Use of Isolated Membrane Vesicles in Transport Studies

  • Chapter
Transport

Abstract

Isolated membrane vesicles represent one of the simplest systems in which the transport processes remain intact and have therefore provided considerable information on the structure, function, and regulation of transport systems. Although whole cells may also be used for transpprt studies, it is often difficult to separate transport from subsequent events in intracellular intermediary metabolism. One of the important advantages offered by membrane vesicles is the opportunity to investigate their transport functions apart from other cellular activities. At the same time, the isolated transport systems of membrane vesicles are retained in a functional form and their relationship to other membrane components can also be studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
GBP 9.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Allan, D., and Crumpton, M. J., 1970, Preparation and characterization of the plasma membrane of pig lymphocytes, Biochem. J. 120:133.

    PubMed  CAS  Google Scholar 

  • Altendorf, K. H., and Staehelin, L. A., 1974, Orientation of membrane vesicles from Escherichia coli as detected by freeze-cleave electron microscopy, J. Bacteriol. 117:888.

    PubMed  CAS  Google Scholar 

  • Avruch, J., and Wallach, D. F. H., 1971, Preparation and properties of plasma membrane and endoplasmic reticulum fragments from isolated rat fat cells, Biochim. Biophys. Acta 233:334.

    Article  PubMed  CAS  Google Scholar 

  • Barnes, E. M., Jr., 1972, Respiration-coupled glucose transport in membrane vesicles from Azotobacter vinelandii, Arch. Biochem. 152:795.

    Article  PubMed  CAS  Google Scholar 

  • Barnes, E. M., Jr., 1973, Multiple sites for coupling of glucose transport to the respiratory chain of membrane vesicles from Azotobacter vinelandii, J. Biol. Chem. 248:8120.

    PubMed  CAS  Google Scholar 

  • Barnes, E., Jr., 1974, Respiration-coupled calcium transport by membrane vesicles from Azotobacter vinelandii, Fed. Proc. 33:1457.

    Google Scholar 

  • Barnes, E. M., Jr., and Kaback, H. R., 1970, β-Galactoside transport in bacterial membrane preparations: Energy coupling via membrane-bound d-lactic dehydrogenase, Proc. Natl. Acad. Sci. (USA) 66:1190.

    Article  CAS  Google Scholar 

  • Benke, P. J., Herrick, N., and Hebert, A., 1973, Transport of hypoxanthine in fibroblasts with normal and mutant hypoxanthine-guanine phosphoribosyltransferase, Biochem. Med. 8:309.

    Article  PubMed  CAS  Google Scholar 

  • Berger, E. A., 1973, Different mechanisms of energy coupling for the active transport of proline and glutamine in Escherichia coli, Proc. Natl. Acad. Sci. (USA) 70:1514.

    Article  CAS  Google Scholar 

  • Bhattacharyya, P., 1970, Active transport of manganese in isolated membranes of Escherichia coli, J. Bacteriol. 104:1307.

    PubMed  CAS  Google Scholar 

  • Bhattacharyya, P., Epstein, W., and Silver, S., 1971, Valinomycin-induced uptake of potassium in membrane vesicles from Escherichia coli, Proc. Natl. Acad. Sci. (USA) 68:1488.

    Article  CAS  Google Scholar 

  • Brunette, D. M., and Till, J. E., 1971, A rapid method for the isolation of l-cell surface membrane using an aqueous two-phase polymer system, J. Membr. Biol. 5:215.

    Article  CAS  Google Scholar 

  • Carter, J. E., and Martin, D. B., 1969, Glucose uptake by isolated particles from rat epididymal adipose tissue cells, Proc. Natl. Acad. Sci. (USA) 64:1343.

    Article  CAS  Google Scholar 

  • Carter, J. E., Avruch, J., and Martin, D. B., 1972, Glucose transport in plasma membrane vesicles from rat adipose tissue, J. Biol. Chem. 246:2682.

    Google Scholar 

  • Cunningham, D. D., and Pardee, A. B., 1969, Transport changes rapidly initiated by serum addition to “contact-inhibited” 3T3 cells, Proc. Natl. Acad. Sci. (USA) 64:1049.

    Article  CAS  Google Scholar 

  • DePierre, J. W., and Karnovsky, M. L., 1973, Plasma membranes of mammalian cells: A review of methods for their characterization and isolation, J. Cell Biol. 56:257.

    Article  Google Scholar 

  • Frerman, F. E., and Bennett, W., 1973, Studies on the uptake of fatty acids by Escherichia coli, Arch. Biochem. Biophys. 159:434.

    Article  PubMed  CAS  Google Scholar 

  • Futai, M., 1974a, Reconstitution of transport dependent on d-lactate or glycerol-3-phosphate in membrane vesicles of Escherichia coli deficient in the corresponding dehydrogenases, Biochemistry 13:2327.

    Article  PubMed  CAS  Google Scholar 

  • Futai, M., 1974b, Orientation of membrane vesicles from Escherichia coli prepared by different procedures, J. Membr. Biol. 15:15.

    Article  PubMed  CAS  Google Scholar 

  • Gahmberg, C. G., and Simons, K., 1970, Isolation of plasma membrane fragments from BHK 21 cells, Acta Pathol. Microbiol. Scand. Sect. B 78:176.

    CAS  Google Scholar 

  • Graham, J., 1972, Isolation and characterization of membranes from normal and transformed tissue culture cells, Biochem. J. 130:1113.

    PubMed  CAS  Google Scholar 

  • Graham, J. M., Sumner, M. C. B., Curtis, D. H., and Pasternek, C. A., 1973, Sequence of events in plasma membrane assembly during the cell cycle, Nature 246:291.

    Article  PubMed  CAS  Google Scholar 

  • Gruenstein, E., Rich, A., and Weihing, R. R., 1974, Actin associated with membranes from 3T3 mouse fibroblasts and HeLa cells, J. Cell Biol. 64:223.

    Article  Google Scholar 

  • Hampton, M. L., and Freese, E., 1974, Explanation for the apparent inefficiency of reduced nicotinamide adenine dinucleotide in energizing amino acid transport in membrane vesicles, J. Bacteriol. 118:497.

    PubMed  CAS  Google Scholar 

  • Harold, F. M., 1972, Conservation and trasformation of energy of bacterial membranes, Bacteriol. Rev. 36:172.

    PubMed  CAS  Google Scholar 

  • Heppel, L. A., 1971, The concept of periplasmic enzymes, in: Structure and Function of Biological Membranes (L. Rothfield, ed.), p. 223, Academic Press, New York.

    Google Scholar 

  • Hinds, T. R., and Brodie, A. F., 1974, Relationship of a proton gradient to the active transport of proline with membrane vesicles from Mycobacterium phlei, Proc. Natl. Acad. Sci. (USA) 71:1202.

    Article  CAS  Google Scholar 

  • Hirata, H., Asano, A., and Brodie, A. F., 1971, Respiration dependent transport of proline by electron transport particles from Mycobacterium phlei, Biochem. Biophys. Res. Commun. 44:368.

    Article  PubMed  CAS  Google Scholar 

  • Hirata, H., Altendorf, K., and Harold, F. M., 1974, Energy coupling in membrane vesicles of Escherichia coli. I. Accumulation of metabolites in response to an electrical potential, J. Biol. Chem. 249:2939.

    PubMed  CAS  Google Scholar 

  • Hochstadt, J., 1974, The role of the membrane in the utilization of nucleic acid precursors, CRC Crit. Rev. Biochem. 2:259.

    Article  PubMed  CAS  Google Scholar 

  • Hochstadt-Ozer, J., 1972, The regulation of purine utilization in bacteria. IV. Roles of membrane-localized and pericytoplasmic enzymes in the mechanism of purine nucleoside transport across isolated E. coli membranes, J. Biol. Chem. 247:2419.

    PubMed  CAS  Google Scholar 

  • Hochstadt-Ozer, J., and Cashel, M., 1972, The regulation of purine utilization in bacteria. V. Inhibition of purine phosphoribosyltransferase activity and purine uptake in isolated membrane vesicles by guanosine tetraphosphate, J. Biol. Chem. 247:7067.

    PubMed  CAS  Google Scholar 

  • Hochstadt-Ozer, J., and Stadtman, E. R., 1971a, The regulation of purine utilization in bacteria. I. Purification of adenine phosphoribosyltransferase and control of activity by nucleotides, J. Biol. Chem. 246:5294.

    PubMed  CAS  Google Scholar 

  • Hochstadt-Ozer, J., and Stadtman, E. R., 1971b, The regulation of purine utilization in bacteria. II. Adenine phosphoribosyltransferase in isolated membrane preparations and its role in transport of adenine across the membrane, J. Biol. Chem. 246:5304.

    PubMed  CAS  Google Scholar 

  • Hochstadt-Ozer, J., and Stadtman, E. R., 1971c, The regulation of purine utilization in bacteria. III. The involvement of purine phosphoribosyltransferase in the uptake of adenine and other nucleic acid precursors by intact resting cells, J. Biol. Chem. 246:5312.

    PubMed  CAS  Google Scholar 

  • Holley, R. W., 1972, A unifying hypothesis concerning the nature of malignant growth, Proc. Natl. Acad. Sci. (USA) 69:2840.

    Article  CAS  Google Scholar 

  • Kaback, H. R., 1968, The role of the phosphoenolpyruvate phosphotransferase system in the transport of sugars by isolated membrane preparations of Escherichia coli, J. Biol. Chem. 243:3711.

    PubMed  CAS  Google Scholar 

  • Kaback, H. R., 1970, Transport, Ann. Rev. Biochem. 39:561.

    Article  PubMed  CAS  Google Scholar 

  • Kaback, H. R., 1971, Bacterial membranes, in: Methods in Enzymology, Vol. 22 (W. B. Jacoby, ed.), p. 99, Academic Press, New York.

    Google Scholar 

  • Kaback, H. R., 1972, Transport across isolated bacterial cytoplasmic membranes, Biochim. Biophys. Acta 265:367.

    Article  PubMed  CAS  Google Scholar 

  • Kaback, H. R., and Hong, J., 1973, Membranes and transport, CRC Crit. Rev. Microbiol. 2:333.

    Article  CAS  Google Scholar 

  • Kaback, H. R., and Milner, L. S., 1970, Relationship of a membrane-bound d-lactic dehydrogenase to amino acid transport in isolated bacterial membrane preparations, Proc. Natl. Acad. Sci. (USA) 66:1008.

    Article  CAS  Google Scholar 

  • Kaback, H. R., and Stadtman, E. R., 1966, Proline uptake by an isolated cytoplasmic membrane preparation of Escherichia coli, Proc. Natl. Acad. Sci. (USA) 55:920.

    Article  CAS  Google Scholar 

  • Kaback, H. R., and Stadtman, E. R., 1968, Glycine uptake in Escherichia coli. II. Glycine uptake, exchange, and metabolism by an isolated membrane preparation, J. Biol. Chem. 243:1390.

    PubMed  CAS  Google Scholar 

  • Kamat, V. B., and Wallach, D. F. H., 1965, Separation and partial purification of plasma-membrane fragments from Ehrlich ascites carcinoma microsomes, Science 148:1343.

    Article  PubMed  CAS  Google Scholar 

  • Kashket, E. R., and Wilson, T. H., 1973, Proton-coupled accumulation of galactoside in Streptococcus lactis 7962, Proc. Natl. Acad. Sci. (USA) 70:2866.

    Article  CAS  Google Scholar 

  • Kerwar, G., Gordon, A. S., and Kaback, H. R., 1972, Mechanisms of active transport in isolated membrane vesicles. IV. Galactose transport by isolated membrane vesicles from Escherichia coli, J. Biol. Chem. 247:291.

    PubMed  CAS  Google Scholar 

  • King, T. E., 1967, Preparations of succinate-cytochrome c reductase and the cytochrome b-c particle, and reconstitution of succinate-cytochrome c reductase, in: Methods in Enzymology, Vol. 10 (R. W. Estabrook and M. E. Pullman, eds.), p. 216, Academic Press, New York.

    Google Scholar 

  • Klein, W. L., and Boyer, P. D., 1972, Energization of active transport by Escherichia coli, J. Biol. Chem. 247:7257.

    PubMed  CAS  Google Scholar 

  • Komatsu, Y., and Tanaka, K., 1973, Deoxycytidine uptake by isolated membrane vesicles from Escherichia coli K12, Biochim. Biophys. Acta 311:496.

    Article  PubMed  CAS  Google Scholar 

  • Konings, W., and Freese, E., 1972, Amino acid transport in membrane vesicles of Bacillus subtilis, J. Biol. Chern. 247:2408.

    CAS  Google Scholar 

  • Konings, W., and Kaback, H. R., 1973, Anaerobic transport in Escherichia coli membrane vesicles, Proc. Natl. Acad. Sci. (USA) 70:3376.

    Article  CAS  Google Scholar 

  • Konings, W. N., Barnes, E. M., Jr., and Kaback, H. R., 1971, Mechanisms of active transport in isolated membrane vesicles. III. The coupling of reduced phenazine methosulfate to the concentrative uptake of β-galactosides and amino acids, J. Biol. Chem. 246:5857.

    PubMed  CAS  Google Scholar 

  • Konings, W. N., Bisschop, A., Veenhuis, M., and Vermeulen, C. A., 1973, New procedure for the isolation of membrane vesicles of Bacillus subtilis and an electron microscopy study of their ultrastructure, J. Bacteriol. 116:1456.

    PubMed  CAS  Google Scholar 

  • Lauter, C. J., Solyom, A., and Trams, E. G., 1972, Comparative studies on enzyme markers of liver plasma membranes, Biochim. Biophys. Acta 266:511.

    Article  PubMed  CAS  Google Scholar 

  • Leder, I., 1972, Interrelated effects of cold shock and osmotic pressure on the permeability of the E. coli membrane to permease accumulated substrates, J. Bacteriol. 111:211.

    PubMed  CAS  Google Scholar 

  • Lesko, L., Donlon, M., Marinetti, G. V., and Hare, J. D., 1973, A rapid method for the isolation of rat liver plasma membranes using an aqueous two-phase polymer system, Biochim. Biophys. Acta 311:173.

    Article  PubMed  CAS  Google Scholar 

  • Li, C. C., and Hochstadt, J., 1975, Nucleoside uptake by plasma membrane vesicles from L929 cells grown in completely defined medium, submitted for publication.

    Google Scholar 

  • Littlefield, J. W., 1964, Three degrees of guanylic acid-inosinic acid pyrophosphorylase deficiency in mouse fibroblasts, Nature 203:1142.

    Article  PubMed  CAS  Google Scholar 

  • Lombardi, F. J., and Kaback, H. R., 1972, Mechanisms of active transport in isolated bacterial membrane vesicles. VIII. The transport of amino acids by membranes prepared from Escherichia coli, J. Biol. Chem. 247:7844.

    PubMed  CAS  Google Scholar 

  • Lombardi, F. J., Reeves, J. P., and Kaback, H. R., 1973, Mechanisms of active transport in isolated bacterial membrane vesicles. XIII. Valinomycin-induced rubidium transport, J. Biol. Chem. 248:3551.

    PubMed  CAS  Google Scholar 

  • Lowry, O. H., Roseborough, N. J., Farr, A. J., and Randell, R. J., 1951, Protein measurement with the Folin phenol reagent, J. Biol. Chem. 193:265.

    PubMed  CAS  Google Scholar 

  • MacLeod, R. A., Thurman, P., and Rogers, H. J., 1973, Comparative transport activity of intact cells, membrane vesicles, and mesosomes of Bacillus licheniformis, J. Bacteriol 113:329.

    PubMed  CAS  Google Scholar 

  • McBride, O. W., and Ozer, H. L., 1973, Transfer of genetic information by purified metaphase chromosomes, Proc. Natl. Acad. Sci. (USA) 70:1258.

    Article  CAS  Google Scholar 

  • McKeel, D. W., and Jarrett, L., 1970, Preparation and characterization of a plasma membrane fraction from isolated fat cells, J. Cell Biol. 44:417.

    Article  PubMed  CAS  Google Scholar 

  • Meezan, E., Wu, H., Black, P. A., and Robbins, P. W., 1969, Comparative studies on the carbohydrate-containing membrane components of normal and virus-transformed mouse fibroblasts. II. Separation of glycoproteins and glycopeptides by Sephadex chromatography, Biochemistry 8:2518.

    Article  PubMed  CAS  Google Scholar 

  • Murray, A. W., Elliott, D. C., and Atkinson, M. R., 1970, Nucleotide biosynthesis from preformed purines in mammalian cells: Regulatory mechanisms and biological significance, in: Progress in Nucleic Acid Research and Molecular Biology, Vol. 10 (J. N. Davidson and W. E. Cohn, eds.), p. 87, Academic Press, New York.

    Google Scholar 

  • Neville, D. M., 1960, The isolation of a cell membrane fraction from rat liver, J. Biophys. Biochem. Cytol. 8:413.

    Article  PubMed  Google Scholar 

  • Neville, D. M., 1975, Isolation of cell surface membrane fractions from mammalian cells and organs, in: Methods in Membrane Biology, Vol. 3 (E. D. Korn, ed.), p. 1, Plenum Press, New York.

    Chapter  Google Scholar 

  • Noonan, K., Levine, A., and Burger, N., 1973, Cell cycle-dependent changes in the surface membrane as detected with 3H-concanavalin A, J. Cell Biol. 58:491.

    Article  PubMed  CAS  Google Scholar 

  • Osborn, M. J., Gander, J. E., Parisi, E., and Carson, J., 1972, Mechanism of assembly of the outer membrane of Salmonella typhimurium: Isolation and characterization of cytoplasmic and outer membrane, J. Biol. Chem. 247:3962.

    PubMed  CAS  Google Scholar 

  • Ozer, J. (Hochstadt), and Wallach, D. F. H., 1967, H-2 components and cellular membranes: Distinctions between plasma membrane and endoplasmic reticulum governed by the H-2 region in the mouse, Transplantation 5:652.

    Article  PubMed  CAS  Google Scholar 

  • Perdue, J. F., 1971, The isolation and characterization of plasma membranes from cultured cells. III. The adenosine triphosphate-dependent accumulation of Ca2+ by chick embryo fibroblasts, J. Biol. Chem. 246:6750.

    CAS  Google Scholar 

  • Pickard, M. A., Phillippe, L., and Campbell, J. N., 1974, Metabolism and transport of purine nucleosides by membrane preparations of Micrococcus sodonensis, Can. J. Biochem. 52:83.

    Article  PubMed  CAS  Google Scholar 

  • Plagemann, P. G. W., and Erbe, J., 1972, Thymidine transport by cultured Novikoff hepatoma cells and uptake by simple diffusion and relationship to incorporation in deoxyribonucleic acid, J. Cell Biol. 55:161.

    Article  PubMed  CAS  Google Scholar 

  • Plagemann, P. G. W., and Erbe, J., 1973, Nucleotide pools in Novikoff rat hepatoma cells growing in suspension culture. IV. Nucleoside transport in cells depleted of nucleotides by treatment with KCN, J. Cell Physiol. 81:101.

    Article  PubMed  CAS  Google Scholar 

  • Post, R. L., and Jolly, P. C., 1957, The linkage of Na+, K+ and NH+ 4 active transport across the human erythrocyte membrane, Biochim. Biophys. Acta 25:118.

    Article  PubMed  CAS  Google Scholar 

  • Prezioso, G., Hong, J., Kerwar, G. N., and Kaback, H. R., 1973, Mechanisms of active transport in isolated bacterial membrane vesicles. XII. Active transport by a mutant of Escherichia coli uncoupled for oxidative phosphorylation, Arch. Biochem. Biophys. 154:575.

    Article  PubMed  CAS  Google Scholar 

  • Quinlan, D. C., and Hochstadt, J., 1974, An altered rate of uridine transport in membrane vesicles isolated from growing and quiescent 3T3 cells, Proc. Natl. Acad. Sci. (USA) 71:5000.

    Article  CAS  Google Scholar 

  • Quinlan, D. C., and Hochstadt, J., 1975a, Mechanisms of transport by isolate membranes from culture mammalian cells: Group translocation of the ribose moiety of inosine by plasma membrane vesicles from 3T3 cells transformed with Simian virus 40, J. Biol. Chem., in press.

    Google Scholar 

  • Quinlan, D. C., and Hochstadt, J., 1975b, The existence of a group translocation mechanism in animal cells: Uptake of the ribose moiety of inosine, J. Supramolecular Structure, in press.

    Google Scholar 

  • Raue, H. A., and Cashel, M., 1973, Regulation of RNA synthesis in E. coli. I. Characterization of cells subjected to simultaneous temperature and osmotic shock, Biochim. Biophys. Acta 312:722.

    Article  PubMed  CAS  Google Scholar 

  • Ray, T. K., 1970, A modified method for the isolation of the plasma membrane from rat liver, Biochim. Biophys. Acta 196:1.

    Article  PubMed  CAS  Google Scholar 

  • Reeves, J. P., 1971, Transient pH changes during d-lactate oxidation by membrane vesicles, Biochem. Biophys. Res. Commun. 45:931.

    Article  PubMed  CAS  Google Scholar 

  • Reeves, J. P., Hong, J., and Kaback, H. R., 1973, Reconstitution of d-lactate dependent transport in membrane vesicles from a d-lactate dehydrogenase mutant of Escherichia coli, Proc. Natl. Acad. Sci. (USA) 70:1917.

    Article  CAS  Google Scholar 

  • Romano, A. H., and Colby, C., 1973, SV40 virus transformation of mouse 3T3 cells does not specifically enhance sugar transport, Science 179:1238.

    Article  PubMed  CAS  Google Scholar 

  • Roseman, S., 1969, The transport of carbohydrates by a bacterial phosphotransferase system, J. Gen. Physiol. 54:1385.

    Article  Google Scholar 

  • Rosen, B. P., 1973, Restoration of active transport in a Mg2+-adenosine triphosphatase-deficient mutant of Escherichia coli, J. Bacteriol. 116:1124.

    PubMed  CAS  Google Scholar 

  • Schuster, G. S., and Hare, J. D., 1971, The role of phosphorylation in the uptake of thymidine in mammalian cells, In Vitro 6:427.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro, B. M., Sicardi, A. G., Hirota, Y., and Jacob, F., 1970, On the process of cellular division in Escherichia coli. II. Membrane protein alterations associated with mutations affecting the initiation of DNA synthesis, J. Mol. Biol. 52:75.

    Article  PubMed  CAS  Google Scholar 

  • Short, S. A., White, D. C., and Kaback, H. R., 1972a, Mechanisms of active transport in isolated bacterial membrane vesicles. IX. The kinetics and specificity of amino acid transport in Staphylococcus aureus membrane vesicles, J. Biol. Chem. 247:7452.

    PubMed  CAS  Google Scholar 

  • Short, S. A., White, D. C., and Kaback, H. R., 1972b, Active transport in isolated bacterial membrane vesicles. V. The transport of amino acids by membrane vesicles prepared from Staphylococcus aureus, J. Biol. Chem. 247:298.

    PubMed  CAS  Google Scholar 

  • Short, S. A., Kaback, H. R., and Kohn, L. S., 1974, d-Lactate dehydrogenase binding in Escherichia coli dld-membrane vesicles reconstituted for active transport, Proc. Natl. Acad. Sci. (USA) 71:1461.

    Article  CAS  Google Scholar 

  • Simoni, R. D., and Shallenberger, M. K., 1972, Coupling of energy to active transport of amino acids in Escherichia coli, Proc. Natl. Acad. Sci. (USA) 69:2663.

    Article  CAS  Google Scholar 

  • Soderman, D. D., Germershausen, J., and Katzen, H. M., 1973, Affinity binding of intact fat cells and their ghosts to immobilized insulin, Proc. Natl. Acad. Sci. (USA) 70:792.

    Article  CAS  Google Scholar 

  • Sprott, G. D., and MacLeod, R. A., 1972, Na+-dependent amino acid transport in isolated membrane vesicles of a marine pseudomonad energized by electron donors, Biochem. Biophys. Res. Commun. 47:838.

    Article  PubMed  CAS  Google Scholar 

  • Sprott, G. D., and MacLeod, R. A., 1974, Nature of the specificity of alcohol coupling to l-alanine transport into isolated membrane vesicles of a marine pseudomonad, J. Bacteriol. 117:1043.

    PubMed  CAS  Google Scholar 

  • Steck, T. L., and Wallach, D. F. H., 1970, The isolation of plasma membranes, in: Methods in Cancer Research, Vol. 5 (H. Busch, ed.), p. 93, Academic Press, New York.

    Google Scholar 

  • Taube, R. A., and Berlin, R., 1972, Membrane transport of nucleosides in rabbit poly-morphonuclear leukocytes, Biochim. Biophys. Acta 255:6.

    Article  PubMed  CAS  Google Scholar 

  • Van Thienen, G., and Postma, P. W., 1973, Coupling between energy conservation and active transport of serine in Escherichia coli, Biochim. Biophys. Acta 323:429.

    Article  PubMed  Google Scholar 

  • Venuta, S., and Rubin, H., 1973, Sugar transport in normal and rous sarcoma virus-transformed chick-embryo fibroblasts, Proc. Natl. Acad. Sci. (USA) 70:653.

    Article  CAS  Google Scholar 

  • Wallach, D. F. H., 1967, Isolation of plasma membranes of animal cells, in: The Specificity of Cell Surfaces (B. D. Davis and L. Warren, eds.), p. 129, Prentice-Hall, Englewood Cliffs, N.J.

    Google Scholar 

  • Wallach, D. F. H., and Kamat, V. B., 1966a, The contribution of sialic acid to the surface charge of fragments of plasma membrane and endoplasmic reticulum, J. Cell Biol. 30:660.

    Article  PubMed  CAS  Google Scholar 

  • Wallach, D. F. H., and Kamat, V. B., 1966b, Preparation of plasma membrane fragments from mouse ascites tumor cells, in: Methods in Enzymology, Vol. 8 (V. Ginsburg and E. Neufeld, eds.), p. 164, Academic Press, New York.

    Google Scholar 

  • Wallach, D. F. H., and Lin, P. S., 1973, A critical evaluation of plasma membrane fractionation, Biochim. Biophys. Acta 300:211.

    Article  PubMed  CAS  Google Scholar 

  • Wallach, D. F. H., and Zahler, P. H., 1966, Protein conformations in cellular membrane, Proc. Natl. Acad. Sci. (USA) 56:1552.

    Article  CAS  Google Scholar 

  • Wallach, D. F. H., Kamat, V. B., and Gail, M. H., 1966, Physicochemical differences between fragments of plasma membrane and endoplasmic reticulum, J. Cell Biol. 30:601.

    Article  PubMed  CAS  Google Scholar 

  • Warren, L., Glick, M. C., and Nass, M. K., 1966, Membranes of animal cells. I. Methods of isolation of the surface membrane, J. Cell. Physiol. 68:269.

    Article  Google Scholar 

  • Weaver, R. A., and Boyle, W., 1969, Purification of plasma-membranes of rat liver: Application of zonal centrifugation isolation of cell membranes, Biochim. Biophys. Acta 173:377.

    Article  PubMed  CAS  Google Scholar 

  • Weiner, J. H., 1974, The localization of glycerol-3-phosphate dehydrogenase in Escherichia coli, J. Membr. Biol. 15:1.

    Article  PubMed  CAS  Google Scholar 

  • Weissbach, H., Redfield, B., and Kaback, H. R., 1969, Nucleotide binding by Escherichia coli membranes and solubilized membrane proteins, Arch. Biochem. Biophys. 135:66.

    Article  PubMed  CAS  Google Scholar 

  • Wheeler, K. P., and Christensen, H. N., 1967, Role of Na+ in the transport of amino acids in rabbit red cells, J. Biol. Chem. 242:1450.

    PubMed  CAS  Google Scholar 

  • Wu, H., Meezan, E., Black, P. A., and Robbins, P. W., 1969, Comparative studies on the carbohydrate-containing membrane components of normal and virus-transformed mouse fibroblasts. I. Glucosamine labeling patterns in 3T3, spontaneously transformed 3T3, and SV40-transformed 3T3 cells, Biochemistry 8:2509.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Plenum Press, New York

About this chapter

Cite this chapter

Hochstadt, J., Quinlan, D.C., Rader, R.L., Li, CC., Dowd, D. (1975). Use of Isolated Membrane Vesicles in Transport Studies. In: Korn, E.D. (eds) Transport. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-6976-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6976-9_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-6978-3

  • Online ISBN: 978-1-4684-6976-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation