google Scholar 

  • Nishimatsu, S., Takebayashi, K., Suzuki, A., Murakami, K. and Ueno, N. (1993) Immunodetection of Xenopus bone morphogenetic protein-4 in early embryos. Growth Factors 8: 173–6.

    Article  PubMed  CAS  Google Scholar 

  • Peng, H. B. (1991) Solutions and protocols in “Methods in Cell Biology 36”. B. K. Kay, H. B. Peng, eds., Academic Press, New York.

    Google Scholar 

  • Rebagliati, M. R. and Dawid, I. B. (1993) Expression of activin transcripts in follicle cells and oocytes of Xenopus laevis. Dev. Biol. 159: 574–580.

    Article  PubMed  CAS  Google Scholar 

  • Rebagliati, M. R., Weeks, D. L., Harvey, R. P. and Melton, D. A. (1985) Identification and cloning of localized maternal mRNAs from Xenopus eggs. Cell 42: 769–777.

    Article  PubMed  CAS  Google Scholar 

  • Schulte-Merker, S., Smith, J. C. and Dale, L. (1994) Effects of truncated activin and FGF receptors and of follistatin on the inducing activities of BVg1 and activin: does activin play a role in mesoderm induction? EMBO J. 13: 3533–3541.

    PubMed  CAS  Google Scholar 

  • Sive, H. L. (1993) The frog prince-ss: A molecular formula for dorsal-ventral patterning in Xenopus. Genes Dev. 7:1–12.

    Article  PubMed  CAS  Google Scholar 

  • Slack, J. M. W. (1991a) “From Egg to Embryo: Regional Specification in Early Development,” Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Slack, J. M. W. (1991b) The nature of the mesoderm-inducing signal in Xenopus: a transfilter induction study. Development 113: 661–669.

    PubMed  CAS  Google Scholar 

  • Slack, J. M. W. (1994) Inducing factors in Xenopus early embryos. Curr. Biol. 4: 116–126.

    Article  PubMed  CAS  Google Scholar 

  • Slack, J. M. W., Darlington, B. G., Heath, J. K. and Godsave, S. F. (1987) Mesoderm induction in early Xenopus embryos by heparin-binding growth factors. Nature 326: 197–200.

    Article  PubMed  CAS  Google Scholar 

  • Slack, J. M. W., Isaacs, H. V. and Darlington, B. G. (1988) Inductive effects of fibroblast growth factor and lithium ion on Xenopus blastula ectoderm. Development 103: 581–590.

    PubMed  CAS  Google Scholar 

  • Smith, J. C., Price, B. M. J., Green, J. B. A., Weigel, D. and Herrmann, B. G. (1991) Expression of a Xenopus homolog of Brachyury (T) in an immediate-early response to mesoderm induction. Cell 67: 79–87.

    Article  PubMed  CAS  Google Scholar 

  • Smith, J. C., Price, B. M. J., Van Nimmen, K. and Huylebroeck, D. (1990) Identification of a potent Xenopus mesoderm-inducing factor as a homolog of activin A. Nature 345: 729–731.

    Article  PubMed  CAS  Google Scholar 

  • Smith, W. B. and Harland, R. M. (1992) Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell 70: 829–840.

    Article  PubMed  CAS  Google Scholar 

  • Smith, W. C., Knecht, A. K., Wu, M. and Harland, R.M. (1993) Secreted noggin protein mimics the Spemann organizer in dorsalizing Xenopus mesoderm. Nature 361: 547–549.

    Article  PubMed  CAS  Google Scholar 

  • Smith, W. C. and Harland, R. M. (1991) Injected Xwnt-8 RNA acts early in Xenopus embryos to promote formation of a vegetal dorsalizing center. Cell 67: 753–765.

    Article  PubMed  CAS  Google Scholar 

  • Sokol, S., Christian, J. L., Moon, R. T. and Melton, D. A. (1991) Injected wnt RNA induces a complete body axis in Xenopus embryos. Cell 67: 741–752.

    Article  PubMed  CAS  Google Scholar 

  • Sokol, S., Wong, G. G. and Melton, D. A. (1990) A mouse macrophage factor induces head structures and organizes a body axis in Xenopus. Science 249: 561–564.

    Article  PubMed  CAS  Google Scholar 

  • Sokol, S. Y. (1993) Mesoderm formation in Xenopus ectodermal explants overexpressing Xwnt8: evidence for a cooperating signal reaching the animal pole by gastrulation. Development 118: 1335–1342.

    PubMed  CAS  Google Scholar 

  • Sokol, S. Y. and Melton, D. A. (1992) Interaction of wnt and activin in dorsal mesoderm induction in Xenopus. Dev. Biol. 154: 1–8.

    Article  Google Scholar 

  • Stutz, F. and Sphor, G. (1986) Isolation and characterization of sarcomeric actin genes expressed in Xenopus laevis embryos. J. Mol. Biol. 187: 349–361.

    Article  PubMed  CAS  Google Scholar 

  • Sudarwati, S. and Nieuwkoop, P. D. (1971) Mesoderm formation in the anuran Xenopus laevis (Daudin). Roux Arch. EntwMech. Org. 166:189–204.

    Article  Google Scholar 

  • Suzuki, A., Thies, R. S., Yamaji, N., Song, J. J., Wozney, J. M., Murakami, K. and Ueno, N. (1994) A truncated BMP receptor affects dorsal-ventral patterning in the early Xenopus embryo. Proc. Natl. Acad. Sci. U.S.A. 91: 10255–10259.

    Article  PubMed  CAS  Google Scholar 

  • Symes, K. and Smith, J. C. (1987) Gastrulation movements provide an early marker of mesoderm induction in Xenopus laevis. Development 101: 339–349.

    Google Scholar 

  • Tannahill, D. and Melton, D. A. (1989) Localized synthesis of the Vg1 protein during early Xenopus development. Development 106: 775–785.

    PubMed  CAS  Google Scholar 

  • Tashiro, K., Yamada, R., Asano, M., Hasimoto, M., Muramatsu, M. and Shiokawa, K. (1991) Expression of mRNA for activin-binding protein (follistatin) during early embryonic development of Xenopus laevis. BBRC 174: 1022–1027.

    PubMed  CAS  Google Scholar 

  • Thomsen, G., Woolf, T., Whitman, M., Sokol, S., Vaughan, J., Vale, W. and Melton, D. A. (1990) Activins are expressed early in Xenopus embryogenesis and can induce axial mesoderm and anterior structures. Cell 63: 485–493.

    Article  PubMed  CAS  Google Scholar 

  • Thomsen, G. H. and Melton, D. A. (1993) Processed Vg1 protein is an axial mesoderm inducer in Xenopus. Cell 74: 433–41.

    Article  PubMed  CAS  Google Scholar 

  • Ueno, N., Shoda, A., Takebayashi, K., Suzuki, A., Nishimatsu, S.-L., Kikuchi, T., Wakimasu, M., Fu**o, M. and Murakami, K. (1992) Identification of bone morphogenetic protein-2 in early Xenopus laevis embryos. Growth Factors 7: 233–240.

    Article  PubMed  CAS  Google Scholar 

  • van den Eijnden-Van Raaij, A. J. M., van Zoelent, E. J. J., van Nimmen, K., Koster, C. H., Snoek, G. T., Durston, A. J. and Huylebroeck, D. (1990) Activin-like factor from a Xenopus cell line responsible for mesoderm induction. Nature 345: 732–734.

    Article  PubMed  Google Scholar 

  • Vincent, J.-P. and Gerhart, J. C. (1987) Subcortical rotation in Xenopus eggs: an early step in embryonic axis specification. Dev. Biol. 123: 526–539.

    Article  PubMed  CAS  Google Scholar 

  • Weeks, D. L. and Melton, D. A. (1987) A maternal mRNA localized to the vegetal hemisphere Xenopus eggs codes for a growth factor related to TGF-β. Cell 51: 861–867.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, P. A. and Melton, D. A. (1994) Mesodermal patterning by an inducer gradient depends on secondary cell-cell communication. Curr. Biol. 4: 676–686.

    Article  PubMed  CAS  Google Scholar 

  • Yisraeli, J. and Melton, D. A. (1988) The maternal mRNA Vg1 is correctly localized following injection into Xenopus oocytes. Nature 336: 592–595.

    Article  PubMed  CAS  Google Scholar 

  • Yisraeli, J., Sokol, S. and Melton, D. A. (1990) A two step model for the localization of materna mRNA in Xenopus oocytes: involvement of microtubules and microfilaments in the translocation and anchoring of Vg1 RNA. Development 108: 289–298.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kessler, D.S. (1995). Regulation of Cell Fate by Processed Vg1 Protein. In: Zagris, N., Duprat, A.M., Durston, A. (eds) Organization of the Early Vertebrate Embryo. NATO ASI Series, vol 279. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1618-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1618-1_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1620-4

  • Online ISBN: 978-1-4899-1618-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation