Renal Membrane Transport of Calcium

  • Chapter
Phosphate and Mineral Homeostasis

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 208))

  • 137 Accesses

Abstract

The development of techniques for the isolation of highly purified baso-lateral membrane vesicles (BLMV) from the renal tubular epithelial cells enabled us to investigate the mechanism of calcium extrusion at this barrier of the cell. Two mechanisms of calcium transport known to exist in other tissues have been identified in the renal BLMV. These mechanisms are ATP-dependent Ca2+ transport and Na+/Ca2+ exchange. Yet, several aspects of these transporters are quite unique in the renal tubular cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
EUR 9.99
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. L. Moore, D.F. Fitzpatrick, T.S. Chen, and E.J. Landon, Calcium pump activity of the renal plasma membrane and renal microsomes, Bioch. Biophys. Acta345: 405 (1974).

    Article  Google Scholar 

  2. P. Gmaj, H. Murer, and R. Kinne, Calcium ion transport across plasma membranes isolated from rat kidney cortex, Biochem. J. 178: 549 (1979).

    Google Scholar 

  3. B. Forbush, III, Characterization of right-side-out membrane vesicles rich in (Na,K)-ATPase and isolated from dog kidney outer medulla, J. Biol. Chem. 257: 12678 (1982).

    Google Scholar 

  4. P. Gmaj, M. Zurini, H. Murer, and E. Carafoli, A high-affinity, calmodulindependent Ca2+ pump in the basal-lateral plasma membranes of kidney cortex, Eur. J. Biochem. 136: 71 (1983).

    Article  Google Scholar 

  5. Z. Taylor, G. Richison, and J.A.L. Arruda, High-affinity calcium binding sites in luminal and basolateral renal membranes, Am. J. Physiol. 248: F472 (1985).

    Google Scholar 

  6. K.A. Hruska, S.C. Mills, S. Khalifa, and M.R. Hammerman, Phosphorylation of renal brush-border membrane vesicles, J. Biol. Chem. 258: 2501 (1983).

    Google Scholar 

  7. V. Niggli, E.S. Adunyah, J.T. Penniston, and E. Carafoli, Purified (Ca2+MgL+)-ATPase of the erythrocyte membrane, J. Biol. Chem. 256: 395 (1981).

    Google Scholar 

  8. P. Caroni, and E. Carafoli, The Ca2+ pum** ATPase of heart sarcolemma, J. Biol. Chem. 256: 3263 (1981).

    Google Scholar 

  9. Y. Tsukamoto, and B. Sacktor, Characterization of Ca2+-dependent ATPase in basolateral membrane of rat renal cortex: Regulatory role of 1,25(OH)2D3, Kidney Int. 25: 156 (1984).

    Google Scholar 

  10. A. Jayakumar, L. Cheng, C.T. Liang, and B. Sacktor, Sodium gradient-. dependent calcium uptake in renal basolateral membrane vesicles, J. Biol. Chem. 259: 10827 (1984).

    Google Scholar 

  11. P. (rmal, I-f. Murer, and E. Carafoli, Localization and properties of a high-affinity (Ca2+ + Mg2+)-ATPase in isolated kidney cortex plasma membranes, FEBS letters144: 226 (1982).

    Article  Google Scholar 

  12. W. Ghijsen, P. Gmaj, and H. Murer, Ca2+-stimulated Mg2+-pum** ATPase, Biochem. Biophys. Acta778: 481 (1984).

    Article  Google Scholar 

  13. Y. Tsukamoto, and W.N. Suki, Regulation of Ca2+-ATPase in the basolateral membrane of rat kidney cortex, Kidney Int. 27: 128 (1985).

    Google Scholar 

  14. S. Khalifa, S. Mills, and K.A. Hruska, Stimulation of calcium uptake by parathyroid hormone in renal brush-border membrane vesicles, J. Biol. Chem. 258: 14400 (1983).

    Google Scholar 

  15. K.J. Ullrich, G. Rumrich, and S. Kloss, Active Ca2+ reabsorption in the proximal tubule of the rat kidney. Dependence on sodium and buffer transport, Pflugers Arch. Eur. J. Physiol. 364: 223 (1976).

    Article  Google Scholar 

  16. K.D. Philipson, and A.Y. Nishimoto, Na+-Ca2+ exchange in inside-out cardiac sarcolemmal vesicles, J. Biol. Chem. 257: 5111 (1982).

    Google Scholar 

  17. J.E. Scoble, S. Mills, and K.A. Hruska, Calcium transport in canine renal basolateral membrane vesicles. Effect of parathyroid hormones, J. Clin. Invest. 75: 1096 (1985).

    Article  Google Scholar 

  18. H.S. Chase, Jr., Does calcium couple the apical and basolateral membrane permeabilities in epithelia ? Am. J. Physiol. 247: F869 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Tsukamoto, Y., Suki, W.N. (1986). Renal Membrane Transport of Calcium. In: Massry, S.G., Olmer, M., Ritz, E. (eds) Phosphate and Mineral Homeostasis. Advances in Experimental Medicine and Biology, vol 208. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5206-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5206-8_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5208-2

  • Online ISBN: 978-1-4684-5206-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation