Abstract

Friction is the resistance to motion that is experienced whenever one solid body slides over another. The resistive force F, which is parallel to the direction of motion, is called the friction force [Fig. 4.1(a)]. If the solid bodies are loaded together and a tangential force (F) is applied, then the value of the tangential force that is required to initiate sliding is the static friction force. It may take a few milliseconds before sliding is initiated at the interface (Fstatic). The tangential force required to maintain sliding is the kinetic (or dynamic) friction force (Fkinetic); it is sometimes also called drag force. Kinetic friction is either lower than or equal to the static friction [Fig. 4.1(b)].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 9.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott, S. G., and Brumpton, N. (1981). The effect of moisture on polyurethane adhesives. J. Adhesion 13, 41–51.

    Google Scholar 

  • Allport, D. C., and Mohajer, A. A. (1973). Property-structure relationship in polyurethane block copolymers. In “Block Copolymers” (D. C. Allport and W. H. Janes, eds.), pp. 443–492. Applic. Sci. Publ. London.

    Google Scholar 

  • Anonymous (1986). Panel report on interfacial bonding and adhesion. Mat. Sci. and Eng. 83, 169–234.

    Google Scholar 

  • Arnold, W., Hunklinger, S., and Dransfeld, D. (1979). Influence of optical absorption on the Van der Waals interaction between solids. Phys. Rev. 19, 6049–6056.

    ADS  Google Scholar 

  • Bailey, A. I. (1961). Friction and adhesion of clean and contaminated mica surfaces. J. Appl. Phys. 32, 1407–1412.

    ADS  Google Scholar 

  • Bailey, A. I., and Daniels, H. (1972). Interaction forces between mica sheets at small separations. Nature Phys. Sci. 240, 62–63.

    ADS  Google Scholar 

  • Barquins, M., and Courtel, R. (1975). Rubber friction and the rheology of viscoelastic contact. Wear 32, 133–150.

    Google Scholar 

  • Bartenev, G. M., and Lavrentev, V. V. (1981). “Friction and Wear of Polymers.” Elsevier, Amsterdam.

    Google Scholar 

  • Bertram, H. N., and Eshel, A. (1980). “Recording Media Archival Attributes.” Report no. RADC-TR-80–123, Rome Air Development Center, Griffis Air Force Base, New York, 1–111.

    Google Scholar 

  • Bertram, H. N., and Cuddihy, E. F. (1982). Kinetics of the humid aging of magnetic recording tape, IEEE Trans. Mag. MAG-18 (5), 993–999.

    ADS  Google Scholar 

  • Bhushan, B. (1980). Stick-slip induced noise generation in water-lubricated compliant rubber bearings. J. hub. Tech., Trans. ASME 102, 201–212.

    Google Scholar 

  • Bhushan, B. (1981). Effect of shear-strain rate and interface temperature on predictive friction models. Proc. Seventh Leeds-Lyon Synposium, on Tribology, Leeds, England, pp. 39–44. IPC Business Press, United Kingdom.

    Google Scholar 

  • Bhushan, B. (1984). Influence of test parameters on the measurement of the coefficient of friction of magnetic tapes. Wear 93, 81–99.

    Google Scholar 

  • Bhushan, B. (1989). Tribological design—Information storage and retrieval. Proc. Fifteenth Leeds-Lyon Symposium on Tribology, Leeds, England. Elsevier, Amsterdam (in press).

    Google Scholar 

  • Bhushan, B., and Jahsman, W. E. (1978a). Propagation of weak waves in elastic-plastic and elastic-viscoplastic solids with interfaces. Int. J. Solids and Struc. 14, 39–51.

    MATH  Google Scholar 

  • Bhushan, B., and Jahsman, W. E. (1978b). Measurement of dynamic material behavior under nearly uniaxial strain conditions. Int. J. Solids and Struc. 14, 739–753.

    Google Scholar 

  • Bhushan, B., Sharma, B. S., and Bradshaw, R. L. (1984a). Friction in magnetic tape I: Assessment of relevant theory. ASLE Trans. 27, 33–44.

    Google Scholar 

  • Bhushan, B., Bradshaw, R. L., and Sharma, B. S. (1984b). Friction in magnetic tapes II: Role of physical properties. ASLE Trans. 27, 89–100.

    Google Scholar 

  • Bhushan, B., and Smith, D. R. (1985). Measurement of creep properties in compression and their influence on the friction of magnetic tapes. ASLE Trans. 28, 325–335.

    Google Scholar 

  • Bhushan, B., Wyant, J. C., and Koliopoulos, C. L. (1985). Measurement of surface topography of magnetic tapes by Mirau interferometry. Appl. Opt. 24, 1489–1497.

    ADS  Google Scholar 

  • Bhushan, B., and Phelan, R. M. (1986). Frictional properties as a function of physical and chemical changes in magnetic tapes during wear. ASLE Trans. 29, 402–413.

    Google Scholar 

  • Bhushan, B., and Phelan, R. M. (1987). Overview of Challenger space shuttle tape-data recovery study. IEEE Trans. Magn. Mag-23, 3179–3183.

    ADS  Google Scholar 

  • Bhushan, B., Sharma, B. S., Srinivasan, R. (1987). Texturing a magnetic tape surface. Res. Disci, February, No. 274.

    Google Scholar 

  • Bhushan, B., Ota, S., and Yamamoto, Y. (1988). Apparatus to measure suction in a magnetic disk file. Res. Disci, November, No. 295.

    Google Scholar 

  • Bhushan, B., and Doerner, M. F. (1989). Role of mechanical properties and surface texture in the real area of contact of magnetic rigid disks. J. Trib., Trans. ASME 111, 452–458.

    Google Scholar 

  • Bhushan, B., and Dugger, M. T. (1990). Liquid-mediated adhesion at the thin-film magnetic disk/slider interface. J. Trib., Trans. ASME (in press).

    Google Scholar 

  • Bowden, F. P., and Tabor, D. (1950). “Friction and Lubrication of Solids,” Part I. Clarendon Press, Oxford.

    Google Scholar 

  • Bowden, F. P., and Young, J. E. (1951). Friction of diamond, graphite and carbon and the influence of surface films. Proc. R. Soc. (London) 208, 444–455.

    ADS  Google Scholar 

  • Bowden, F. P., and Tabor, D. (1964). “Friction and Lubrication of Solids,” Part II. Clarendon Press, Oxford.

    Google Scholar 

  • Bradshaw, R. L. (1986). Personal communications.

    Google Scholar 

  • Bradshaw, R. L., and Bhushan, B. (1984). Friction in magnetic tapes III: Role of chemical properties. ASLE Trans. 27, 207–219.

    Google Scholar 

  • Bradshaw, R. L., Bhushan, B., Kalthoff, C., and Warne, M. (1986). Chemical and mechanical performance of flexible magnetic media containing chromium dioxide. IBM J. Res. Dev. 30 (2), 203–216.

    Google Scholar 

  • Briggs, G. A. D., and Briscoe, B. J. (1979). Surface roughness and the friction and adhesion of elastomers. Wear 57, 269–280.

    Google Scholar 

  • Briscoe, B. J., and Tabor, D. (1978). Friction and wear of polymers. In “Polymer Surfaces” (D. T. Clark and W. J. Feast, eds.). Wiley, New York.

    Google Scholar 

  • Brown, D. H., Lowry, R. E., and Smith, L. E. (1980). Kinetics of hydrolytic aging of polyester urethane elastomers. Macromol. 13, 248–252.

    ADS  Google Scholar 

  • Brown, D. H., Lowry, R. E., and Smith, L. E. (1982a). Prediction of the long term stability of polyester-based recording media. NBSIR-82–2530, NBS, Gaithersburg, Maryland.

    Google Scholar 

  • Brown, D. H., Lowry, R. E., and Smith, L. E. (1982b). Hydrolytic degradation of polyester polyurethanes containing carbodiimides. Macromol. 15, 453–458.

    ADS  Google Scholar 

  • Buckley, D. H. (1981). “Surface Effects in Adhesion, Friction, Wear and Lubrication.” Elsevier, Amsterdam.

    Google Scholar 

  • Buckley, D. H. (1982). Surface films and metallurgy related to lubrication and wear. in “Progress in Surface Science” (S. G. Davison, ed.), Vol. 12, pp. 1–153. Pergamon, New York.

    Google Scholar 

  • Buckley, D. H., and Brainard, W. A. (1974). The atomic nature of polymer-metal interactions in adhesion, friction and wear. In “Advances in Polymer Friction and Wear” (L. H. Lee, ed.), Vol. 5B, pp. 315–328. Plenum, New York.

    Google Scholar 

  • Bulgin, D., Hubbard, G. D., and Walters, M. H. (1962). Proc. 4th Rubber Technology Conf., London, May 1962, p. 173.

    Google Scholar 

  • Cameron, T. (1985). Micromotion release of heads from lubricated magnetic disks. U.S. Patent No. 4,530,021, July 16.

    Google Scholar 

  • Chandrasekar, S., and Bhushan, B. (1990a). Friction and wear of ceramics for magnetic recording applications part I: a review. J. Trib., Trans. ASME (in press).

    Google Scholar 

  • Chandrasekar, S., and Bhushan, B. (1990b). Friction and wear of ceramics for magnetic recording applications part II: experimental results. J. Trib., Trans. ASME (in press).

    Google Scholar 

  • Chen, M. M., Lin, J., Wu, T. W., and Castillo, G. (1988). Wear resistance of iron oxide thin films. J. Appl. Phys., 63, 3275–3277.

    ADS  Google Scholar 

  • Cook, N. H., and Bhushan, B. (1973). Sliding surface interface temperatures. J. hub. Tech., Trans. ASME 95, 59–64

    Google Scholar 

  • Cook, N. H., and Bhushan, B. (1973). Sliding surface interface temperatures. J. hub. Tech., Trans. ASME 95,* 535–536.

    Google Scholar 

  • Cotton, F. A., and Wilkinson, G. (1972). “Advanced Inorganic Chemistry.” Wiley (Interscience), New York.

    Google Scholar 

  • Courtney-Pratt, J. S., and Eisner, E. (1957). The effect of a tangential force on the contact of metallic bodies. Proc. Roy. Soc. (London) A238, 529–550.

    ADS  Google Scholar 

  • Cramond, D. J., and Hammond G. S. (1964). “Organic Chemistry,” 2nd Ed., pp. 355 McGraw-Hill, New York.

    Google Scholar 

  • Cramond, D. J., and Hammond G. S. (1964). “Organic Chemistry,” 2nd Ed.*486 McGraw-Hill, New York.

    Google Scholar 

  • Cramond, D. J., and Hammond G. S. (1964). “Organic Chemistry,” 2nd Ed.*677. McGraw-Hill, New York.

    Google Scholar 

  • Cuddihy, E. F. (1976). Hygroscopic properties of magnetic recording tape. IEEE Trans. Mag. MAG-12 (2), 126–135.

    Google Scholar 

  • Cuddihy, E. F. (1980). Aging of magnetic recording tape. IEEE Trans. Mag. MAG-16 (4), 558–568.

    ADS  Google Scholar 

  • Davies, D. K. (1973). Surface charge and the contact of elastic solids. J. Phys. D: Appl. Phys. 6, 1017–1024.

    ADS  Google Scholar 

  • Deryagin, B. V. (1955). Problems of adhesion. Research (London) 8, 70–74.

    Google Scholar 

  • Deryagin, B. V., and Abrikosova, I. I. (1956). Direct measurement of the molecular attraction of solid bodies. J. Exp. Theo. Phys. 3, 819–829.

    Google Scholar 

  • Deryagin, B. V., Krotova, N. A., and Smilga, V. P. (1978). “Adhesion of Solids” (Translated from Russian by R. K. Johnston). Consultants Bureau, New York.

    Google Scholar 

  • Dickstein, H. L., Giordano, R. P., and Dickstein, W. H. (1988). The effect of pigment volume concentration on the magnetic and mechanical performance of particulate disk coatings. Presented at Symposium on Polymers in Information Technology, ACS National Meeting, Los Angeles, California, Sept. 25–30.

    Google Scholar 

  • Dimigen, H., and Hübsch, H. (1983–1984). Applying low-friction wear-resistant thin solid films by physical vapor deposition. Philips Tech. Rev. 41, 186–197.

    Google Scholar 

  • Doan, T. Q., and Mackintosh, N. D. (1988). The frictional behavior of rigid-disk carbon overcoats. In “Tribology and Mechanics of Magnetic Storage Systems” (B. Bhushan and N. S. Eiss, eds.), Vol. 5, pp. 6–11. SP-25, STLE, Park Ridge, Illinois.

    Google Scholar 

  • Dugger, M. T., Chung, Y. W., Bhushan, B., and Rothschild, W. (1990). Friction, wear, and interfacial chemistry in thin-film rigid disk magnetic rigid disk files. J. Trib., Trans. ASME (in press).

    Google Scholar 

  • Fan, P. L., and O’Brien, M. J. (1975). Adhesion in deformable isolated capillaries. In “Adhesion Science and Technology,” (L. H. Lee, ed.), Vol. 9A, p. 635, Plenum, New York.

    Google Scholar 

  • Ferry, J. D. (1980). “Viscoelastic Properties of Polymers.” Wiley, New York.

    Google Scholar 

  • Fuller, D. D. (1984). “Theory and Practice of Lubrication for Engineers.” Wiley, New York.

    Google Scholar 

  • Fuller, K. N. G., and Tabor, D. (1975). The effect of surface roughness on the Adhesion of elastic solids. Proc. Roy. Soc. (London) A345, 327–342.

    ADS  Google Scholar 

  • Gatzen, H. H., Smallen, M. J., and Tedrow, P. T. (1987). Head-media wear in 5¼ in. rigid disk drives. In “Tribology and Mechanics of Magnetic Storage Systems” (B. Bhushan and N. S. Eiss, eds.), Vol. 4, pp. 116–122. SP-22, STLE, Park Ridge, Illinois.

    Google Scholar 

  • Gent, A. N., and Petrich, R. P. (1969). Adhesion of viscoelastic materials to rigid substrates. Proc. Roy. Soc. (London) A310, 433–448.

    ADS  Google Scholar 

  • Gillen, K. T. (1978). Use of a thermomechanical analyzer to estimate the tensile compliance of polymeric films. J. Appl. Poly. Sci. 22, 1291–1302.

    Google Scholar 

  • Grosch, K. A. (1963). The relation between the friction and viscoelastic properties of rubber. Proc. Roy. Soc. (London) A274, 21–39.

    ADS  Google Scholar 

  • Hamakar, H. C. (1937). London Van der Waals attraction between spherical bodies. Physica 4, 1058.

    ADS  Google Scholar 

  • Harada, K. (1981). Plasma polymerized protective films for plated magnetic disks. J. Appl. Poly. Sci. 26 3707–3718.

    Google Scholar 

  • Hegmon, R. R. (1969). The contribution of deformation losses to rubber friction. Rubber Chem. and Technol., 42, 1122–1135.

    Google Scholar 

  • Heinrich, V., Kofler, J., Nauth, H. G., Strieker, H., and Tandjung, H. (1984). Magnetic head suction problem. IBM Tech. Disclosure Bull, 26, 4738.

    Google Scholar 

  • Hinkel, H., Kempf, J. Kuenzel, U., and Prinz, E. (1983). Reducing the viscous force (stiction) of magnetic head sliders on lubricated magnetic disks. IBM Tech. Disclosure Bull. 25, 4903–4905.

    Google Scholar 

  • Hiratsuka, H., Hanafusa, H., Nakamura, K., and Hosokawa, S. (1980). Durability of magnetic recording tape for mass memory system. Rev. Elec. Comm. Lab., Jpn., 28 (5–6), 449–458.

    Google Scholar 

  • Hoshino, M., Kimachi, Y., Yoshimura, F., and Terada, A. (1988). Lubrication layer using perfluoropolyether and aminosilane for magnetic recording media. In “Tribology and Mechanics of Magnetic Storage Systems” (B. Bhushan and N. S. Eiss, eds.), Vol. 5. pp. 37–42. SP-25, STLE, Park Ridge, Illinois.

    Google Scholar 

  • Houwink, R., and Saloman, G. (1965). “Adhesion and Adhesives,” pp. 101–128. Elsevier, Amsterdam.

    Google Scholar 

  • Ishikawa, M., Tani, M., Yamada, T., Ota, Y., Nakamura, K., and Itoh, A. (1986). Dual carbon, a new surface protective film for thin-film hard disks. IEEE Trans. Magn. Mag-22, 999–1001.

    ADS  Google Scholar 

  • Israelachvili, J. N., and Tabor, D. (1972). The measurements of Van der Waals dispersion forces in the range 1.5 to 130 nm. Proc. Roy. Soc. (London) A331, 19–38.

    ADS  Google Scholar 

  • Johnson, K. L., Kendall, K., and Roberts, A. D. (1971). Surface energy and the contact of elastic solids. Proc. Roy. Soc. (London) A324, 301–313.

    ADS  Google Scholar 

  • Jorgensen, F. (1980). “The Complete Handbook of Magnetic Recording,” pp. 185–231. Tab Books Inc., Blue Ridge Summit, Pennsylvania.

    Google Scholar 

  • Kaelble, D. H., ed. (1971). “Physical Chemistry of Adhesion,” pp. 22–83. Wiley (Interscience), New York.

    Google Scholar 

  • Kaelble, D. H., Dynes, P. J., and Cirlin, E. H. (1974). “Interfacial bonding and environmental stability of polymer matrix composites. J. Adhesion 6, 23–48.

    Google Scholar 

  • Kalfayan, S. H., Silver, R. H., and Hoffman, J. K. (1972). A Study of the frictional and stick-slip behavior of magnetic recording tapes. Technical Report 32–1548, California Institute of Technology, Pasadena.

    Google Scholar 

  • Kaneko, R. (1986). Development of magnetic and optical storage in Japan. In “Tribology and Mechanics of Magnetic Storage Systems” (B. Bhushan and N. S. Eiss, eds.), Vol. 3, pp. 8–13. SP-21 ASLE, Park Ridge, Illinois.

    Google Scholar 

  • Kaneko, R., and Koshimoto, Y. (1982). Technology in compact and high recording density disk storage. IEEE Trans. Magn. MAG-18, 1221–1226.

    ADS  Google Scholar 

  • Kimachi, Y., Yoshimura, F., Hoshino, M., and Terada, A. (1987). Uniformity quantification of lubricant layer on magnetic recording media. IEEE Trans. Mag. MAG-23, 2392–2394.

    ADS  Google Scholar 

  • Lee, L. H. (1974) Effect of surface energetics on polymer friction and wear. In “Advances in Polymer Friction and Wear,” (L. H. Lee, ed.), Vol. 5A, pp. 31–68. Plenum, New York,

    Google Scholar 

  • Liu, C. C., and Mee, P. B. (1983). Suction at the Winchester head-Disk interface. IEEE Trans. Mag. MAG-19, 1659–1661.

    ADS  Google Scholar 

  • London, F. (1930). Zur théorie und systematick der molekulaskrafte. Z. Physik. 63, 245.

    ADS  Google Scholar 

  • London, F. (1937). The general theory of molecular forces. Trans Faraday Soc. 33, 8–26.

    Google Scholar 

  • Ludema, K. C., and Tabor, D. (1966). The friction and viscoelastic properties of polymeric solids. Wear 9, 329–348.

    Google Scholar 

  • Mahanty, J., and Ninham, B. W. (1976). “Dispersion Forces.” Academic Press, New York.

    Google Scholar 

  • Matthewson, M. J. (1988). Adhesion of spheres by thin liquid films. Phil-Mag. A57, 207–216.

    ADS  Google Scholar 

  • Matthewson, M. J., and Mamin, H. J. (1988). Liquid-mediated adhesion of ultra-flat solid surfaces. Proc. Mat. Res. Soc. Symp. 119, 87–92.

    Google Scholar 

  • McFarlane, J. S., and Tabor, D. (1950). Adhesion of solids and the effects of surface films. Proc. R. Soc. (Lond.) A202, 224–243.

    ADS  Google Scholar 

  • Memming, R., Tolle, H. J., and Wierenga, P. E. (1986). Properties of polymeric layers of hydrogenated amorphous carbon produced by plasma-activated chemical vapor deposition: Tribological and mechanical properties. Thin Solid Films, 143, 31–41.

    ADS  Google Scholar 

  • Mendelson, M. A., and Rosenblatt, G. B. (1979). Effect of hydrolytic degradation on compression-deflection characteristics and hardness of structured polyurethane castings. ACS Symp. Durability of Macromolecular Materials, Chapter 11, Amer. Chem. Soc, Washington, D.C., pp. 155–170.

    Google Scholar 

  • Meradudin, A. A., and Mazur, P. (1980). Effect of surface roughness of the Van der Waals force between dielectric bodies. Phys. Rev. 22, 1684–1686.

    Google Scholar 

  • Merchant, M. E. (1968). Friction and adhesion. In “Interdisciplinary Approach to Friction and Wear” (D. H. Buckley, ed.). NASA, Cleveland, Ohio.

    Google Scholar 

  • Miyamoto, T., Sato, I., and Ando, Y. (1988). Friction and wear characteristics of thin film disk media in boundary lubrication. In “Tribology and Mechanics of Magnetic Storage Systems” (B. Bhushan and N. S. Eiss, eds.), Vol. 5, pp. 55–61. SP-25, STLE, Park Ridge, Illinois.

    Google Scholar 

  • Miyoshi, K., Buckley, D. H., and Bhushan B. (1984a). Friction and morphology of magnetic tapes in sliding contact with nickel-zinc ferrite. NASA Technical Paper 2267. NASA, Cleveland, Ohio.

    Google Scholar 

  • Miyoshi, K., and Buckley, D. H. (1984b). Properties of ferrites important to their friction and wear behavior. In “Tribology and Mechanics of Magnetic Storage Systems” (B. Bhushan and N. S. Eiss, eds.) pp. 13–20. SP-16, ASLE, Park Ridge, Illinois.

    Google Scholar 

  • Miyoshi, K., Buckley, D. H., Kusaka, T., Maeda, C., and Bhushan, B. (1988). Effect of water vapor on adhesion of ceramic oxide in contact with polymeric magnetic medium and itself. In “Tribology and Mechanics of Magnetic Storage Systems” (B. Bhushan and N. S. Eiss, eds.), Vol. 5. pp. 12–16. SP-25, STLE, Park Ridge, Illinois.

    Google Scholar 

  • Moore, D. F. (1972). “The Friction and Lubrication of Elastomers.” Pergamon, Oxford.

    Google Scholar 

  • Morrison, R. T., and Boyd, R. N. (1974). “Organic Chemistry,” 3rd Eds., pp. 663, Allyn and Bacon, Rockleigh, New Jersey.

    Google Scholar 

  • Morrison, R. T., and Boyd, R. N. (1974). “Organic Chemistry,” 3rd Eds., 677–681

    Google Scholar 

  • Nyaiesh, A., and Holland, L. (1984). The growth of amorphous and graphite carbon layers under ion bombardment in an rf plasma. Vacuum 34, 519–522.

    Google Scholar 

  • Ohta, S., Yoshimura, F., Kimachi, Y., and Terada, A. (1987). Wear properties of sputtered γ-Fe2O3 thin-film disks, In “Tribology and Mechanics of Magnetic Storage Systems” (B. Bhushan and N. S. Eiss, eds.), Vol. 4, pp. 110–115. SP-22, STLE, Park Ridge, Illinois.

    Google Scholar 

  • Owens, D. K. (1964). Friction of polymer films I. Lubrication. J. Appl. Poly. Sci. 8, 1465–1475.

    Google Scholar 

  • Patton, T. C. (1979). “Paints Flow and Pigment Dispersion.” Wiley, New York.

    Google Scholar 

  • Paxton, R. R. (1979). “Manufactured Carbon: A Self-Lubricated Material for Mechanical Devices.” CRC Press Inc., Boca Raton, Florida.

    Google Scholar 

  • Phipps, P. B., and Rice, D. W. (1979). Role of water in atmospheric corrosion. ACS Symposium Series No. 89.

    Google Scholar 

  • Rabinowicz, E. (1965). “Friction and Wear of Materials.” Wiley, New York.

    Google Scholar 

  • Rand, W. M. (1983). Electron curing of magnetic coatings. Radiation Curing, February, pp. 26–30.

    Google Scholar 

  • Redman, R. P. (1978). Development in polyurethane elastomers. In “Developments in Polyurethane-I” (J. M. Buist, ed.), pp. 33–76. Appl. Sci. Publishers, London.

    Google Scholar 

  • Richmond, P., and Ninham, B. W. (1971). Calculations of van der Waals forces across films of liquid helium using Lifshitz theory. J. Low Temp. Phys. 5, 177–189.

    ADS  Google Scholar 

  • Saito, S., Futamoto, M., Honda, Y., Nishimura, T., and Yoshida, K. (1987). Wear-resistant properties of protective layers applied to thin film metallic media. IEEE Trans. Magn. Mag 23, 2398–2400.

    ADS  Google Scholar 

  • Scarati, A. M., and Caporiccio, G. (1987). Frictional behavior and wear resistance of rigid disks lubricated with neutral and functional perfluoropolyethers. IEEE Trans. Magn. Mag-23, 106–108.

    Google Scholar 

  • Schallamach, A. (1971). How does rubber slide? Wear 17, 301–312.

    Google Scholar 

  • Schollenberger, C. S. (1971). Thermoplastic polyurethane hydrolysis stability. J. Elastoplastics, 3, 28–56.

    Google Scholar 

  • Schollenberger, C. S., and Dinbergs, K. (1979). Thermoplastic polyurethane elastomer molecular weight-property relations, further studies. J. Elastom. and Plast. 11, 58–91.

    Google Scholar 

  • Seefried, C. G., Koleske, J. V., and Critchfield, F. E. (1975). Thermoplastic urethane elatomers I. Effects of soft-segment variations. J. App. Poly. Sci., 19 2493–2502.

    Google Scholar 

  • Seto, J. (1977). Effect of adsorption on reinforcement of filled polyurethane. J. Rubber Chem. Tech. 50, 333–341.

    Google Scholar 

  • Skinner, S. M., Savage, R. L., and Rutzler, J. E. (1953). Electrical phenomena in adhesion I electron atmospheres in dielectrics. J. Appl. Phys. 24, 438–450.

    ADS  Google Scholar 

  • Smith T. L. (1958). Dependence of the ultimate properties of a GR-S rubber on strain rate and temperature. J. Poly. Sci. 32, 99–113.

    ADS  Google Scholar 

  • Srinivasan, R., and Mayne-Banton, V. (1982). Self-develo** photoetching of poly (ethylene terephthalate) films by far-ultraviolet excimer laser radiation. Appl. Phys. Lett. 41, 576–578.

    ADS  Google Scholar 

  • Sumita, M., Ookuma, T., Miyasaka, K., and Ishikawa, K. (1982). Effect of ultrafine particles on the elastic properties of oriented low-density polyethylene composites. J. Appl Poly. Sci. 27, 3059–3066.

    Google Scholar 

  • Tabor, D. (1974). Friction, adhesion and boundary lubrication of polymers. In “Advances in Polymer Friction and Wear” (L. H. Lee, ed.), Vol. 5A, pp. 5–30. Plenum, New York.

    Google Scholar 

  • Tabor, D. (1975). Interaction between surfaces: Adhesion and friction. In “Surface Physics of Materials” (J. M. Blakely, ed.), pp. 475–528. Academic Press, New York.

    Google Scholar 

  • Tago, A., Satoh, I., Kogure, K., and Kita, T. (1980). Methods of estimating mechanical characteristics for magnetic recording disks. Rev. Elec. Comm. Lab. 28, 405–414.

    Google Scholar 

  • Tarn, A. C., and Bhushan, B. (1987). Reduction of friction between a tape and a smooth surface by acoustic excitation. J. Appl. Phys. 61, 1646–1648.

    ADS  Google Scholar 

  • Tanaka, K. (1961). Friction and deformation of polymers. J. Phys. Soc, Jpn. 16, 2003–2016.

    ADS  Google Scholar 

  • Tanaka, K., and Ueda, S. (1978). Effect of sliding speed on the friction of magnetic tapes. A-36 preprint of JSLE Meeting, Tokyo, May.

    Google Scholar 

  • Timsit, R. S., and Stratford, G. H. (1988). Effect of humidity on friction at magnetic head/hard disk interfaces. In “Tribology and Mechanics of Magnetic Storage Systems” (B. Bhushan and N. S. Eiss, eds.), Vol. 5, pp. 17–23. SP-25, STLE, Park Ridge, Illinois.

    Google Scholar 

  • Tochihara, S. (1982). Magnetic coatings and their applications in Japan. Progress in Organic Coatings 10, 195–204.

    Google Scholar 

  • Tsukamoto, Y., Yamaguchi, H., and Yanagisawa, Y. (1988). Mechanical properties and wear characteristics of various thin-films for rigid magnetic disks. IEEE Trans. Magn. MAG-24, 2644–2646.

    ADS  Google Scholar 

  • Vanderhoff, J. W. Bennetch, L. M., Cantow, M. J., Earhart, K. A., El-Aasser, M. S., Huang, T. C., Kang, M. H., Micale, F. J, Shaffer, O. L., and Timmons, D. W. (1982). Acid-base interaction of polymeric vehicles with the corrosion products of iron. Proc. of Org. Coat. Appl. Poly. 46, 12–15.

    Google Scholar 

  • Voyutski, S. S. (1963). “Autoadhesion and Adhesion of High Polymers.” Wiley, New York.

    Google Scholar 

  • Wählin, A., and Bäckström, G. (1974). Sliding electrification of Teflon by metals. J. Appl. Phys. 45, 2058–2064.

    Google Scholar 

  • Williams, E. M. (1981). Personal communications.

    Google Scholar 

  • Williams, M. L., Landel, R. E., and Ferry, F. D. (1955). The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Amer. Chem. Soc. 77 3701–3707.

    Google Scholar 

  • Yamashita, T., Chen, G. L., Shir, J., and Chen, T. (1988). Sputtered ZrO2 overcoat with superior corrosion protection and mechanical performance in thin film rigid disk application. IEEE Trans. Magn. MAG-24, 2629–2634.

    ADS  Google Scholar 

  • Yanagisawa, M. (1985a). Lubricants on plated magnetic recording disks. In “Tribology and Mechanics of Magnetic Storage Systems” (B. Bhushan and N. S. Eiss, eds.), Vol. 2, pp. 16–20. SP-19 ASLE, Park Ridge, Illinois.

    Google Scholar 

  • Yanagisawa, M. (1985b). Tribological properties of spin-coated SiO2 protective film on plated magnetic recording disk. In “Tribology and Mechanics of Magnetic Storage Systems” (B. Bhushan and N. S. Eiss, eds.), Vol. 2, pp. 21–26. SP-19, ASLE, Park Ridge, Illinois.

    Google Scholar 

  • Zimon, A. D. (1969). “Adhesion of Dust and Powder,” pp. 269–280. Plenum, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Bhushan, B. (1990). Friction. In: Tribology and Mechanics of Magnetic Storage Devices. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-0335-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0335-0_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-0337-4

  • Online ISBN: 978-1-4684-0335-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation