Some Properties of Enzymes Involved in the Biosynthesis and Metabolism of 3-Hydroxy-3-Methylglutaryl-CoA in Plants

  • Chapter
Biochemistry of the Mevalonic Acid Pathway to Terpenoids

Part of the book series: Recent Advances in Phytochemistry ((RAPT,volume 24))

Abstract

There is hardly a single process in the living plant cell that does not require the biochemical and physiological involvement of isoprenoids. It is thus of great theoretical as well as practical interest to have a profound knowledge of how those various classes of compounds are synthesized, what the properties of the enzymes participating are and how this synthesis is regulated by various factors depending on the demand of the develo** and mature plant for various classes of isoprenoids and prenyllipids. Although a large body of information is available on the structures of the myriad of isoprenoids occurring in plants isolated so far, many of the details to be discussed in this contribution have frequently been learned through experiments first performed with animal cells or yeast, systems that, at least as far as the variety of isoprenoid end products is concerned, are not as complex as plants. Therefore, an important purpose of this article is to consider the feasibility of regulatory and of other models developed for non-plant systems that might be likely to explain some features of the enzymology of isoprenoid biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 9.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. KLOSTERMAN, H.J., SMITH, F. 1954. The isolation of β-hydroxy-β-methylglutaric acid from the seed of flax. J. Am. Chem. Soc. 76: 1229–1230.

    CAS  Google Scholar 

  2. JOHNSTON, J.A., RACUSEN, D.W., BONNER, J. 1954. The metabolism of isoprenoid precursors in a plant system. Proc. Natl. Acad. Sci. U.S.A. 40: 1031–1037

    PubMed  CAS  Google Scholar 

  3. RUDNEY, H. 1955. The synthesis of β,β-dimethylacrylic acid in rat liver homogenates. J. Am. Chem. Soc 77: 1698–1699.

    CAS  Google Scholar 

  4. RUDNEY, H. 1957. The biosynthesis of β-hydroxy-β- methylglutaric acid. J. Biol. Chem. 227: 363–377

    PubMed  CAS  Google Scholar 

  5. RUDNEY, H. 1957. The biosynthesis of β-hydroxy-β-methylglutaryl coenzyme A. J. Am. Chem. Soc 79:5580–5581.

    CAS  Google Scholar 

  6. RUDNEY, H., FERGUSON, J.J. 1959. The biosynthesis of β-hydroxy-β-methylglutaryl coenzyme A in yeast. II. The formation of hydroxymethylglutaryl coenzyme A via the condensation of acetyl-coenzyme A and acetoacetyl coenzyme A in yeast. J. Biol. Chem. 234: 1076–1080

    PubMed  CAS  Google Scholar 

  7. LYNEN, F., HENNING, U., BUBLITZ, C., SORBO, B., KRÖPLIN-RUEFF, L. Der chemische Mechanismus der Acetessig-säurebildung in der Leber. Biochem. Z. 330: 269–295

    Google Scholar 

  8. WOLF, D.E., HOFFMAN, C.H., ALDRICH, P.E., SKEGGS, H. R., WRIGHT, L.D., FOLKERS, K. 1956. β-Hydroxy-β-methyl δ-valerolactone (divalonic acid), a new biological factor. J. Amer. Chem. Soc. 78: 4499

    Google Scholar 

  9. TAVORMINA, P.A., GIBBS, M.H. 1956. The metabolism of β, δ-dihydroxy-β-methylvaleric acid by liver homogenates. J. Am. Chem. Soc. 78–6210

    Google Scholar 

  10. TAVORMINA, P.A., GIBBS, M.H., HUFF, J.W. 1956. The utilization of β-hydroxy-β-methyl-δ-valerolactone in cholesterol biosynthesis. J. Am. Chem. Soc. 78: 4498

    CAS  Google Scholar 

  11. LYNEN, F., GRASSL, M. 1958. Darstellung von (-)-Mevalonsäure durch bakterielle Racematspaltung. Blochem. Z. 335: 123–127.

    Google Scholar 

  12. GOODWIN, T. W. (ed.) 1970. Natural substances formed biologically from mevalonic acid. Biochem. Soc. Symp. No. 29, Liverpool 1969, Academic Press, New York.

    Google Scholar 

  13. NES, W.R., MCKEAN, M.L. 1977. Biochemistry of steroids and other isopentenoids. University Park Press, Baltimore — London — Tokyo.

    Google Scholar 

  14. PORTER, J., SPURGEON, S.L. (eds.) 1981. Biosynthesis of Isoprenoid Compounds, Vol. 1, John Wiley and Sons, New York — Chichester — Brisbane — Toronto.

    Google Scholar 

  15. FERGUSON, J.J., DURR, I.F., RUDNEY, H. 1959. The biosynthesis of mevalonic acid. Proc. Natl. Acad. Sci. U.S.A. 45: 499–504.

    PubMed  CAS  Google Scholar 

  16. RUDNEY, H. The biosynthesis of β-hydroxy-β-methyl-glutaryl coenzyme A and its conversion to mevalonic acid. In: Ciba Foundation Symposium on the Biosynthesis of Terpenes and Sterols. (G E.W. Wolstenholme, M. O’Connor, eds.), J.A. Churchill, London, pp. 75–94.

    Google Scholar 

  17. KIRTLEY, M.E., RUDNEY, H. 1967. Some properties and mechanism of action of the β-hydroxy-β-methylglutaryl coenzyme A reductase of yeast. Biochemistry U.S.A. 6: 230–238.

    CAS  Google Scholar 

  18. LYNEN, F. New aspects of acetate incorporation into isoprenoid precursors. In: Ciba Foundation Symposium on the Biosynthesis of Terpenes and Sterols. (G.E.W. Wolstenholme, M. O’Connor, eds.), J.A. Churchill, London, pp. 95–118.

    Google Scholar 

  19. KNAPPE, J., RINGELMANN, E., LYNEN, F. 1959. Über die β-Hydroxy-β-methylglutaryl Reduktase der Hefe. Zur Biosynthese der Terpene IX. Biochem. Z. 332: 195–213.

    PubMed  CAS  Google Scholar 

  20. BRODIE J., PORTER, J.W. 1960. The synthesis of mevalonic acid by non-particulate avian and mammalian enzyme systems. Biochim. Biophys. Res. Commun. 3: 173–177.

    CAS  Google Scholar 

  21. SPURGEON, S.I., PORTER, J.W. 1981. Introduction. In: Biosynthesis of Isoprenoid Compounds. (J.W. Porter, S.L. Spurgeon, eds.), Vol. 1, John Wiley and Sons, New York — Chichester — Brisbane — Toronto, pp. 1–46.

    Google Scholar 

  22. QURESHI, N., PORTER, J.W. 1981. Conversion of acetyl-coenzyme A to isopentenyl pyrophosphate. In: Biosynthesis of Isoprenoid Compounds. (J.W. Porter, S.L. Spurgeon, eds.), Vol. 1, John Wiley and Sons, New York — Chichester — Brisbane — Toronto, pp. 47–94.

    Google Scholar 

  23. DUGAN, R.E. 1981. Regulation of HMG-CoA reductase. In: Biosynthesis of Isoprenoid Compounds. (J.W. Porter, S.L. Spurgeon, eds.), Vol. 1, John Wiley and Sons, New York — Chichester — Brisbane — Toronto, pp. 95–159.

    Google Scholar 

  24. SABINE, J.R. 1983. Monographs on enzyme biology: HMG-CoA reductase. (J.R. Sabine, ed.), CRC Press, Boca Raton.

    Google Scholar 

  25. PREISS, B. 1985. Regulation of HMG-CoA reductase. (B. Preiss, ed.), Academic Press, New York.

    Google Scholar 

  26. BACH, T.J. 1987. Synthesis and metabolism of mevalonic acid in plants. Plant Physiol. Biochem. 25: 163–178.

    CAS  Google Scholar 

  27. GRAY, J.C. 1987. Control of isoprenoid biosynthesis in higher plants. Adv. Bot. Res. 14: 25–91.

    CAS  Google Scholar 

  28. BROOKER, J.D., RUSSELL, D.W. 1975. Properties of microsomal 3-hydroxy-3-methylglutaryl-coenzyme A reductase from Pisum sativum seedlings. Arch. Biochem. Biopys. 167: 723–729.

    CAS  Google Scholar 

  29. BROOKER, J.D., RUSSELL, D.W. 1979. Regulation of microsomal 3-hydroxy-3-methylglutaryl-coenzyme A reductase from pea seedlings. Rapid post-translational phytochrome-mediated decrease in activity and in vivo regulation by isoprenoid products. Arch. Biophys. Biochem. 198: 323–334.

    CAS  Google Scholar 

  30. BACH, T.J., LICHTENTHALER, H.K., RÉTEY, J. 1980. Properties of membrane-bound 3-hydroxy-3-methylglutaryl-coenzyme A reductase from radish seedlings and some aspects of its regulation. In: Biogenesis and Function of Plant Lipids. (P. Mazliak et al., eds.), Elsevier, Amsterdam, pp. 355–362.

    Google Scholar 

  31. WONG, R.J., MCCORMACK, D.K., RUSSELL, D.W. 1982. Plastid 3-hydroxy-3-methylglutaryl-coenzyme A reductase has distinctive kinetic and regulatory features: properties of the enzyme and positive phytochrome control of activity in pea seedlings. Arch. Biophys. Biochem. 216: 613–638.

    Google Scholar 

  32. RUSSELL, D.W., KNIGHT, J.S., WILSON, T.M. 1985. Pea seedling HMG-CoA reductase: regulation of activity in vitro by phosphorylation and Ca2+, and posttrans-lational control in vivo by phytochrome and isoprenoid hormones. Curr. Top. Plant Biochem. Physiol. 4: 191–206.

    Google Scholar 

  33. GRUMBACH, K.H., BACH, T.J. 1979. The effect of PSII herbicides, amitrol and SAN 67 06 on the activity of 3-hydroxy-3-methylglutaryl-coenzyme A reductase and the incorporation of (2–14C) acetate and (2-3H) mevalonate into chloroplast pigments of radish seedlings. Z. Naturforsch. 34c: 941–943.

    CAS  Google Scholar 

  34. RUSSELL, D.W., DAVIDSON, H. 1982. Regulation of cytosolic HMG-CoA reductase activity in pea seedlings: contrasting responses to different hormones, and hormone-product interaction, suggest hormonal modulation of activity. Biochem. Biophys. Res. Commun. 104: 1537–1543.

    PubMed  CAS  Google Scholar 

  35. BACH, T.J. 1981. Untersuchungen zur Charakterisierung und Regulation der 3-Hydroxy-3-methylglutaryl-Coenzym A Reduktase (Mevalonat: NADP+ Oxidoreduktase, CoA acylierend, E.C. 1.1.1.34) in Keimlingen von Raphanus sativus.- Karlsr. Beitr. Pflanzenphysiol. (Karlsr. Contrib. Plant Physiol. ISSN 0173–3133) 10: 1–219.

    Google Scholar 

  36. BACH, T.J., LICHTENTHALER, H.K. 1984. Application of modified Lineweaver-Burk plots to studies of kinetics and regulation of radish 3-hydroxy-3-methylglutaryl-CoA reductase from radish seedlings. Biochim. Biophys. Acta 794: 152–161.

    PubMed  CAS  Google Scholar 

  37. ISA, R.B.M., SIPAT, A.B. 1982. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase of Hevea latex: The occurrence of a heat-stable activator in the C-serum. Biochem. Biophys. Res. Commun. 108: 206–212.

    PubMed  CAS  Google Scholar 

  38. SUZUKI, H., URITANI, I., OBA, K. 1975. The occurrence of and properties of 3-hydroxy-3-methylglutaryl-coenzyme A reductase in sweet potato roots infected by Ceratocystis fimbriata. Physiol. Plant Pathol. 7: 265–276.

    CAS  Google Scholar 

  39. SUZUKI, K., OBA, K., URITANI, I. 1976. Subcellular localization of 3-hydroxy-3-methylglutaryl-coenzyme A reductase and other membrane-bound enzymes in sweet potato roots. Plant Cell Physiol. 17: 691–700.

    CAS  Google Scholar 

  40. ITO, R., OBA, K., URITANI, I. 1979. Mechanisms for the induction of 3-hydroxy-3-methylglutaryl-coenzyme A reductase in HgCl2-treated sweet potato root tissue. PlantCell Physiol. 20: 867–874.

    CAS  Google Scholar 

  41. OBA, K., KONDO, K., DOKE, N., URITANI, I. 1985. Induction of 3-hydroxy-3-methylglutaryl CoA reductase in potato after slicing, fungal infection or chemical treatment, and some properties of the enzyme. Plant Cell Physiol. 26: 873–880.

    CAS  Google Scholar 

  42. STERMER, B.A., BOSTOCK, R.M. 1987. Involvement of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase in the regulation of sesquiterpenoid phytoalexin synthesis in potato. Plant Physiol. 84: 404–408.

    PubMed  CAS  Google Scholar 

  43. CHAPPELL, J., NABLE, R. 1987. Induction of sesquiterpenoid biosynthesis in tobacco cell suspension cultures by fungal elicitor. Plant Physiol. 85: 469–473.

    PubMed  CAS  Google Scholar 

  44. LEUBE, J., GRISEBACH, H. 1983. Further studies on induction of enzymes of phytoalexin synthesis in soybean and cultured soybean cells. Z. Naturforsch. 38c: 730–735.

    CAS  Google Scholar 

  45. VöGELI, U., CHAPPELL, J. 1988. Induction of sesquiterpene cyclase and suppression of squalene synthetase activities in plant cell cultures treated with fungal elicitor. Plant Physiol. 88: 1291–1296.

    PubMed  Google Scholar 

  46. NARITA, J.O., GRUISSEM, W. 1989 Tomato hydroxymethyl-glutaryl-CoA reductase is required early in fruit development but not during fruit ripening. Plant Cell 1: 181–190.

    PubMed  CAS  Google Scholar 

  47. LYNEN, F. 1967. Biosynthesis pathways from acetate to natural products. Activity of the enzymes in rubber synthesis. Pure Appl. Chem. 14: 137–167.

    CAS  Google Scholar 

  48. HEPPER, C.M., AUDLEY, B.G. 1969. The biosynthesis of rubber from β-hydroxy-β-methylglutaryl-coenzyme A in Hevea brasiliensis latex. Biochem. J. 114: 379–386.

    PubMed  CAS  Google Scholar 

  49. WITITSUWANNAKUL, R. 1986. Diurnal variation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase activity in latex of Hevea brasiliensis and its relation to rubber content. Experientia 42: 44–46.

    CAS  Google Scholar 

  50. SIPAT, A.B. 1982. Hydroxymethylglutaryl CoA reductase (NADPH) in the latex of Hevea brasiliensis. Phytochemistry 21: 2613–2618.

    CAS  Google Scholar 

  51. SIPAT, A. 1985. 3-Hydroxy-3-methylglutaryl-CoA reductase in the latex of Hevea brasiliensis. Meth. Enzymol. 110: 40–51.

    CAS  Google Scholar 

  52. BROOKER, J.D., RUSSELL, D.W. 1975. Subcellular localization of 3-hydroxy-3-methylglutaryl-coenzyme A reductase in Pisum sativum seedlings. Arch. Biochem. Biophys. 67: 730–737.

    Google Scholar 

  53. SUZUKI, H., URITANI, I. 1977. Effects of bovine serum albumin and phospholipids on activity of microsomal 3-hydroxy-3-methylglutaryl-coenzyme A reductase in sweet potato roots. Plant Cell Physiol. 18: 485–495.

    CAS  Google Scholar 

  54. YU-ITO, R., OBA, K., URITANI, I. 1982. Some problems in the assay method of HMG-CoA reductase activity in sweet potato in the presence of other HMG-CoA utilizing enzymes. Agric. Biol. Chem. 46: 2087–2091.

    CAS  Google Scholar 

  55. DOUGLAS, T.J., PALEG, L.G. 1978. Amo 1618 effects on the incorporation of 14C-MVA and 14C-acetate into sterol in Nicotiana and Digitalis seedlings and cell-free preparations from Nicotiana. Phytochemistry 17: 713–718.

    CAS  Google Scholar 

  56. BACH, T.J. 1986. Hydroxymethylglutaryl-CoA reductase, a key enzyme in phytosterol synthesis? Lipids 21: 82–88.

    PubMed  CAS  Google Scholar 

  57. BACH, T.J., ROGERS, D.H., RUDNEY, H. 1986. Detergent-solubilization, purification, and characterization of 3-hydroxy-3-methylglutaryl-CoA reductase from radish seedlings. Eur. J. Biochem. 154: 103–111.

    PubMed  CAS  Google Scholar 

  58. CAMARA, B., BARDAT, F., DOGBO, O., BRANGEON, J., MONéGER, R. 1983. Terpenoid metabolism in plastids. Isolation and biochemical characteristics of Capsicum annuum chromoplasts. Plant Physiol. 73: 94–99.

    PubMed  CAS  Google Scholar 

  59. NISHI, A., TSURITANI, I. 1983. Effect of auxin on the metabolism of mevalonic acid in suspension-cultured carrot cells. Phytochemistry 22: 399–401.

    CAS  Google Scholar 

  60. BONHOFF, A., LOYAL, R., FELLER, K., EBEL, J., GRISEBACH, H. 1986. Further investigations of race: cultivar-specific induction of enzymes related to phytoalexin biosynthesis in soybean roots following infection with Phytophthora megasperma f.sp. glycinea. Biol. Chem. Hoppe-Seyler 367: 797–802.

    PubMed  CAS  Google Scholar 

  61. AREBALO, R.E., MITCHELL JR., E.D. 1984. Cellular distribution of 3-hydroxy-3-methylglutaryl coenzyme A reductase and mevalonate kinase in leaves of Nepeta cataria. Phytochemistry 23: 13–18.

    CAS  Google Scholar 

  62. KREUZ, K., KLEINIG, H. 1984. Synthesis of prenyl lipids in cells of spinach leaf. Compartmentation of enzymes for formation of isopentenyl diphosphate. Eur. J. Biochem. 141: 531–535.

    PubMed  CAS  Google Scholar 

  63. CECCARELLI, N., LORENZI, R. 1984. Growth inhibition by competitive inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase in Helianthus tuberosus tissue expiants. Plant Sci. Lett. 34: 269–276.

    CAS  Google Scholar 

  64. KONDO, K., OBA, K. 1986. Purification and characterization of 3-hydroxy-3-methylglutaryl CoA reductase from potato tubers. J. Biochem. Tokyo 100: 967–974.

    PubMed  CAS  Google Scholar 

  65. SKRUKRUD, C.L., TAYLOR, S.E., HAWKINS, D.R., CALVIN, M. 1987. Triterpenoid biosynthesis in Euphorbia lathyris. In: The Metabolism, Structure, and Function of Plant Lipids. (P. K. Stumpf, J. B. Mudd, W. D. Nes, eds.), Plenum Press, New York — London, pp. 115–118.

    Google Scholar 

  66. SKRUKRUD, C.L., TAYLOR, S.E., HAWKINS, D.R., NEMETHY, E.K., CALVIN, M. 1988. Subcellular fractionation of triterpenoid biosynthesis in Euphorbia lathyris latex. Physiol. Plant. 74: 306–316.

    CAS  Google Scholar 

  67. LüTKE-BRINKHAUS, F., KLEINIG, H. 1987. Formation of isopentenyl diphosphate via mevalonate does not occur within etioplasts and etiochloroplasts of mustard (Sinapis alba L.) seedlings. Planta 171: 406–411.

    Google Scholar 

  68. RAMACHANDRA REDDY, A., DAS, V. S. R. 1986. Partial purification and characterization of 3-hydroxy-3-methylglutaryl coenzyme A reductase from the leaves of guayule (Parthenium argentatum). Phytochemistry 25: 2471–2474.

    Google Scholar 

  69. RAMACHANDRA REDDY, A., DAS, V.S.R. 1987. Chloroplast autonomy for the biosynthesis of isopentenyl diphosphate in guayule (Parthenium argentatum Gray). New. Phytol. 106: 457–464.

    Google Scholar 

  70. BOLL, M., KARDINAL, A., BERNDT, J. 1987. Properties and regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase from spruce (Picea abies). Biol. Chem. Hoppe-Seyler 368: 1024.

    Google Scholar 

  71. BOLL, M., MEßNER, B., KARDINAL, A. 1988. Regulation of phenylalanine ammonia-lyase (PAL) and 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) in spruce (Picea abies). Biol. Chem. Hoppe-Seyler 369: 799.

    Google Scholar 

  72. MAUREY, K.M., GOLBECK, J.H. 1985. Modulation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR) activity in Ochromonas malhamensis. Plant Physiol. 11 (supplement): 45.

    Google Scholar 

  73. MAUREY, K., WOLF, F., GOLBECK, J. 1986. 3-Hydroxy-3-methylglutaryl coenzyme A reductase activity in Ochromonas malhamensis. A system to study the relationship between enzyme activity and rate of steroid biosynthesis. Plant Physiol. 82: 523–527.

    PubMed  CAS  Google Scholar 

  74. GOLBECK, J.H., MAUREY, K. M., NEWBERRY, G.A. 1985. Detection of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR) activity in Dunaliella salina. Plant Physiol. 11 (supplement): 48.

    Google Scholar 

  75. ROGERS, D.H., PANINI, S.R., RUDNEY, H. 1980. Rapid, high-yield purification of rat liver 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase. Anal. Biochem 101: 107–111.

    PubMed  CAS  Google Scholar 

  76. BACH, T.J., RUDNEY, H. 1983 Solubilization and partial purification of membrane-bound HMG-CoA reductase from a plant source. J. Lipid Res. 24: 1404–1405.

    Google Scholar 

  77. BACH, T.J., ROGERS, D.H., RUDNEY, H. 1984. Purification and properties of membrane-bound 3-hydroxy-3-methylglutaryl-CoA reductase from radish seedlings. In: Structure, Function and Metabolism of Plant Lipids. (P.A. Siegenthaler and W. Eichenberger, eds.), Elsevier Science Publishers BV, Amsterdam, pp. 221–224.

    Google Scholar 

  78. QURESHI, N., DUGAN, R.E., CLELAND, W.W., PORTER, J.W. 1976. Kinetic analysis of the individual reductive steps catalyzed by β-hydroxy-β-methylglutaryl coenzyme A reductase obtained from yeast. Biochemistry U.S.A. 15: 4191–4197.

    CAS  Google Scholar 

  79. BASSON, M.E., THORSNESS, M., FINER-MOORE, J., STROUD, R.M. RINE, J. 1988. Structural and functional conservation between yeast and human 3-hydroxy-3-methylglutaryl coenzyme A reductases, the rate-limiting enzyme of sterol biosynthesis. Mol. Cell. Biol. 8: 3797–3808.

    PubMed  CAS  Google Scholar 

  80. CHIN, D.J., GIL, G., RUSSELL, D.W., LISCUM, L, LUSKEY, K.L., BASU, S.K., OKAYAMA, H., BERG, P., GOLDSTEIN, J.L., BROWN, M.S. 1984. Nucleotide sequence of HMG-CoA reductase, a glycoprotein of the endoplasmic reticulum. Nature (Lond.) 308: 613–617.

    CAS  Google Scholar 

  81. REYNOLDS, G.A., BASU, S.K., OSBORNE, T.F., CHIN, D.J., GIL, G., BROWN, M.S., GOLDSTEIN, J.L., LUSKEY, K.L. 1984. HMG-CoA reductase: A negatively regulated gene with unusual promoter and 5′ untranslated regions. Cell 38: 275–285.

    PubMed  CAS  Google Scholar 

  82. BROWN, D.A., SIMONI, R.D. 1984. Biogenesis of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, an integral glycoprotein of the endoplasmic reticulum. Broc. Natl. Acad. Sci. U.S.A. 81: 1674–1678.

    CAS  Google Scholar 

  83. LISCUM, L., FINER-MOORE, J., STROUD, R.M., LUSKEY, K.L., BROWN, M.S., GOLDSTEIN, J.L. 1985. Domain structure of 3-hydroxy-3-methylglutaryl coenzyme A reductase, a glycoprotein of the endoplasmic reticulum. J. Biol. Chem. 260: 522–530.

    PubMed  CAS  Google Scholar 

  84. LUSKEY, K.L., STEVENS, B. 1985. Human 3-hydroxy-3-methylglutaryl coenzyme A reductase. Conserved domains responsible for catalytic activity and sterol-regulated degradation. J. Biol Chem. 260: 10271–12277.

    PubMed  CAS  Google Scholar 

  85. WOODWARD, H.D., ALLEN, J.M.C., LENNARZ, W.L. 1988. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase of the sea urchin embryo. Deduced structure and regulatory properties. J. Biol. Chem. 263: 18411–18418.

    PubMed  CAS  Google Scholar 

  86. GERTLER, F.B., CHIU, C.Y., RICHTER-MANN, L., CHIN, D. J. 1988. Developmental and metabolic regulation of the Drosophila melanogaster 3-hydroxy-3-methylglutaryl coenzyme A reductase. Mol. Cell. Biol. 8: 2713–2721.

    PubMed  CAS  Google Scholar 

  87. ROGERS, D.H., PANINI, S.R., RUDNEY, H. 1983. Properties of HMG-CoA reductase and its mechanism of action. In: 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase. (J. R. Sabine, ed.), CRC Press, Inc., Boca Raton, Florida, pp. 58–75.

    Google Scholar 

  88. EDWARDS, P.A., KEMPNER, E.S., LAN, S.F., ERICKSON, S.K. 1985. Functional size of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase as determined by radiation inactivation. J. Biol. Chem. 260: 10278–10282.

    PubMed  CAS  Google Scholar 

  89. NESS, G.C., PENDLETON, L.C., MCCREERY, M.J. 1988. In situ determination of the functional size of hepatic 3-hydroxy-3-methylglutaryl-CoA reductase by radiation inactivation analysis. Biochim. Biophys. Acta 953: 361–364.

    PubMed  CAS  Google Scholar 

  90. EDWARDS, P.A., LAN, S.F., FOGELMAN, A.M. 1983. Alterations in the rates of synthesis and degradation of rat liver 3-hydroxy-3-methylglutaryl coenzyme A reductase produced by cholestyramine and mevinolin. J. Biol. Chem. 258: 10219–10222.

    PubMed  CAS  Google Scholar 

  91. NESS, G.C., MCCREERY, M.J., SAMPLE, C.E., SMITH, M. PENDLETON, L.C. 1985. Sulhydryl/disulfide forms of rat liver 3-hydroxy-3-methylglutaryl coenzyme A reductase. J. Biol. Chem. 260: 16395–16399

    PubMed  CAS  Google Scholar 

  92. KENNELLY, P.J., BRANDT, K.G., RODWELL, V.W. 1983. 3-Hydroxy-3-methylglutaryl-CoA reductase: Solubilization in the presence of proteolytic inhibitors, partial purification, and reversible phosphorylation-dephosphorylation. Biochemistry USA 22: 2784–2788

    CAS  Google Scholar 

  93. DOTAN, I., SHECHTER, I. 1985. Reduced glutathione in chinese hamster ovary cells protects against inactivation of 3-hydroxy-3-methylglutaryl coenzyme A reductase by 2-mercaptoethanol disulfide. J. Cell Physiol. 122: 14–20.

    PubMed  CAS  Google Scholar 

  94. ROITELMAN, J., SHECHTER, I. 1984. Regulation of rat liver 3-hydroxy-3-methylglutaryl coenzyme A reductase Evidence for thiol-dependent modulation of enzyme activity. J. Biol. Chem. 259: 870–877.

    PubMed  CAS  Google Scholar 

  95. NESS, G.C., EALES, S.J., PENDLETON, L.C., SMITH, M. 1985. Activation of rat liver microsomal 3-hydroxy-3-methylglutaryl coenzyme A reductase by NADPH. Effects of dietary treatments. J. Biol. Chem. 260: 12391–12393.

    PubMed  CAS  Google Scholar 

  96. CAPPEL, R.E., GILBERT, H.F. 1988. Thiol/disulfide exchange between 3-hydroxy-3-methylglutaryl-CoA reductase and glutathione. A thermodynamically facile dithiol oxidation. J. Biol Chem. 263: 12204–12212.

    PubMed  CAS  Google Scholar 

  97. CLELAND, W.W. 1963. The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations. Biochim. Biophys. Acta 67: 104–137.

    PubMed  CAS  Google Scholar 

  98. BACH, T.J., LICHTENTHALER, H.K. 1983. Mechanisms of inhibition by mevinolin (MK 803) of microsome-bound radish and of partially purified yeast HMG-CoA reductase (E.C. 1.1.1.34). Z. Naturforsch. 38c: 212–219.

    CAS  Google Scholar 

  99. TANZAWA, K., ENDO, A. 1979. Kinetic analysis of the reaction catalyzed by rat-liver 3-hydroxy-3-methylglutaryl-coenzyme A reductase using two specific inhibitors. Eur. J. Biochem. 98: 195–201.

    PubMed  CAS  Google Scholar 

  100. ROGERS, D.H., RUDNEY, H. 1982. Modification of 3- hydroxy-3-methyl-glutaryl coenzyme A reductase immunoinhibition curves by substrates and inhibitors. Evidence for conformational changes leading to alterations in antigenicity. J. Biol. Chem. 251: 10650–10658.

    Google Scholar 

  101. CLELAND, W.W. 1963. The kinetics of enzyme-catalyzed reactions with two or more substrates. III. Prediction of initial velocity and inhibition patterns by inspection. Biochim. Biophys. Acta 67: 188–196.

    PubMed  CAS  Google Scholar 

  102. BACH, T.J. 1989. Zur Biosynthese und physiologischen Funktion der Mevalonsäure in Pflanzen. Habilitationsschrift, Fakultät für Bio und Geowissenschaften, Universität Karlsruhe, pp. 1–135.

    Google Scholar 

  103. FEYEREISEN, R., FARNSWORTH, D.E. 1987. Characterization and regulation of HMG-CoA reductase during a cycle of juvenile hormone synthesis. Mol. Cell. Endocrinol. 53: 227–238.

    PubMed  CAS  Google Scholar 

  104. WOODWARD, H.D., ALLEN, J.M.C., LENNARZ, W.J. 1988. 3-Hydroxy-3-methylglutaryl coenzyme A reductase in the sea urchin, embryo is developmentally regulated. J. Biol. Chem. 263: 2513–2517.

    PubMed  CAS  Google Scholar 

  105. GILL JR., J.F., RODWELL, V.W. 1983. Purification and properties of Pseudomonas HMG-CoA reductase. J. Lipid Res. 24: 1407.

    Google Scholar 

  106. GILL JR., J.F., BEACH, M.J., RODWELL, V.W. 1985. Mevalonate utilization in Pseudomonas sp. M. Purification and characterization of an inducible 3-hydroxy-3-methylglutaryl coenzyme A reductase. J. Biol. Chem. 260: 9393–9398.

    PubMed  CAS  Google Scholar 

  107. LOWE, D.M., TUBBS, P.K. 1985. 3-Hydroxy-3-methylglutaryl-coenzyme A synthase from ox liver. Purification, molecular and catalytic properties. Biochem J. 221: 591–599.

    Google Scholar 

  108. MIZIORKO, H.M., BEHNKE, C.E. 1985. Active site-directed inhibition of 3-hydroxy-3-methylglutaryl coenzyme A synthase by 3-chloropropionyl coenzyme A. Biochemistry U.S.A. 24: 3174–3179.

    CAS  Google Scholar 

  109. MIZIORKO, H.M., BEHNKE, C.E. 1985. Amino acid seqence of an active site peptide of avian liver mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase. J. Biol. Chem. 260: 13513–13516.

    PubMed  CAS  Google Scholar 

  110. GIL, G., GOLDSTEIN, J.L., SLAUGHTER, C.A., BROWN, M.S. 1986. Cytoplasmic 3-hydroxy-3-methylglutaryl coenzyme A synthase from the hamster: I. Isolation and sequencing of a full-length cDNA. J. Biol. Chem. 261: 3710–3716.

    PubMed  CAS  Google Scholar 

  111. GIL, G., BROWN, M.S., GOLDSTEIN, J.L. 1986. Cytoplasmic 3-hydroxy-3-methylglutaryl coenzyme A synthase from the hamster: II. Isolation of the gene and characterization of the 5′ flanking region. J. Biol. Chem. 261: 3717–3724.

    PubMed  CAS  Google Scholar 

  112. SMITH, J.R., OSBORNE, T.F., BROWN, M.S., GOLDSTEIN, J.L., GIL, G. 1988. Multiple sterol regulatory elements in the promoter for hamster 3-hydroxy-3-methylglutaryl-coenzyme A synthase. J. Biol. Chem. 263: 18480–18487.

    PubMed  CAS  Google Scholar 

  113. DEQUIN, S., GLOECKLER, R., HERBERT, C.J., BOUTELET, F. 1988. Cloning, sequencing and analysis of the yeast S. uvarum ERGIO gene encoding acetoacetyl CoA thiolase. Curr. Genet. 13: 471–478.

    PubMed  CAS  Google Scholar 

  114. OSBORNE, T.F., GIL, G., GOLDSTEIN, J.L., BROWN, M.S. 1988. Operator constitutive mutation of 3-hydroxy-3-methylglutaryl coenzyme A reductase promoter abolishes protein binding to sterol regulatory element. J. Biol. Chem. 263: 3380–3387.

    PubMed  CAS  Google Scholar 

  115. DAWSON, P.A., HOFMANN, S.L., VAN DER WESTHUYZEN, D.R., SüDHOFF, T.C., BROWN, M.S., GOLDSTEIN, J.L. 1988. Sterol-dependent repression of low density lipoprotein receptor promoter mediated by 16-base pair sequence adjacent to binding site for transcription factor Spl. J. Biol. Chem. 263: 3372–3379.

    PubMed  CAS  Google Scholar 

  116. GIL, G., SMITH, J.R., GOLDSTEIN, J.L., SLAUGHTER, C.A., ORTH, K., BROWN, M.S. 1988. Multiple genes encode nuclear factor 1-like proteins that bind to the promoter for 3-hydroxy-3-methylglutaryl-coentyme A reductase. Proc. Natl. Acad. Sci. 85: 8963–8967.

    PubMed  CAS  Google Scholar 

  117. OSHIMA, K., URITANI, I. 1968. Enzymatic synthesis of a β-hydroxy-β-methylglutaric acid-derivative by a cell free system from sweet potato infected with black rot. J. Biochem. Tokyo 63: 617–625.

    PubMed  CAS  Google Scholar 

  118. POTTY, V.H. 1969. Occurrence and properties of enzymes associated with mevalonic acid synthesis in the orange. J. Food Sci. 34: 231–234.

    CAS  Google Scholar 

  119. MESSNER, B., EGGERER, H., CORNFORTH, J.W., MALLABY, R. 1975. Substrate stereochemistry of the hxdroxymethyl-glutaryl-CoA lyase and methylglutaconyl-CoA hydratase reactions. Eur. J. Biochem. 53: 255–264.

    CAS  Google Scholar 

  120. NEMETHY, E.K., SKRUKRUD, C., PIAZZA, G.J., CALVIN, M. 1983. Terpenoid biosynthesis in Euphorbia latex. Biochim. Biophys. Acta 760: 343–349.

    CAS  Google Scholar 

  121. BACH, T.J., WEBER, T. 1989. Enzymic synthesis of mevalonic acid in plants. In: Biological Role of Plant Lipids. (P.A. Biacs, K. Gruiz, T. Kremmer, eds.), Akademiai Kiado, Budapest and Plenum Publishing Corporation, New York and London, pp. 279–282.

    Google Scholar 

  122. CLINKENBEARD, K.D., SUGIYAMA, T., MOSS, J., REED, W.D., LANE, M.D. 1973. Molecular and catalytic properties of cytosolic acetoacetyl coenzyme A thiolase from avian liver. J. Biol. Chem. 248: 2275–2284.

    PubMed  CAS  Google Scholar 

  123. CLINKENBEARD, K.D., REED, W.D., MOONEY, R.A., LANE, M.D. 1975. Intracellular localisation of the 3-hydroxy-3-methylglutaryl coenzyme A cycle enzymes in liver: Separate cytoplasmic and mitochondrial 3-hydroxy-3-methylglutaryl coenzyme A generating systems for cholesterogenesis and ketogenesis. J. Biol. Chem. 250: 2108–3116.

    Google Scholar 

  124. CLINKENBEARD, K.D., SUGIYAMA, T., REED, W.D., LANE, M.D. 1975. Cytoplasmic 3-hydroxy-3-methylglutaryl coenzyme A synthase from liver: Purification, properties and role in cholesterol synthesis. J. Biol. Chem. 250: 3124–3135.

    CAS  Google Scholar 

  125. TOMODA, H., KUMAGAI, H., TANAKA, H., OMURA, S. 1987. F-244 specifically inhibits 3-hydroxy-3-methylglutaryl coenzyme A synthase. Biochim. Biophys. Acta 922: 351–356.

    PubMed  CAS  Google Scholar 

  126. GREENSPAN, M. D., YUDKOVITZ, J.B., LO, C.Y.L., CHEN, J.S., ALBERTS, A.W., HUNT, V.M., CHANG, M.N., YANG, S.S., THOMPSON, K.L., CHIANG, Y.C.P., CHABALA, J.C., MONAGHAN, R.L., SCHWARTZ, R.L. 1987. Inhibition of hydroxymethylglutaryl-coenzyme A synthase by L-659,699. Proc. Natl. Acad. Sci. U.S.A. 84: 7488–7492.

    PubMed  CAS  Google Scholar 

  127. BUCHER, N.L.R., OVERATH, P., LYNEN, F. 1960. β-Hydroxy-β-methylglutaryl coenzyme A reductase, cleavage and condensing enzymes in relation to cholesterol formation in rat liver. Biochim. Biophys. Acta 40: 491–501.

    PubMed  CAS  Google Scholar 

  128. QUANT, P.A., TUBBS, P.K., BRAND, M.D. 1989. Glucagon increases mitochondrial 3-hydroxy-3-methylglutaryl-coenzyme A synthase activity in vivo by desuccinylating the enzyme. Biochem. Soc. Transact. 17: 147–148.

    CAS  Google Scholar 

  129. BALASUBRAMANIAM, S., GOLDSTEIN, J.L., BROWN, M.S. 1977. Regulation of cholesterol synthesis in rat adrenal gland through coordinate control of 3-hydroxy-3-methylglutaryl coenzyme A synthase and reductase activities. Proc. Natl. Acad. Sci. U.S.A. 74: 1421–1425.

    PubMed  CAS  Google Scholar 

  130. CHIN, D.J., LUSKEY, K.L., ANDERSON, R.G.W., FAUST, J.R., GOLDSTEIN, J.L., BROWN, M.S. 1982. Appearance of crystalloid endoplasmic reticulum in compactin-resistant Chinese hamster cells with a 500-fold increase in 3-hydroxy-3-methylglutaryl coenzyme A reductase. Proc. Natl. Acad. Sci. U.S.A. 79: 1185–1189.

    PubMed  CAS  Google Scholar 

  131. LUSKEY, K.L., FAUST, J.R., CHIN, D.J., BROWN, M.S., GOLDSTEIN, J.L. 1983. Amplification of the gene for 3-hydroxy-3-methylglutaryl coenzyme A reductase, but not for the 53-kDa protein, in UT-1 cells. J. Biol. Chem.258: 8462–8469.

    PubMed  CAS  Google Scholar 

  132. LEONARD, S., ARBOGAST, D., GEYER, D., JONES, C., SINENSKY, M. 1986. Localization of the gene encoding 3-hydroxy-3-methylglutaryl-coenzyme A synthase to human chromosome 5. Proc. Natl. Acad. Sci. 83: 2187–2189.

    PubMed  CAS  Google Scholar 

  133. HUMPHRIES, S.E., TATA, F., HENRY, I., BARICHARD, F., HOLM, M., JUNIEN, C., WILLIAMSON, R. 1985. The isolation, characterisation, and chromosomal assignment of the gene for human 3-hydroxy-3-methylglutaryl coenzyme A reductase, (HMG-CoA reductase). Hum. Genet. 71: 254–258.

    PubMed  CAS  Google Scholar 

  134. LINDGREN, V., LUSKEY, K.L., RUSSELL, D.W., FRANCKE, U. 1985. Human genes involved in cholesterol metabolism: Chromosomal map** of the loci for the low density lipoprotein receptor and 3-hydroxy-3-methylglutaryl-coenzyme A reductase with cDNA probes. Proc. Natl. Acad. Sci. 82: 8567–8571.

    PubMed  CAS  Google Scholar 

  135. KORNBLATT, J., RUDNEY, H. 1971. Two forms of acetoacetyl coenzyme A thiolase in yeast: I. Separation and properties. J. Biol. Chem.246: 4417–4423.

    PubMed  CAS  Google Scholar 

  136. KORNBLäTT, J., RUDNEY, H. 1971. Two forms of acetoacetyl coenzyme A thiolase in yeast: II. Intracellular location and relationship to growth. J. Biol. Chem.246: 4424–4430.

    PubMed  Google Scholar 

  137. TROCHA, P.J., SPRINSON, D.B. 1976. Location and regulation of early enzymes of sterol biosynthesis in yeast. Arch. Blochem. Biophys. 174: 45–51.

    CAS  Google Scholar 

  138. SERVOUSE, M., KARST, F. 1986. Regulation of early enzymes of ergosterol biosynthesis in Saccharomyces cerevisiae. Biochem. J. 240: 541–547.

    CAS  Google Scholar 

  139. KAWAGUCHI, A. 1970. Control of ergosterol biosynthesis in yeast: Existence of lipid inhibitors. J. BioChem.67: 219–227.

    PubMed  CAS  Google Scholar 

  140. BOLL, M., LOWELL, M., STILL, J., BERNDT, J. 1975. Sterol biosynthesis in yeast. Eur. J. BioChem.54: 435–444.

    PubMed  CAS  Google Scholar 

  141. QUAIN, D.E., HASLAM, J.M. 1979. The effects of catabolite derepression on the accumulation of steryl esters and the activity of β-hydroxy-β-methylglutaryl-CoA reductase in Saccharomyces cerevisiae. J. Gen. MicroBiol. 11: 343–351.

    Google Scholar 

  142. BERG, D., DRABER, W., VON HUGO, H., HUMMEL, W., MAYER, D. 1981. The effect of clotrimazole and triadimefon on 3-hydroxy-3-methyl-glutaryl-CoA reductase-[EC 1.1.1.34]-activity in Saccharomyces cerevisiae. Z. Naturforsch. 36c: 798–803.

    CAS  Google Scholar 

  143. DéQUIN, S., BOUTELET, F., SERVOUSE, M., KARST, F. 1988. Effect of acetoacetyl CoA thiolase amplification on sterol synthesis in the yeasts S. cerevisiae and S. uvarum. Biotechnol. Lett. 10: 457–462.

    Google Scholar 

  144. KRAMER, P.R., MIZIORKO, H.M. 1983. 3-Hydroxy-3-methylglutaryl-CoA lyase: Catalysis of acetyl coenzyme A enolization. Biochemistry USA 22: 2353–2357.

    CAS  Google Scholar 

  145. STEGINK, L.D., COON, M.J. 1968. Stereospecificity and other properties of highly purified β-hydroxy-β-methylglutaryl coenzyme A cleavage enzyme from bovine liver. J. Biol. Chem.243: 5272–5279.

    PubMed  CAS  Google Scholar 

  146. BACHHAWAT, B. K., ROBINSON, W.G., COON, M.J. 1955. The enzymatic cleavage of β-hydroxy-β-methylglutaryl-coenzyme A to acetoacetate and acetyl coenzyme A. J. Biol. Chem.216: 727–736.

    PubMed  CAS  Google Scholar 

  147. HIGGINS, M.J.P., KORNBLATT, J.A., RUDNEY, H. 1972. Acyl-CoA ligases. The Enzymes, Vol. VII (P.D. Boyer, ed.), Academic Press, New York, pp. 407–434.

    Google Scholar 

  148. POPJàk, G. 1971. Specificity of enzymes of sterol biosynthesis. Harvey Lect. 65: 127–156.

    PubMed  Google Scholar 

  149. LANDAU, B.R., BRUNENGRäBER, H. 1985. Shunt pathway of. mevalonate metabolism. Meth. Enzymol. 110: 100–114.

    PubMed  CAS  Google Scholar 

  150. NES, W.D., CAMPBELL, B.C., STAFFORD, A.E., HADDON, W.F., BENSON, M. 1982. Metabolism of mevalonic acid to long chain fatty alcohols in an insect. Biochem. Biophys. Res. Commun. 108: 1258–1263.

    PubMed  CAS  Google Scholar 

  151. NES, W.D., BACH, T.J. 1985. Evidence for a mevalonate shunt in a tracheophyte. Proc. Roy. Soc. Lond. B 225: 425–444.

    CAS  Google Scholar 

  152. ALLEN, K.G., BANTHORPE, D.V., CHARLWOOD, B.V., EKUNDAYO, O., MANN, J. 1976. Metabolic pools associated with monoterpene biosynthesis in higher plant. Phytochemistry 15: 101–107.

    CAS  Google Scholar 

  153. SINGH, S.S., NEE, T.Y., POLLARD, M.R. 1986. Acetate and mevalonate labeling studies with develo** Cuphea lutea seeds. Lipids 21: 143–149.

    CAS  Google Scholar 

  154. GROENEVELD, H.W., ELINGS, J.C., JORGE BLANCO, M.S., BRAMWELL, D. 1989. Quantitative aspects of triacylglycerol metabolism and sterol synthesis from 14C-acetate in etiolated seedlings of Euphorbia lambii. Physiol. Plant. 75: 227–232.

    CAS  Google Scholar 

  155. SAUVAIRE, Y., TAL, B., HEUPEL, R.C., ENGLAND, R., HANNERS, P.K., NES, W.D., MUDD, J.B. 1987. A comparison of sterol and long chain fatty alcohol biosynthesis in Sorghum bicolor. In: The Metabolism, Structure, and Function of Plant Lipids. (P.K. Stumpf, J.B. Mudd, W.D. Nes, eds.), Plenum Press, New York — London, pp. 107–110.

    Google Scholar 

  156. BAISTED, D.J., NES, W.R. 1963. The relative efficacy of mevalonic and dimethylacrylic acids as isopentenoid precursors in germinating seeds of Pisum sativum. J. Biol. Chem.238: 1947–1952.

    CAS  Google Scholar 

  157. KANNANGARA, C.G., JENSEN, C.G. 1975. Biotin carboxyl carrier protein in barley chloroplast membranes. Eur. J. BioChem.54: 25–30.

    PubMed  CAS  Google Scholar 

  158. NIKOLAU, B.J., WURTELE, E.S., STUMPF, P.K. 1984. Subcellular distribution of acetyl-coenzyme A carboxylase in mesophyll cells of barley and sorghum leaves. Arch. Biochem. Biophys. 235: 555–561.

    PubMed  CAS  Google Scholar 

  159. NIKOLAU, B. J., WURTELE, E.S., STUMPF, P.K. 1985. Use of streptavidin to detect biotin-containing proteins in plants. Anal. BioChem.149: 448–453.

    PubMed  CAS  Google Scholar 

  160. HOFFMAN, N.E., PICHERSKY, E., CASHMORE, A.R. 1987. A tomato cDNA encoding a biotin-binding protein. Nucl. Acids Res. 15: 3928.

    PubMed  CAS  Google Scholar 

  161. ITO, M., FUKUI, T., SAITO, T., TOMITA, K. 1987. Inhibition of acetoacetyl-CoA synthetase from rat liver by fatty acyl-CoAs. Biochim. Biophys. Acta 922: 287–293.

    PubMed  CAS  Google Scholar 

  162. WONG, G.A., BERGSTROM, J.D., EDMOND, J. 1987. Acetoacetyl-CoA ligase activity in the isolated rat hepatocyte effects of 25-hxdroxycholesterol and high density lipoprotein. Biosci. Rep. 7: 217–224.

    PubMed  CAS  Google Scholar 

  163. SALAM, W.H., CAGEN, L.M., HEIMBERG, M. 1988. Regulation of hepatic cholesterol biosynthesis by fatty acids: Effects of feeding olive oil on cytoplasmic acetoacetyl-coenzyme A thiolase, β-hydroxy-β-methylglutaryl-CoA synthase, and acetoacetyl-coenzyme A ligase. Biochem. Biophys. Res. Commun. 153: 422–427.

    PubMed  CAS  Google Scholar 

  164. HARWOOD, J.L. 1987. Lipid metabolism. In: The Lipid Handbook. (F.D. Gunstone, J.L. Harwood, F.B. Padley, eds.), Chapman and Hall, London — New York, pp. 485–503.

    Google Scholar 

  165. BEHRENDS, W., ENGELAND, K., KINDL, H. 1988. Characterization of two forms of the multifunctional protein acting in fatty acid β-oxidation. Arch. Biochem. Biophys. 263: 161–169.

    CAS  Google Scholar 

  166. ERNST-FONBERG, M.L. 1986. An NADH-dependent acetoacetyl-CoA reductase from Euglena gracilis. Purification and characterization, including inhibition by acyl carrier protein. Plant Physiol. 82: 978–984.

    PubMed  CAS  Google Scholar 

  167. KURIHARA, T., UEDA, M., TANAKA, A. 1988. Occurrence and possible roles of acetoacetyl-CoA thiolase and 3-ketoacyl-CoA thiolase in peroxisomes of an n-alkane-grown yeast, Candida tropicalis. FEBS Lett. 229: 215–218.

    CAS  Google Scholar 

  168. ENDO, T., HAMAGUCHI, N., HASHIMOTO, T., YAMADA, Y. 1988. Non-enzymatic synthesis of hygrine from acetoacetic acid and from acetonedicarboxylic acid. FEBS Lett. 234: 86–90.

    CAS  Google Scholar 

  169. HAUGHAN, P.A., LENTON, J.R., GOAD, L.J. 1987. Inhibition of growth of celery cells by paclobutrazol and its reversal by added sterols. In: The Metabolism, Structure, and Function of Plant Lipids. (P.K. Stumpf, J.B. Mudd, W.D. Nes, eds.), Plenum Press, New York — London, pp. 91–93).

    Google Scholar 

  170. GRUNDY, S.M. 1988. HMG-CoA reductase inhibitors for treatment of hypercholesterolemia. N. Engl. s J. Med. 319: 24–33.

    CAS  Google Scholar 

  171. BACH, T.J., LICHTENTHALER, H.K. 1987. Plant growth regulation by mevinolin and other sterol biosynthesis inhibitors. In: Ecology and Metabolism of Plant Lipids. (G. Fuller and W.D. Nes, eds.), Am. Chem. Soc. Symposium Series 325, American Chemical Society, Washington, pp. 109–139.

    Google Scholar 

  172. BACH, T.J., LICHTENTHALER, H.K. 1982 Mevinolin: A highly specific inhibitor of microsomal 3-hydroxy-3-methylglutaryl-coenzyme A reductase of radish plants. Z. Naturforsch. 37c: 46–50.

    CAS  Google Scholar 

  173. BACH, T.J., LICHTENTHALER, H.K. 1982. Inhibition by mevinolin of mevalonate formation and plant root elongation. Naturwissenschaften 69: 242.

    Google Scholar 

  174. BACH, T.J., LICHTENTHALER, H.K. 1983. Inhibition by mevinolin of plant growth, sterol formation and pigment accumulation. Physiol. Plant. 59: 50–60.

    CAS  Google Scholar 

  175. BACH, T.J. 1985. Selected natural and synthetic enzyme inhibitors of sterol biosynthesis as molecular probes for in vivo studies concerning the regulation of plant growth. Plant Sci. 39: 183–187.

    CAS  Google Scholar 

  176. HATA, S., TAKAGISHI, H., EGAWA, Y., OTA, Y. 1986. Effects of compactin, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, on the growth of alfalfa (Medicago sativa) seedlings and the rhizogenes of pepper (Capsicum annuum) expiants. Plant Growth Regul. 4: 335–346.

    CAS  Google Scholar 

  177. SCHINDLER, S., BACH, T.J., LICHTENTHALER, H.K. 1985. Differential inhibition by mevinolin of prenyllipid accumulation in radish seedlings. Z. Naturforsch. 40c: 208–214.

    CAS  Google Scholar 

  178. PENNOCK, J.F., THRELFALL, D.R. 1983. Biosynthesis of ubiquinones and related compounds. In: Biosynthesis of Isoprenoid Compounds. (J.W. Porter, S.L. Spurgeon, eds.), Vol. 2, J. Wiley, New York, pp. 291–303.

    Google Scholar 

  179. CAMARA, B., BARDAT, F., SEYE, A., D’harlingue, A., Monéger, R. 1982. Terpenoid metabolism in plastids. Localization of α-tocopherol synthesis in Capsicum chromoplasts. Plant Physiol. 70: 1562–1563.

    PubMed  CAS  Google Scholar 

  180. SCHULTZ, G., SOLL, J., FIEDLER, E., SCHULZE-SIEBERT, D. 1985. Synthesis of prenylquinones in chloroplasts. Physiol. Plant. 64: 123–129.

    CAS  Google Scholar 

  181. SOLL, J., SCHULTZ, G., JOYARD, J., DOUCE, R., BLOCK, M.A. 1985. Localization and synthesis of prenylquinones in isolated outer and inner envelope membranes from spinach chloroplasts. Arch. Biochem. Biophys. 238: 290–299.

    PubMed  CAS  Google Scholar 

  182. SCHINDLER, S., LICHTENTHALER, H.K. 1982. Distribution and levels of ubiquinone homologues in higher plants. In: Biochemistry and Metabolism of Plant Lipids. (J.F.G.M. Wintermans, P.J.C. Kuiper, eds.), Elsevier-North Holland Biomedical Press, Amsterdam, pp. 545–548.

    Google Scholar 

  183. BACH, T.J., NES, W.D. 1984. Evidence for a mevalonate shunt pathway in wheat. In: Structurer Function and Metabolism of Plant Lipids. (P.A. Siegenthaler, W. Eichenberger, eds.), Elsevier Science Publishers BV, Amsterdam, pp. 217–220.

    Google Scholar 

  184. LICHTENTHALER, H.K., BACH, T.J., WELLBURN, A. 1982. Cytoplasmic and plastidic isoprenoid compounds of oat seedlings and their distinct labelling from 14C-mevalonate. In: Biochemistry and Metabolism of Plant Lipids. (J.F.G.M. Wintermans, P.J.K. Kuiper, eds.), Elsevier, Amsterdam, pp. 489–500.

    Google Scholar 

  185. SCHULZE-SIEBERT, D., SCHULTZ, G. 1987. Full autonomy in isoprenoid synthesis in spinach chloroplasts. Plant Physiol. BioChem.25: 145–153.

    CAS  Google Scholar 

  186. HATA, S., TAKAGISHI, H., KOUCHI, H. 1986. Variation in the content and composition of sterols in alfalfa seedlings treated with compactin (ML-236B) and mevalonic acid. Plant Cell Physiol. 28: 709–714.

    Google Scholar 

  187. HATA, S., SHIRATA, K., TAKAGISHI, H., KOUCHI, H. 1987. Accumulation of rare phytosterols in plant cells on treatment with metabolic inhibitors and mevalonic acid. Plant Cell Physiol. 28: 715–722.

    CAS  Google Scholar 

  188. FAUST, J.R., GOLDSTEIN, J.L., BROWN, M.S. 1979. Synthesis of ubiquinone and cholesterol in human fibroblasts: Regulation of a branched pathway. Arch. Biochem. Biophys. 192: 86–89,

    PubMed  CAS  Google Scholar 

  189. JAMES, M.J., KANDUTSCH, A.A. 1979. Inter-relationships between dolichol and sterol synthesis in mammalian cell cultures. J. Biol. Chem.254: 8442–8446.

    PubMed  CAS  Google Scholar 

  190. KELLER, G. A., PAZIRANDEH, M., KRISANS, S. 1986. 3- Hydroxy-3-methyl-glutaryl-coenzyme A reductase localization in rat liver peroxisomes and microsomes of control and cholestyramine-treated animals: quantitative biochemical and immunoelectron microscopical analyses. J. Cell Biol. 103: 875–886.

    PubMed  CAS  Google Scholar 

  191. FAUST, J.R., BROWN, M.S., GOLDSTEIN, J.L. 1980. Synthesis of A2-isopentenyl tRNA from mevalonate in cultured human fibroblasts. J. Biol Chem.255: 6546–6548.

    PubMed  CAS  Google Scholar 

  192. KENDE, H. 1965. Kinetin-like factors in the root exudate of sunflowers. Proc. Natl. Acad. Sci. U.S.A. 53: 1302–1307.

    PubMed  CAS  Google Scholar 

  193. WEISS, C., VAADIA, Y. 1965. Kinetin-like activity in root apices of sunflower plants. Life Sci. 4: 1323–1326.

    PubMed  CAS  Google Scholar 

  194. BUSCHMANN, C., LICHTENTHALER, H.K. 1982: The effects of cytokinins on growth and pigment accumulation of radish seedlings (Raphanus sativus L.) grown in the dark and at different light quanta fluence rates. Photochem. PhotoBiol. 35: 217–221.

    CAS  Google Scholar 

  195. BITTNER, A., BUSCHMANN, C. 1983 Uptake and translocation of K+, Ca2+ and Mg2 + by seedlings of Raphanus sativus L. treated with kinetin. Z. Pflanzenphysiol. 109: 191–189.

    Google Scholar 

  196. DOLL, M., SCHINDLER, S., LICHTENTHALER, H.K., BACH, T.J. 1984. Differential inhibition by mevinolin of prenyllipid accumulation in cell suspension cultures of Silybum marianum L. In: Structure, Function and Metabolism of Plant Lipids. (P.A. Siegenthaler and W. Eichenberger, eds.), Elsevier Science Publishers BV, Amsterdam, pp. 277–280.

    Google Scholar 

  197. SCHINDLER, S. 1984. Verbreitung und Konzentration von Ubichinon-Homologen in Pflanzen. Karls. Beitr. Pflanzenphysiol. (Karlsr. Contrib. Plant Physiol., ISSN 0173–3133) 12: 1–240.

    Google Scholar 

  198. RYDER, N.S., GOAD, L.J. 1980: The effect of the 3-hydroxy-3-methylglutaryl CoA reductase inhibitor ML-236B on phytosterol synthesis in Acer pseudoplantanus tissue culture. Biochim. Biophys. Acta 619: 424–427.

    PubMed  CAS  Google Scholar 

  199. HASHIZUME, T., MATSUBARA, S., ENDO, A. 1983. Compactin (ML-236B) as a new growth inhibitor of plant callus. Agric. Biol. Chem.47: 1401–1403.

    CAS  Google Scholar 

  200. MCCHESNEY, J.D. 1970. Stimulation of in vitro growth of plant tissues by D,L-mevalonic acid. Can. J. Bot. 48: 2357–2359.

    CAS  Google Scholar 

  201. MURAI, N., ARMSTRONG, D.J., SKOOG, F. 1975: Incorporation of mevalonic acid into ribosylzeatin in tobacco callus ribonucleic acid preparations. Plant Physiol. 55: 853–858.

    PubMed  CAS  Google Scholar 

  202. CHEN, T.H., SHIAO, M.S., HSIEH, W.L. 1987. Inhibition of somatic embryogenesis in cultured carrot cells by mevinolin. Bot. Bull. Academia Sinica 28: 211–217.

    CAS  Google Scholar 

  203. FAUST, J.R., LUSKEY, K.L., CHIN, D.J., GOLDSTEIN, J.L., BROWN, M.S. 1982. Regulation of synthesis and degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase by low density lipoprotein and 25-hydroxycholesterol in UT-1 cells. Proc. Natl. Acad. Sci. U.S.A. 79: 5205–5209.

    PubMed  CAS  Google Scholar 

  204. LUSKEY, K.L., CHIN, D.J., MACDONALD, R.J. K.L., GOLDSTEIN, J.L., BROWN, M.S. 1982. Identification of a cholesterol-regulated 53,000-dalton cytosolic protein in UT-1 cells and cloning of its cDNA. Proc. Natl. Acad. Sci. U.S.A. 79: 6210–6214.

    PubMed  CAS  Google Scholar 

  205. HARDEMAN, E.C., JENKE, H.S., SIMONI, R.D. 1983. Overproduction of a M, 92,000 protomer of 3-hydroxy-3-methylglutaryl-coenzyme A reductase in compactin-resistant C100 cells. Proc. Natl. Acad. Sci. U.S.A. 80: 1516–520.

    PubMed  CAS  Google Scholar 

  206. HARDEMAN, E.C., ENDO, A., SIMONI, R.D. 1984. Effects of compactin on the levels of 3-hydroxy-3-methylglutaryl coenzyme A reductase in compactin-resistant C100 and wild-type cells. Arch. Biochem. Biophys. 232: 549–561.

    PubMed  CAS  Google Scholar 

  207. MASUDA, A., KUWANO, M., SHIMADA, T. 1983. Ultrastructural changes during the enhancement of cellular 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase in a Chinese hamster cell mutant resistant to compactin (ML 236B). Cell Struct. Function 8: 309–312.

    CAS  Google Scholar 

  208. ORCI, L., BROWN, M.S., GOLDSTEIN, J.L., GARCIA-SEGURA, L.M., ANDERSON, R.G.W. 1984. Increase in membrane cholesterol: a possible trigger for degradation of HMG CoA reductase and crystalloid endoplasmic reticulum in UT-1 cells. Cell 36: 835–845.

    PubMed  CAS  Google Scholar 

  209. HASUMI, K., YAMADA, A., SHIMIZU, Y., ENDO, A. 1987. Overaccumulation of 3-hydroxy-3-methylglutaryl-coenzyme-A reductase in a compactin (ML-236B)-resistant mouse cell line with defects in the regulation of its activity. Eur. J. BioChem.164: 547–552.

    PubMed  CAS  Google Scholar 

  210. GOODWIN, T.W. 1958. Incorporation of 14CO2, [2-14C]acetate and [2-14C] mevalonic acid into β-carotene in etiolated maize seedlings. Biochem. J. 68: 26–27.

    Google Scholar 

  211. GOODWIN, T.W. 1958. Studies in carotenogenesis. 25. The incorporation of 14CO2, [2-14C]acetate and [2-14C]mevalonic acid into β-carotene by illuminated etiolated maize seedlings. Biochem. J. 70: 612–617.

    PubMed  CAS  Google Scholar 

  212. GOODWIN, T.W. 1965. The biosynthesis of carotenoids. In: Biosynthetic Pathways in Plants. (J.B. Pridham, T. Swain, eds.), Academic Press, London, pp. 37–55.

    Google Scholar 

  213. ROGERS, L.J., SHAH, S.P.J., GOODWIN, T.W. 1966. Compartmentation of terpenoid biosynthesis in green plants. Biochem. J. 104: 395–405.

    Google Scholar 

  214. SCHULTZ, G., HUCHZERMEYER, Y., REUPKE, B., BICKEL, H. 1976. On the intra-cellular site of biosynthesis of α-tocopherol in Hordeum vulgare. Phytochemistry, 15: 1253–1255.

    Google Scholar 

  215. GRUMBACH, K.H., FORN, B. 1980. Chloroplast autonomy in acetyl-coenzyme A formation and terpenoid biosynthesis. Z. Naturforsch. 35c: 645–648.

    CAS  Google Scholar 

  216. GRAY, J.C., KEKWICK, R.G.O. 1973. Mevalonate kinase in green leaves and etiolated cotyledons of the french bean Phaseolus vulgaris. Biochem. J. 133: 335–347.

    CAS  Google Scholar 

  217. HILL, H.W., ROGERS, L.J. 1974. Mevalonate activating enzymes and phosphatases in higher plants. Phytochemistry 13: 763–777.

    CAS  Google Scholar 

  218. KREUZ, K., KLEINIG, H. 1981. On the compartmentation of isopentenyl diphosphate synthesis and utilization in plant cells. Planta 153, 578–581.

    CAS  Google Scholar 

  219. LüTKE-BRINKHAUS, F., LIEDVOGEL, B., KLEINIG, H. 1984. On the biosynthesis of ubiquinones in plant mitochondria. Eur. J. BioChem.141: 537–541.

    PubMed  Google Scholar 

  220. LIEDVOGEL, B. 1986. Acetyl coenzyme A and isopentenyl pyrophosphate as lipid precursors in plant cells -biosynthesis and compartmentation. J. Plant Physiol. 124: 211–222.

    CAS  Google Scholar 

  221. KLEINIG, H. 1987. Carotenoid biosynthesis and carotenogenic enzymes in plants. In: The Metabolism, Structure, and Function of Plant Lipids. (P.K. Stumpf, J.B. Mudd, W.D. Nes, eds.), Plenum Press, New York — London, pp. 37–43.

    Google Scholar 

  222. EMMANUEL, B., ROBBLEE, A.R. 1984. Cholesterogenesis from propionate: facts and speculations. Int. J. BioChem.16: 907–911.

    PubMed  CAS  Google Scholar 

  223. DAVIS, A.R. 1978. Participation of propionate in cholesterol biosynthesis in rat liver. Steroids 31: 593–600.

    PubMed  CAS  Google Scholar 

  224. HALARNKAR, P.P., WAKAYAMA, E.J., BLOMQUIST, G.J. 1988. Metabolism of propionate to 3-hydroxypropionate and acetate in the Lima bean Phaseolus limensis. Phytochemistry 27: 997–999.

    CAS  Google Scholar 

  225. SCHULTZ, G., SCHULZE-SIEBERT, D. 1989. Chloroplast isoprenoid synthesis in spinach and barley: direct intermediate supply by photosynthetic carbon fixation. In: Biological Role of Plant Lipids. (P.A. Biacs, K. Gruiz, T. Kremmer, eds.), Akademiai Kiado, Budapest, and Plenum Publishing Corporation, New York — London, pp. 313–319.

    Google Scholar 

  226. STITT, M., AP REES, T. 1979. Capacities of pea chloroplasts to catalyse the oxidative pentose pathway and glycolysis. Phytochemistry 18: 1905–1911.

    CAS  Google Scholar 

  227. MCHALE, N. A., HANSON, K.R., ZELITCH, I. 1988. A nuclear mutation in Nicotiana sylvestris causing a thiamine-reversible defect in synthesis of chlorplast pigments. Plant Physiol. 88: 930–935.

    PubMed  CAS  Google Scholar 

  228. CURRY, K.J. 1987. Initiation of terpenoid synthesis in osmophores of Stanhopea anfracta (Orchidaceae): a cytochemical study. Amer. J. Bot. 74: 1332–1338.

    CAS  Google Scholar 

  229. KELLER, G.A., BARTON, M.C., SHAPIRO, D.J., SINGER, S.J. 1985. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase is present in peroxisomes in normal rat liver cells. Proc. Natl. Acad. Sci. U.S.A. 82: 770–774.

    PubMed  CAS  Google Scholar 

  230. SHAPIRO, D.J., GOULD, L., MARTIN, G., WILLIAMS, D., WOLSKI, R. 1986. Organization and regulated expression of rat liver HMG-CoA reductase genes. J. Lipid Res. 27: 567–568.

    Google Scholar 

  231. REYNOLDS, G. A., GOLDSTEIN, J.L., BROWN, M.S. 1985. Multiple mRNAs for 3-hydroxy-3-methylglutaryl coenzyme A reductase determined by multiple transcription initiation sites and intron splicing sites in the 5′-untranslated region. J. Biol. Chem.260: 10369–10377.

    PubMed  CAS  Google Scholar 

  232. GIL, G., FAUST, J.R., CHIN, D.J., GOLDSTEIN, J.L., BROWN, M.S. 1985. Membrane-bound domain of HMG CoA reductase is required for sterol-enhanced degradation of the enzyme. Cell 41: 249–258.

    PubMed  CAS  Google Scholar 

  233. LUSKEY, K.L. 1987. Conservation of promoter sequence but not complex intron splicing pattern in human and hamster genes for 3-hydroxy-3-methylglutaryl coenzyme A reductase. Mol. Cell. Biol. 7: 1881–1893.

    PubMed  CAS  Google Scholar 

  234. THOMPSON, S.L., BURROWS, R., LAUB, R.J., KRISANS, S.K. 1987. Cholesterol synthesis in rat liver peroxisomes. Conversion of mevalonic acid to cholesterol. J. Biol. Chem.262: 17420–17425.

    PubMed  CAS  Google Scholar 

  235. HASLAM, J.M., BIRCH, D.J., CRABBE, T.B. 1986. The control of 3-hydroxy-3-methylglutaryl-CoA reductase activity in Saccharomyces cerevisiae. J. Lipid Res. 27: 563.

    Google Scholar 

  236. BOLL, M. 1983. 3-Hydroxy-3-methylglutaryl coenzyme A reductase in yeast and other microorganismes. In: 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase. (J.R. Sabine, ed.), CRC Series in Enzyme Biology, CRC Press, Inc., Boca Raton, Florida, pp. 39–53.

    Google Scholar 

  237. BASSON, M.E., THORSNESS, M., RINE, J. 1986. Saccharomyces cerevisiae contains two functional genes encoding 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Broc. Natl. Acad. Sci. U.S.A. 83: 5563–5567.

    CAS  Google Scholar 

  238. CAELLES, C., FERRER, A., BALCELLS, L., HEGARDT, F.G., BORONAT, A. 1989. Isolation and structural characterization of a cDNA encoding Arabidopsis thaliana 3-hydroxy-3-methylglutaryl coenzyme A reductase. Plant. Mol. Biol, (in press).

    Google Scholar 

  239. LEARNED, R.M., FINK, G.R. 1989. 3-Hydroxy-3- methylglutaryl-coenzyme A reductase from Arabidops. thaliana is structurally distinct from the yeast al animal enzymes. Proc. Natl. Acad. Sci. U.S.A. 86: 2779–2783.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Bach, T.J., Weber, T., Motel, A. (1990). Some Properties of Enzymes Involved in the Biosynthesis and Metabolism of 3-Hydroxy-3-Methylglutaryl-CoA in Plants. In: Towers, G.H.N., Stafford, H.A. (eds) Biochemistry of the Mevalonic Acid Pathway to Terpenoids. Recent Advances in Phytochemistry, vol 24. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8789-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8789-3_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8791-6

  • Online ISBN: 978-1-4684-8789-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation