The Role of Plant Compounds in the Regulation of Rhizobium Nodulation Genes

  • Chapter
Opportunities for Phytochemistry in Plant Biotechnology

Part of the book series: Recent Advances in Phytochemistry ((RAPT,volume 22))

  • 127 Accesses

Abstract

Members of the genus Rhizobium are soil bacteria capable of forming symbiotic nitrogen fixing nodules with leguminous plants. Individual species of bacteria have a defined host-range; they are able to form nodules on a limited number of plant species.1 The bacteria invade the plant root through an emerging root hair causing the root hair to curl. The bacteria penetrate through several cell layers into the root via an infection thread which is a tube-like structure of plant cell wall.2 Early during the invasion process, in advance of the invading infection thread, inner cortical cells are stimulated to divide by the bacteria.3 It is apparent from this process that there is an ordered and specific exchange of biochemical signals between the plant and the invading bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 9.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Vincent, J.M. 1977. Rhizobium: general microbiology. In A Treatise on Dinitrogen Fixation, Sec. III: Biology. (R.W.F. Hardy, W.S. Silver, eds.), Wiley, New York, pp. 277–366.

    Google Scholar 

  2. Long, S.R. 1984. Genetics of Rhizobium nodulation. In Plant-Microbe Interactions. (T. Kosuge, E. Nester, eds.), Macmillan, New York, pp. 256–306.

    Google Scholar 

  3. Dudley, M.E., T.W. Jacobs, S.R. Long. 1987. Microscopic studies of cell division induced in alfalfa roots by Rhizobium meliloti. Planta, in press.

    Google Scholar 

  4. Verma, D.P.S., K. Nadler. 1984. Legume-Rhizobium-symbiosis: host’s point of view. In Plant Gene Research. (D.P.S. Verma, T.H. Hohn, eds.), Springer-Verlag, New York, pp. 58–93.

    Google Scholar 

  5. Long, S.R., W.J. Buikema, F.M. Ausubel. 1982. Cloning of Rhizobium meliloti nodulation genes by direct complementation of nod − mutants. Nature 298: 485–488.

    Article  CAS  Google Scholar 

  6. Jacobs, T.W., T.T. Egelhoff, S.R. Long. 1985. Physical and genetic map of Rhizobium meliloti nodulation gene region and nucleotide sequence of nodC. J. Bacteriol. 162: 469–476.

    PubMed  CAS  Google Scholar 

  7. Egelhoff, T.T., R.F. Fisher, T.W. Jacobs, J.T. Mulligan, S.R. Long. 1985. Nucleotide sequence of Rhizobium meliloti 1021 nodulation genes: nodD is read divergently from nodABC. DNA 4: 241–249.

    Article  PubMed  CAS  Google Scholar 

  8. Egelhoff, T.T., S.R. Long. 1985. Rhizobium meliloti nodulation genes: identification of nodABC gene products, purification of nodA protein, and expression of nodA in Rhizobium meliloti. J. Bacteriol. 164: 591–599.

    PubMed  CAS  Google Scholar 

  9. Schmidt, J., M. John, E. Kondorosi, A. Kondorosi, U. Wieneke, G. Schroder, J. Schroder, J. Schell. 1984. Map** of the protein-coding regions of Rhizobium meliloti common nodulation genes. Embo J. 3: 1705–1711.

    PubMed  CAS  Google Scholar 

  10. Downie, J.A., C.D. Knight, A.W.B. Johnston, L. Rossen. 1985. Identification of genes and gene products involved in the nodulation of peas by Rhizobium leguminosarum. Mol. Gen. Genet. 198: 255–262.

    Article  CAS  Google Scholar 

  11. Fisher, R.F., J.K. Tu, S.R. Long. 1985. Conserved nodulation genes in Rhizobium meliloti and Rhizobium trifolii. Appl. Environ. Microbiol. 49: 1432–1435.

    PubMed  CAS  Google Scholar 

  12. Djordjevic, M.A., W. Zurkowski, J. Shine, B.G. Rolfe. 1983. Sym plasmid transfer to various symbiotic mutants of Rhizobium trifolii, Rhizobium leguminosarum, and Rhizobium meliloti. J. Bacteriol. 156: 1035–1045.

    PubMed  CAS  Google Scholar 

  13. Kondorosi, E., Z. Banfalvi, A. Kondorosi. 1984. Physical and genetic analysis of a symbiotic region of Rhizobium meliloti: identification of nodulation genes. Mol. Gen. Genet. 193: 445–452.

    Article  CAS  Google Scholar 

  14. Putnoky, P., A. Kondorosi. 1986. Two gene clusters of Rhizobium meliloti code for early essential nodulation functions and a third influence nodulation efficiency. J. Bacteriol. 167: 881–887.

    PubMed  CAS  Google Scholar 

  15. Innes, R.W., P.L. Kuempel, J. Plazinski, H. Cantercremers, B.G. Rolfe, M.A. Djordjevic. 1985. Plant factors induce expression of nodulation and host-range genes in Rhizobium trifolii. Mol. Gen. Genet. 201: 426–432.

    Article  CAS  Google Scholar 

  16. Bhagwat, A.A., J. Thomas. 1982. Legume-Rhizobium interactions: cowpea root exudate elicits faster nodulation response by Rhizobium species. Appl. Environ. Microbiol. 43: 800–805.

    PubMed  CAS  Google Scholar 

  17. Mulligan, J.T., S.R. Long. 1985. Induction of Rhizobium meliloti nodC expression by plant exudate requires nodD. Proc. Natl. Acad. Sci. USA 82: 6609–6613.

    Article  PubMed  CAS  Google Scholar 

  18. Rossen, L., C.A. Shearman, A.W.B. Johnston, J.A. Downie. 1985. The nodD gene of Rhizobium leguminosarum is autoregulatory and in the presence of plant exudates induces the nodA,B,C genes. Embo J. 4: 3369–3373.

    PubMed  CAS  Google Scholar 

  19. Shearman, C.A., L. Rossen, A.W.B. Johnston, J.A. Downie. 1986. The Rhizobium leguminosarum nodulation gene nodF encodes a polypeptide similar to an acyl-carrier protein and is regulated by nodD plus a factor in pea root exudate. Embo J. 5: 647–652.

    PubMed  CAS  Google Scholar 

  20. Rosta, K., E. Kondorosi, B. Horvath, A. Simoncsits, A. Kondorosi. 1986. Conservation of extended promoter regions of nodulation genes in Rhizobium. Proc. Natl. Acad. Sci. USA 83: 1757–1761.

    Article  Google Scholar 

  21. Peters, N.K., J.W. Frost, S.R. Long. 1986. A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 233: 977–980.

    Article  PubMed  CAS  Google Scholar 

  22. Mabry, T.J., K.R. Markham, M.B. Thomas. 1970. The structural analysis of flavonoids by ultraviolet spectroscopy. In The Systematic Identification of Flavonoids. Springer-Verlag, New York, pp. 35–175.

    Chapter  Google Scholar 

  23. Mabry, T.J., K.R. Markham. 1975. Mass spectroscopy of flavonoids. In The Flavonoids. (J.B. Harborne, T.J. Mabry, H. Mabry, eds.), Vol. 1, Academic Press, New York, pp. 78–126.

    Google Scholar 

  24. Novick, A., J.R. Sadler. 1965. The properties of repressor and the kinetics of its action. J. Mol. Biol. 12: 305–327.

    Article  PubMed  Google Scholar 

  25. Doyle, E.M., C. Brown, R.W. Hogg, R.B. Helling. 1972. Induction of the ara operon of Escherichia coli B/r. J. Bacteriol. 110: 56–65.

    PubMed  CAS  Google Scholar 

  26. Redmond, J.W., M. Batley, M.A. Djordjevic, R.W. Innes, P.L. Kuempel, B.G. Rolfe. 1986. Flavones induce expression of nodulation genes in Rhizobium. Nature 323: 632–635.

    Article  CAS  Google Scholar 

  27. Firmin, J.L., K.E. Wilson, L. Rossen, A.W.B. Johnston. 1986. Flavonoid activation of nodulation genes in Rhizobium reversed by other compounds present in plants. Nature 324: 90–92.

    Article  CAS  Google Scholar 

  28. Djordjevic, M.A., J.W. Redmond, M. Batley, B.G. Rolfe. 1987. Clover secrete specific phenolic compounds which either stimulate or repress nod gene expression in Rhizobium trifolii. Embo J. 6: 1173–1179.

    PubMed  CAS  Google Scholar 

  29. Stachel, S.E., E. Messens, M. Van Montagu, P. Zambryski. 1985. Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318: 624–629.

    Article  Google Scholar 

  30. Bachem, C.W.B., Z. Banfalvi, E. Kondorosi, J. Schell, A. Kondorosi. 1986. Identification of host range determinants in the Rhizobium species MPIK3030. Mol. Gen. Genet. 203: 42–48.

    Article  CAS  Google Scholar 

  31. Horvath, B., C.W.B. Bachem, J. Schell, A. Kondorosi. 1987. Host-specific regulation of nodulation genes in Rhizobium is mediated by a plant-signal, interacting with the nodD gene product. Embo J. 6: 841–848.

    PubMed  CAS  Google Scholar 

  32. Bassam, B.J., B.G. Rolfe, M.A. Djordjevic. 1986. Macroptilium atropurpureum (siratro) host specific genes are linked to a nodD like gene in the broad host range Rhizobium strain NGR234. Mol. Gen. Genet. 203: 49–57.

    Article  CAS  Google Scholar 

  33. Kapulnik, Y., C.M. Joseph, D.A. Phillips. 1987. Flavone limitations to root nodulation and symbiotic nitrogen fixation in alfalfa. Plant Physiol. 84: 1193–1196.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Peters, N.K., Long, S.R. (1988). The Role of Plant Compounds in the Regulation of Rhizobium Nodulation Genes. In: Conn, E.E. (eds) Opportunities for Phytochemistry in Plant Biotechnology. Recent Advances in Phytochemistry, vol 22. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0274-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0274-3_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0276-7

  • Online ISBN: 978-1-4757-0274-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation