Part of the book series: NATO ASI Series ((NSSB,volume 141))

  • 353 Accesses

Abstract

String models were initially invented around 1970 to describe the phenomenology of soft hadronic interactions. They were motivated by the following phenomenological observation, called duality1: in a first approximation, inelastic amplitudes, e.g. пp → п0n, can be described by either a sum of direct channel resonances (∆, N, ...) or a sum of crossed-channel Regge poles (ϱ, ϱ′, ...). This approximation, called the narrow resonance approximation, neglects unitarity corrections. Its validity for inelastic amplitudes is of the order of 10%. It is much better than adding the separate contributions of Regge poles and resonances, as naïve field theory would suggest should be done, which would come out wrong by a factor of 2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
EUR 9.99
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 53.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. G. Veneziano, Phys. Rep. 9C: 199 (1973).

    Google Scholar 

  2. J.H. Schwarz, Phys. Rep. 8C: 269 (1973).

    Article  Google Scholar 

  3. J. Paton and Chan Hong-Mo, Nucl. Phys. B10: 519 (1969).

    Google Scholar 

  4. J. Scherk, Rev. Mod. Phys. 47: 123 (1975).

    Article  MathSciNet  Google Scholar 

  5. V. Alessandrini, D. Amati, M. Le Bellac and D. Olive, Phys. Rep. 1C: 269 (1971).

    Article  Google Scholar 

  6. P. Goddard, J. Goldstone, C. Rebbi and C.B. Thorn, Nucl. Phys. B56: 109 (1973).

    Article  Google Scholar 

  7. C. Rebbi, Phys. Rep. 12C: 1 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Mandelstam, Phys. Rep. 13C: 259 (1974).

    Article  Google Scholar 

  9. J.H. Schwarz, Phys. Rep. 89C: 223 (1982).

    Article  Google Scholar 

  10. J. Goldstone and C.B. Thorn, private communication.

    Google Scholar 

  11. P. Goddard and C.B. Thorn, Phys. Lett. 40B: 235 (1972).

    Google Scholar 

  12. P. Goddard, C. Rebbi and C.B. Thorn, Nuovo Cim. 12A: 425 (1972).

    Article  MathSciNet  Google Scholar 

  13. R.C. Brower, Phys. Rev. D6: 1655 (1972).

    Google Scholar 

  14. J.-L. Gervais and B. Sakita, Phys. Rev. Lett. 30: 719 (1973).

    Article  Google Scholar 

  15. S. Mandelstam, Nucl. Phys. B64: 205 (1973)

    Article  Google Scholar 

  16. S. Mandelstam, Nucl. Phys. B69: 77 (1974).

    Article  Google Scholar 

  17. L. Brink, P. Di Vecchia and P. Howe, Phys. Lett. 658: 471 (1976).

    Google Scholar 

  18. A.M. Polyakov, Phys. Lett. 103B:207 and 211 (1981).

    MathSciNet  Google Scholar 

  19. J.-L. Gervais and A. Neveu, Nucl. Phys. B199: 59 (1982)

    Article  MathSciNet  Google Scholar 

  20. J.-L. Gervais and A. Neveu, Nucl. Phys. B209: 125 (1982)

    Article  MathSciNet  Google Scholar 

  21. J.-L. Gervais and A. Neveu, Nucl. Phys. B238:125 and 396 (1984).

    MathSciNet  Google Scholar 

  22. J. Scherk and J.H. Schwarz, Nucl. Phys. B81: 118 (1974).

    Article  Google Scholar 

  23. P. Ramond, Phys. Rev. D3: 2415 (1971).

    MathSciNet  Google Scholar 

  24. A. Neveu and J.H. Schwarz, Nucl. Phys. B31: 86 (1971);

    Article  Google Scholar 

  25. A. Neveu and J.H. Schwarz, Phys. Rev. 24: 1109 (1971).

    Google Scholar 

  26. J.-L. Gervais and B. Sakita, Nucl. Phys. B34: 477 (1971).

    Article  MathSciNet  Google Scholar 

  27. A. Neveu, J.H. Schwarz and C.B. Thorn, Phys. Lett. 35B: 441 (1971).

    Google Scholar 

  28. F. Gliozzi, D. Olive and J. Scherk, Phys. Lett. 65B: 282 (1976);

    Google Scholar 

  29. F. Gliozzi, D. Olive and J. Scherk, Nucl. Phys. B122: 253 (1977).

    Article  Google Scholar 

  30. M.B. Green and J.H. Schwarz, Nucl. Phys. B181:502 (1981)

    Article  Google Scholar 

  31. M.B. Green and J.H. Schwarz, Nucl. Phys. B198:252 and 441 (1982);

    Article  Google Scholar 

  32. M.B. Green and J.H. Schwarz, Phys. Lett. 109B: 444 (1982).

    Google Scholar 

  33. M.B. Green and J.H. Schwarz, Phys. Lett. 136B: 367 (1984).

    Google Scholar 

  34. E. Cremmer and B. Julia, Nucl. Phys. B103: 399 (1976).

    Article  Google Scholar 

  35. L. Alvarez-Gaumé and E. Witten, Nucl. Phys. B234: 269 (1983).

    Google Scholar 

  36. M.B. Green and J.H. Schwarz, CalTech preprint CALT-68–1224 (1984).

    Google Scholar 

  37. M.B. Green and J.H. Schwarz, Phys. Lett. 149B: 117 (1984).

    MathSciNet  Google Scholar 

  38. J. Thierry-Mieg, Phys. Lett. 156B: 199 (1985).

    MathSciNet  Google Scholar 

  39. J. Scherk and J.H. Schwarz, Phys. Lett. 57B: 463 (1975).

    Google Scholar 

  40. E. Cremmer and J. Scherk, Nucl. Phys. B103: 399 (1976).

    Article  MathSciNet  Google Scholar 

  41. I.B. Frenkel and V.G. Kac, Inv. Math 62: 23 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  42. P. Goddard and D. Olive, Univ. Cambridge preprint DAMTP83/22 (1983), to be published in Proc. Mathematical Sciences Research Institute Workshop on Vertex Operators, Berkeley, 1984, ed. J. Lepowsky ( Springer-Verlag, New York, 1984 ).

    Google Scholar 

  43. F. Englert and A. Neveu, preprint CERN TH. 4168 (1985).

    Google Scholar 

  44. D.J. Gross, F. Harvey, E. Martinec and R. Rohm, Phys. Rev. Lett. 59:502 (1985)

    Article  MathSciNet  Google Scholar 

  45. D.J. Gross, F. Harvey, E. Martinec and R. Rohm, Nucl. Phys. B256: 253 (1985).

    Article  MathSciNet  Google Scholar 

  46. J.A. Shapiro, Phys. Rev. D5: 1945 (1972).

    Google Scholar 

  47. E. Cremmer and J.-L. Gervais, Nucl. Phys. B76: 209 (1974)

    Article  Google Scholar 

  48. E. Cremmer and J.-L. Gervais, Nucl. Phys. B90: 410 (1975).

    Article  Google Scholar 

  49. M. Kaku and K. Kikkawa, Phys. Rev. D10:1110 and 1823 (1974).

    Google Scholar 

  50. T. Banks and M. Peskin, Gauge invariance of string fields, to appear in Proc. Symposium on Anomalies, Geometry and Topology, Argonne, 1985.

    Google Scholar 

  51. M. Kaku and J. Lykken, Supergauge field theory of superstrings, ibid.

    Google Scholar 

  52. D. Friedan, Univ. Chicago preprint EFI85–27 (1985).

    Google Scholar 

  53. R.C. Brower and C.B. Thorn, Nucl. Phys B31: 163 (1971).

    Article  MathSciNet  Google Scholar 

  54. P. van Nieuwenhuizen, Nucl. Phys. B60: 478 (1973).

    Article  Google Scholar 

  55. A. Neveu, H. Nicolai and P.C. West, preprint CERN TH. 4233 (1985).

    Google Scholar 

  56. A. Neveu and P.C. West, preprint CERN TH. 4200 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Neveu, A. (1986). Topics in String Theory. In: Velo, G., Wightman, A.S. (eds) Fundamental Problems of Gauge Field Theory. NATO ASI Series, vol 141. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0363-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0363-4_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0365-8

  • Online ISBN: 978-1-4757-0363-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation